Geodesic Graph Neural Network for Efficient Graph
Representation Learning

Lecheng Kong Yixin Chen
Washington University in St. Louis Washington University in St. Louis
jerry.kong@wustl.edu ychen25@wustl.edu
Muhan Zhang

Peking University
muhan@pku.edu.cn

Abstract

Graph Neural Networks (GNNs) have recently been applied to graph learning tasks
and achieved state-of-the-art (SOTA) results. However, many competitive methods
run GNNs multiple times with subgraph extraction and customized labeling to
capture information that is hard for normal GNNs to learn. Such operations are time-
consuming and do not scale to large graphs. In this paper, we propose an efficient
GNN framework called Geodesic GNN (GDGNN) that requires only one GNN run
and injects conditional relationships between nodes into the model without labeling.
This strategy effectively reduces the runtime of subgraph methods. Specifically,
we view the shortest paths between two nodes as the spatial graph context of
the neighborhood around them. The GNN embeddings of nodes on the shortest
paths are used to generate geodesic representations. Conditioned on the geodesic
representations, GDGNN can generate node, link, and graph representations that
carry much richer structural information than plain GNNs. We theoretically prove
that GDGNN is more powerful than plain GNNs. We present experimental results
to show that GDGNN achieves highly competitive performance with SOTA GNN
models on various graph learning tasks while taking significantly less time.

1 Introduction

Graph Neural Network (GNN) is a type of neural network that learns from relational data. With the
emergence of large-scale network data, it can be applied to solve many real-world problems, including
recommender systems [44]], protein structure modeling [15], and knowledge graph completion [2].
The growing and versatile nature of graph data pose great challenges to GNN algorithms both in their
performance and their efficiency.

GNN’s use message passing to propagate features between connected nodes in the graph, and the
nodes aggregate their received messages to generate representations that encode the graph structure
and feature information around them. These representations can be combined to form multi-node
structural representations. Because GNNGs are efficient and have great generalizability, they are widely
employed in node-level, edge-level, and graph-level tasks. A part of the power of GNNs comes from
the fact that they resemble the process of the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm
[22]]. The algorithm encodes subtrees rooted from each node through an iterative node coloring
process, and if two nodes have the same color, they have the same rooted subtree and should have very
similar surrounding graph structures. However, as pointed out by Xu et al. [45], GNN’s expressive
power is also upper-bounded by the 1-WL test. Specifically, GNN is not able to differentiate nodes
that have exactly the same subtrees but have different substructures. For example, consider the graph

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

in Figure [I] with two connected components, because all nodes have the same number of degrees,
they will have exactly the same rooted subtrees. Nevertheless, the nodes in the left component are
clearly different from the nodes in the right component, because the left component is a 3-cycle and
the right one is a 4-cycle. Such cases can not be discriminated by GNNs or the 1-WL test. We refer
to this type of GNN as plain GNN or basic GNN.

On the other hand, even when a carefully-designed GNN can dif-
ferentiate all node substructures in a graph, Zhang et al. [54] show
that the learned node representation still cannot effectively perform
structural learning tasks involving multiple nodes, including link
predictions and subgraph predictions, because the nodes are not able
to learn the relative structural information. We will discuss this in

Figure 1: An example where more detail in SectionZ.11

plain GNN fails to distinguish
nodes in the graph. These limitations motivate recent research that pushes the limit of
GNN'’s expressiveness. One branch is to use higher-order GNNs
that mimic higher-dimensional Weisfeiler-Lehman tests [23| 26]. They extend node-wise message
passing to node-tuple-wise and obtain more expressive representations. Another branch is to use
labeling methods. By extracting subgraphs around the nodes of interest, they design a set of subgraph-
customized labels as additional node features. The labels can be used to distinguish between the
nodes of interest and other nodes. The resulting node representations can encode substructures that
plain GNNs cannot, like cycles.

However, the major drawback of these methods is that compared to plain GNNss, their efficiency is
significantly compromised. Higher-order GNNs update embeddings over tuples and incur at least
cubic complexity [52} 23]]. Labeling tricks usually require subgraph extraction on a large graph and
running GNNs on mini-batches of subgraphs. Because the subgraphs overlap with each other, the
aggregated size of the subgraphs is possibly hundreds of times the large graph. Nowadays GNNs are
massive, the increased graph computation cost makes labeling methods inapplicable to real-world
problems with millions of nodes.

We observe that a great portion of the labeling methods relies on geodesics, namely the shortest
paths, between nodes. For node representation, Distance-Encoding (DE) [25] labels the target nodes’
surrounding nodes with their shortest path distance to the target nodes and achieves higher than 1-WL
test expressiveness. Current state-of-the-art methods for link prediction, such as SEAL [50], leverage
the labeling tricks in order to capture the shortest path distance along with the number of shortest
paths between the two nodes of the link. Inspired by this, we propose our graph representation
learning framework, Geodesic GNN (GDGNN), where we run GNN only once and inject higher
expressiveness into the model using shortest paths information by a geodesic pooling layer. Our
framework can obtain higher than 1-WL power without multiple runs of plain GNNs, which largely
improves the efficiency of more expressive methods.

Specifically, our GDGNN model learns a function that maps the learning target to a geodesic-
augmented target representation (the target can be a node, edge, graph, etc). The model consists
of two units, a GNN unit, and a geodesic pooling unit. The two units are connected to perform
end-to-end training. We first apply the GNN to the graph to obtain embeddings of all nodes. Then, for
each target, we find the task-specific geodesics and extract the corresponding GNN representations
of nodes on the geodesics. The task-specific geodesics have three levels. For node-level tasks, we
extract the geodesics between the target node and all of its neighbors. For edge-level tasks, we
extract the geodesics between the two target nodes of the edge. For graph-level tasks, we get the
geodesic-augmented node representation for each node as in node-level tasks and readout all node
representations as the graph representation. Finally, using the geodesic pooling unit, we combine
the geodesic representation and target representation to form the final geodesic augmented target
representation. Figure [summarizes the GDGNN framework.

All task-specific geodesics are formed by one or multiple pair-wise geodesics between two nodes.
We propose two methods to extract the pair-wise geodesic information, horizontal and vertical. The
horizontal geodesic is obtained by directly extracting one shortest path between the two nodes. The
vertical geodesic is obtained by extracting all direct neighbors of the two nodes that are on any of
their shortest paths. They focus on depth and breadth respectively. Horizontal geodesic is good at
capturing long-distance information not covered by the GNN. Vertical geodesic is provably more
powerful than plain GNN. Moreover, by incorporating the information of the subgraph induced by

!

Horizontal Geodesic =
: Geodesics
i i information of
Multiple pair- N
/ wise g’:od’;slcs multiple nodes
i are combined
Embeddings of are combined

colored nodes are ‘
used to generate
Pair-wise Geodesic [

Task-Specific Geodesics Pooling Function]

Representation

GNN processed graph [Link Representation] [Node Representation] [Graph Representation]
with embeddings Vertical Geodesic

Target graph

Figure 2: The overall pipeline of GDGNN. GNN is applied once to generate node embeddings. We
then use horizontal or vertical geodesic to extract pair-wise geodesic representation. One or more
such representations are collected to generate task-specific representation.

the vertical geodesic nodes, we can use GDGNN to distinguish some distance-regular graphs, a type
of graph that many current most powerful GNNs cannot distinguish.

During inference, the GNN unit is applied only once to the graph, after which we feed nodes and
geodesic information to the efficient geodesic pooling unit. This limits the number of GNN runs from
the query number (or the number of nodes for graph-level tasks) to a constant of one and remarkably
reduces the computation cost. Compared to labeling methods, GDGNN only requires one GNN run
and is much more efficient. Compared to plain GNN methods, GDGNN uses geodesic information
and thus is more powerful. We conducted experiments on node-level, edge-level, and graph-level
tasks across datasets with different scales and show that GDGNN is able to significantly improve
the performance of basic GNNs and achieves very competitive results compared to state-of-the-art
methods. We also demonstrate GDGNN'’s runtime superiority over other more-expressive GNNs.

2 Preliminaries

A graph can be denoted by G = (V,E,R), where V = {vy,...,u,} is the node set, £ C
{(vi, 7, v5)|vi,v; € V,r € R} is the edge set and R is the set of edge types in the graph. When
|R| = 1, the graph can be referred to as a homogeneous graph. When |R| > 1, the graph can be
referred to as a heterogeneous graph. Knowledge graphs are usually heterogeneous graphs. The
nodes can be associated with features X = {x,|Vv € V}. For simplicity, we use homogeneous
graphs to illustrate our ideas and methods.

We follow the definition of message passing GNNs in [45] with AGGREGATE and COMBINE
functions. Such GNNs iteratively update the node embeddings by receiving and combining the
neighbor nodes’ embeddings. The k-th layer of a GNN can be expressed as:

m{® = AGGREGATE) (h(*=1)) pF) = COMBINE({m" v e N'(v)},RFD) (1)

where hg,k) is the node representation after k iterations, hv(JO) = x,, N(v) is the set of direct
neighbors of v, m,, is the message embedding. Different GNNs vary mainly by the design choice of
the AGGREGATE and COMBINE functions. In this paper, we use h,, to represent the final node
representation of v from the plain GNN. In this paper, we use bold letters to represent vectors, capital
letters to represent sets, and A/* (v) to refer to nodes within the k-hop neighborhood of v.

3 Geodesic Graph Neural Network

Geodesic is conventionally defined as the shortest path between two nodes and indeed in homogeneous
graphs, it encodes only the distance. However, we found that when combined with GNNs and node
representations, geodesics express information much richer than the shortest path distance alone. In
this section, we first discuss the intuition behind GDGNN and its effectiveness. Then, we describe
the GDGNN framework and how its GNN unit and geodesic pooling unit are combined to make
predictions. Finally, we provide theoretical results of the better expressiveness of GDGNN.

(b) © (d)

Figure 3: (a) A circular graph where plain GNN cannot distinguish link AB and AC. (b) and (c) are
the GNN computation graphs of A if B and C, respectively, are labeled. (d) is an example where
geodesic representation can distinguish links AB and AC, but distance fails to do so.

3.1 Intuition and Overview

The key weakness of directly using plain GNNs is that the embeddings are generated without
conditional information. For node-level tasks, as pointed out in [49]], a plain GNN is unaware of
the position of the target node in the rooted subtree, and hence the target node is oblivious of the
conditional information about itself. For edge-level tasks, Zhang et al. [54] shows that despite a
node-most-expressive-GNN, without node labeling, the embedding of one node in the edge is not
able to preserve the conditional information of the other node. Concretely, take link prediction as
an example, in Figure[3a] we have two target links AB and AC. Since AB is already connected by a
link and AC is not, they should be represented differently. On the other hand, All nodes in the graph
are symmetric and should be assigned the same embeddings using any GNN. Hence, if we simply
concatenate the node representations of AB and AC, they will have the same link representations, and
cannot be differentiated by any downstream learner. To overcome this problem, previous methods
rely on labeling tricks to augment the computation graphs with conditional information. When node
B and C are labeled respectively in two separate subgraphs, the resulting computation graphs of A
are different as shown in Figure [3b]and 3¢

Notice that, for the labeling methods to take effect, subgraph extraction is necessary. However,
relabeling the graph and applying a GNN to every target to predict is extremely costly. Hence, we
wonder whether we can also incorporate conditional information between nodes without customized
labeling. Observe that in the example, the computation graph captures the number of layers before
node A first receives a message from a labeled node, which is essentially the shortest path distance
d between A and the other node. This implies that even when we only have node representations
from a plain GNN, by adding the distance information (which is 1 and 3 for AB and AC respectively)
independent of the computation graph, we can still distinguish the links.

While the previous example demonstrates the effectiveness of a simple shortest path distance metric,
we notice that distance alone is not always sufficient. For example, in Figure [3d| node B and node C
are symmetric and hence should be assigned the same node embedding when the graph is not labeled.
However, links AB and AC are apparently different as vy connecting AB connects to another group of
nodes whereas vy connecting AC does not connect to any other node. If we only use the shortest path
distance between AB and AC to assist the prediction, we still cannot differentiate them. However, if
we inject the entire geodesic expressed by the corresponding node embeddings along the shortest
path to the model, we are able to tell AB and AC apart due to v; and vs’s different embeddings.

Consider a naive GNN that outputs all node embeddings as one. Taking the shortest path can be seen
as extracting a one-valued vector with a length of the shortest distance between the two nodes. In the
neural setting, a general GNN can model the naive GNN and the nodes on the same shortest path can
have different representations besides one by encoding their own neighborhood. The extension of the
shortest path to the neural setting grants stronger expressive power to the geodesics. The geodesic
generation and the GNN are decoupled, because the selection of geodesic nodes is independent of
the node representations, while the node representations in subgraph GNNs are tied to a subgraph.
Dwelling on this decoupling and conditioning philosophy, GDGNN can run the GNN only once to
generate generic node embeddings and then use geodesic information to inject conditional information
into the model in a much more efficient way.

3.2 Pair-wise Geodesic Representation

GDGNN has different ways to leverage geodesic information for different levels of tasks, but they
all have the same basic component, pair-wise geodesic representation. It consists of structural
information of nodes on the shortest paths of the pair. Directly extracting all such nodes is time-
consuming and sometimes not effective, hence we present two primary ways to learn the geodesic
representation, horizontal and vertical.

3.2.1 Horizontal Geodesic Representation

Horizontal Geodesic Representation is designed to directly capture the distinctiveness as described
in the previous example shown in Figure [3d] It first finds the shortest path between two nodes as
the geodesic. If there are multiple paths between them, we randomly choose one. The nodes on the

shortest path is denoted by P((fg) = {u,n1,na,...,nqg—1,v} with a length of d. Using P((fz) we can
construct the geodesic representation g(,, .,y by a geodesic pooling layer.
(H) (H)

H
g(u,v) = Rgd ({hw’vw € P((u,g)}) (2)

To prevent extremely long geodesics which may cause overfitting, we limit the maximum length to a
manageable constant d,,q,. Any pair with a distance larger than d,, 4, Will have an infinite distance
and a zero geodesic representation.

Because of the high computation cost of GNNs, the number of GNN layers is usually very small.
Using horizontal geodesics, we are able to connect nodes that are far away and do not coexist in a
GNN’s limited-height computation graph.

3.2.2 Vertical Geodesics Representation

Horizontal geodesics seems like an intuitive choice to directly connect the pair of nodes by a sequence
of adjacent nodes. However, a natural question to ask is whether a single path is enough to represent
the conditional information between the pair. An example where horizontal geodesic falls short can
be found in Appendix |Gl Realizing this limitation, we propose the vertical geodesic representation
that includes all geodesic information in an efficient way.

For a pair of nodes u and v, vertical geodesic extracts the direct neighbors of them that are on any
of their shortest paths. Specifically, let the distance between w and v be d(u, v), we have the nodes on
their shortest paths to be W(,, ,,y = {w|d(u, w) + d(w,v) = d(u,v),Vw € V}. The geodesics can
be represented as,

rY) —pM ypY) where P\V). = W NN (i),i € {u,v}. 3)

(u,v) (u,v),u (u,v),0? (u,v),i
Here P((XZ) , represents the nodes in the geodesic that are also the direct neighbors of 7. For some
tasks, we only consider one P((:Z) ; as the geodesics instead of both. We use a pooling layer to
generate vertical geodesic
gy} = RN ({hu,vw € PY) Y. @

) (u,

While the vertical geodesic does not explicitly encode a long shortest path, it can still capture short
shortest path information due to pooling the embeddings of the nodes in it. Compared with the
horizontal geodesic that takes one random shortest path, the vertical geodesic focuses more on breadth
by incorporating all direct neighbors on any shortest paths.

Unlike nodes in horizontal geodesic, nodes in vertical geodesic induce a more complex subgraph.
Consider only P((Xq))) , (we will use P, here for simplicity) and the subgraph G, induced by nodes in
P,. We can have a pooling function that encodes the graph structure of G,,,

ol) = R ({hu, Y € P,},G.). ©

The pooling layer can be a small plain GNN itself, and the initial embedding of G, can take the
pooled node embeddings from the main GNN. However, to keep our method efficient, we only add

the degree of nodes in the subgraph to the node embeddings. And the vertical geodesic representation
becomes,

9" = R\ ({hy @ degg, (w),Yw € P,}), ©6)

where @ means concatenation. Note that a node’s degree in the subgraph is different from that
in the main graph. This can be seen as a 1-layer GNN applied onto G, with identical initial node
embeddings. Even with this simple pooling design, the vertical geodesic is able to help distinguish
some distance regular graphs, which we cover in section[3.4]

Because vertical geodesics do not encode distance directly, we concatenate distance to vertical
geodesics as an additional feature. Like in horizontal geodesics, when d(u, v) is greater than d,, 4.,
we do not generate the geodesic representation for the pair and set their distance to infinity.

3.3 Task specific geodesic representation

Task-specific geodesic representation is a collection of pair-wise geodesic representations. Here, we
focus on three levels of tasks, node-level, edge-level, and graph-level.

For node-level tasks, the goal is to generate a representation zf,") for a target node v. We first find
v’s k-hop neighbor nodes S, = N*(v). Then for each node s; in S,,, we find the pair-wise geodesic,
Jo,s;- Note that in node level tasks, vertical geodesic only contains the geodesic nodes close to s;,

P((;/g_) ..- This enables fast geodesic extraction, and Theorem shows that with only one side of the

vertical geodesics, GDGNN can already distinguish almost all pairs of regular graphs. The geodesic
representations of the neighborhood are combined by a pooling layer,

zé") = R (g(v’si)

S; € Sv) (7)

While the GNN node embeddings of the neighborhood are not conditioned on v, by adding the
geodesic information to every neighbor, we inject the conditional information of v into its neighbors.
Then the collective information of the neighbors helps distinguish v.

For edge-level tasks, the goal is to generate an edge embedding ZEZ)

directly use the pair-wise geodesic for the two nodes, z((Z?”) = g(u,)- As pointed out by previous

works [58], 53], the advantage of this setup is that, when the downstream task is to rank one link
against N other links with one same node v, we only need to compute the distance vector from v
once and find the geodesic nodes efficiently.

») for nodes u and v. Here, we

For graph-level tasks, we need to generate a graph embedding zég) for G=(V, £). We use another
pooling layer to summarize the geodesic-augmented representation of every node in the graph,

29 = R9(z, v e V). (8)

GDGNN can also be easily generalized to other levels of tasks such as subgraph-level.

3.4 Expressive Power of GDGNN

Distinguishing power on graph-level tasks is often used to characterize the expressiveness of a GNN
model. For GNN models to be more expressive than the 1-WL test, we can test whether they are able
to distinguish regular graphs. In the following theorem, we show that given an injective R(9), the
graph embedding z generated based on vertical geodesics can distinguish most regular graphs.

Theorem 1. Let the graph pooling layer R\9) be injective given input from a countable space.
Consider all pairs of n-sized r-regular graphs, where 3 < r < +/2logn, n is the number of
nodes in the graph. For any small constant € > 0, there exists a GDGNN using vertical geodesic
representations with dma, = [(3 + €) log n 5| which distinguishes almost all (1 — o(1)) such

log(r—1—e
pairs of graphs.

We include the proof of Theorem [I]in Appendix[A] This theorem implies that GDGNN with vertical
geodesics is more expressive than basic GNNs (and 1-WL) and can discriminate almost all r-regular
graphs. Moreover, GDGNN only needs to search a small neighborhood for geodesics to achieve
higher expressiveness. This guarantees the good efficiency and performance of GDGNN.

X9

X0

N

Figure 4: An example of two graphs where GDGNN with vertical geodesics and subgraph degrees
can distinguish, while distance encoding cannot.

Moreover, when the vertical geodesic pooling layer encodes the subgraph induced by the geodesic
nodes (using Equation|[6]for geodesic pooling), GDGNN can distinguish some distance regular graphs.
Figure [shows two distance regular graphs, the Shrikhande graph, and the 4x4 rook’s graph. They
have the same intersection array and number of nodes. As proved by Li et al. 23], distance encoding
is not able to distinguish this pair of graphs, because nodes in the two graphs will be assigned the
same embedding. However, a vertical geodesic can discriminate them. Suppose the black nodes are
the target nodes, the brown nodes are one distance away from the black nodes and the light blue
nodes are two distances away from the black nodes. Consider the light blue nodes in both graphs,
they each have a pair of brown common neighbors with a black node. The brown pair is the vertical
geodesics of one light blue node. If we count the number of edges in the subgraph formed by each
brown pair, we will see that four out of nine pairs form a one-edge graph (in red) in the Shrikhande
graph, while zero out of nine pairs form a one-edge graph in the 4x4 rook’s graph. Since Equation 6]
directly captures this and will give four light blue nodes in the Shrikhande graph different pair-wise
geodesics with respect to the black node, an injective graph pooling layer will yield different node
representations for the two black nodes, and in turn, discriminates the two graphs.

Complexity. The main computation advantage of GDGNN comes from the fact that, for GDGNN,
the number of GNN runs stays at a constant of 1, while subgraph-based methods incur GNN runs
which increase linearly with respect to the number of queries. Hence, GDGNN maintains the good
efficiency of basic GNN methods, while injecting the high-expressiveness of subgraph methods into
the model. A detailed complexity analysis on different tasks can be found in Appendix

Limitations. While a simple geodesic pooling layer satisfies the theoretical expressiveness, if we
indeed use a GNN or other more complex layer for pooling as suggested in Section[3.2.2} the pooling
will dominate the good amortized complexity of GDGNN. We see this as a possible future direction
where we can use a more complex pooling layer to further improve expressiveness while maintaining
efficiency. Like subgraph GNNss, the geodesic extraction process also includes a cutoff distance d, 45
which potentially limits the expressive power of GDGNN. Meanwhile, we compare GDGNN with
different cutoff distances in Appendix [Fand show that a relatively small d,,, suffices to represent
the graph structure as indicated in Theorem T}

4 Related Works

GNNs beyond 1-WL test. Designing GNNs with stronger representation power is a fundamental
task in GNN research. Xu et al. [43] first proved that the expressiveness of basic GNNs, such as
GCN [20], GraphSAGE [17]], and GAT [40], is upper-bounded by the 1-WL test. Following works
conducted extensive research to break this limit. They can be sorted into several directions: (1) Earlier
works proposed higher-order GNNs that are as expressive as the k-WL algorithm, such as k-GNN
[23], RingGNN]6], and PPGN[26]]. These methods require message passing on node tuples that grow
exponentially with respect to k. The increased computation cost makes them not scalable to large
graphs. (2) Another type of methods, like GSN [5]] and MotifNet [27], incorporates isomorphism
counting on certain graph substructures like cycles, triangles, and cliques, similar to earlier kernel-
based methods [46,|12]. They essentially augment the models with features undetectable by GNNs.
However, a properly-design substructure usually requires expert knowledge which is not available
for all data. (3) Some other works use identity or random node labeling within the plain GNN
framework. ID-GNN [49] extracts a subgraph around the target node and performs heterogeneous
message passing. DE-GNN [25]] also requires subgraph extraction but labels nodes in the subgraph
with distance to the targets. They both have stronger expressiveness than basic GNNs. Abboud e? al.

[1]] shows that GNNs possess universality with random node feature initialization (RNI). Nevertheless,
RNI also induces a huge sample space, and GNNs adopting RNI is very hard to train. (4) Some recent
works propose to use additional subgraph structures to augment the node embeddings. GraphSNN
[43] incorporates properties of overlapping subgraphs between adjacent nodes to be more expressive
than 1-WL. Nested-GNN [52] applies GNN to ego-subgraphs of every node and proves that it is able
to discriminate regular graphs. Sharing the same idea of Nested-GNN, GNN-AK][55]] uses a different
subgraph pooling strategy and uses subgraph dropping to improve the model scalability. (5) Another
approach learns from both positional and structural representation. Dwivedi et al. [14] proposes to
learn from positional node embeddings unrecognized by the GNN and iteratively update them during
message passing. Zhu et al. [57] computes node proximity matrix to learn positional of nodes. They
can be combined with GDGNN to adapt to position-sensitive tasks.

Link prediction using GNNs. Earlier works [21} 20, [7, 39] applied basic GNNs to link prediction
using an auto-encoder framework, where the GNN serves as the encoder of the nodes, and edges are
decoded by their nodes’ encoding vectors. Another line of works, including SEAL [50], IGMC [51]],
and GralL [36], use GNNs to encode a labelled subgraph to form the link representation. Later work
[34}154] reveals that a good node-level/graph-level representation does not necessarily lead to a good
edge-level representation. Zhang et al. [54] systematically show that the labeling trick bridges the gap
between node-level and edge-level GNN expressiveness. Sharing the spirits of labeling trick, NBFNet
[58] extends the generalized Bellman-Ford algorithm to the neural setting and can encode many
traditional path-based methods. NBFNet has better scalability when there are multiple links sharing
the same node. Some other works also propose to use path information between links to enhance the
prediction like horizontal geodesic. Jagvaral et al. [19] uses CNN and BiLSTM to summarize the
path information, however, their model requires fixed node embedding, while horizontal geodesic
is based on graph structure generated from GNN and hence is inductive. Wang et al. [42]] learns
relational path information by training a set of embeddings for all different types of relational paths,
while horizontal GDGNN uses GNN to capture the graph structure and pool node embeddings along
the geodesic without training relational-path-specific embeddings.

S Experimental Results

5.1 Link Prediction

Datasets. We use several types of datasets for link prediction. (1) Knowledge Graph (KG) inductive
link prediction datasets. Inductive link prediction means that the model is trained on a training
graph while tested on a different graph. This requires the model to generalize to unseen entities,
which is a property preserved by a limited number of models. We follow the standard inductive split
of WN18RR[10] and FB15K237[38]| as in Teru et al. [36]. We rank each positive link against 50
randomly sampled negative links with the same head/tail as the positive link and report the Hit@10
ratio. (2) OGB large-scale link prediction dataset [[18], including OGBL-COLLAB and OGBL-PPA.
We use the official data split. We rank each positive link against a set of provided negative links
in the dataset and report the Hit@50 ratio for the OGBL-COLLAB dataset and the Hit@ 100 ratio
for the OGBL-PPA dataset. (4) Transductive KG results are included in Appendix@ (3) Results of
citation datasets and comparison to other distance-based methods can be found in Appendix [D| These
datasets vary by graph size and demonstrate GDGNN’s capability across scales.

Baselines. We compare GDGNN with Rules Mining methods, DRUM [31]] and NeuralLP [47],
and GNN-based methods, NBFNet [58] and GralL [36] for the KG tasks. Some other works like
[41, 18] incorporate text data in the KG to achieve better performance. As we believe models that
employ textual information is beyond the context of graph structural learning, we exclude them in our
comparison. For the OGB dataset, we compare GDGNNs with other methods achieving top places
on the OGB link prediction leaderboard, including Deep Walk [29]], Resource Allocation (RA) [56],
SEAL, Deeper GCN [24].

Implementation Detailsﬂ For link prediction, we use GCN (RGCN for KG) as the basic GNN. For
the KG datasets, we search the number of GNN layers in {2, 3,4, 5} and use 64 as hidden dimensions,
and the max search distance for geodesic, d; 4., is the same as the number of GNN layers. For the
OGB datasets, we search the number of GNN layers in {2, 3,4} and use 100 as the hidden dimension.

'The code and data of GDGNN can be found at https://github.com/woodcutter1998/gdgnn.

Table 1: Link prediction results (%) on KG. Table 2: Link prediction results (%) on OGB.

FB15K-237 WN18RR Method OGBL-COLLAB OGBL-PPA
Method vl v2 v3 v4 vl v2 v3 v4 GCN 44.75 + 1.45 18.67 +1.32
DRUM 52.9 587 52.9 559 744 689 462 671 DEEPWALK 50.37+0.34 28.884+1.63
NeuralLP 52.9 587 52.9 559 744 689 462 67.1 RA - 49.33 +0.00
GralL 64.2 812 828 89.3 825 787 584 73.4 DeeperGCN 52.73 £ 0.47 -

NBFENet 834 949 951 960 948 905 89.3 89.0 SEAL 54.37+0.49 48.80 + 3.16

GDGNN-Vert 854 956 979 978 93.1 889 88.1 856 GDGNN-Vert 54.74 £ 0.48 45.92+2.14
GDGNN-Hor 82.1 958 94.0 97.7 949 878 89.5 885 GDGNN-Hor 54.52+0.72 28.79 £ 3.80

Table 3: Link prediction running time results. Table 4: Graph classification running time results.
Method OGBL-COLLAB OGBL-PPA Method OGBG-MOLHIV OGBG-MOLPCBA
GCN 27 sec 17 min GIN 20 sec 2 min
SEAL 90 sec 2 hr 20 min GIN-AK 70 sec 12 min
NBFNet OoOM OOM Nested-GIN 149 sec 16 min
GDGNN-Vert 36 sec 33 min GDGNN-Vert 25 sec 2.5 min

We train 50 epochs with a batch size of 64 for the KG datasets, and we train 25 epochs with a batch
size of 2048 for the OGB datasets. For OGBL-COLLAB dataset, we use homogeneous labels (1
labels) for all nodes. We record the test score using the model with the best set of hyperparameters
on validation set. The experiment is repeated 5 times and we take the average.

Results and discussion. We achieved SOTA performance on the inductive datasets. GDGNN is able
to significantly improve over rule-mining methods and GralL.. We also outperform NBFNet on most
of the datasets. On the OGBL-COLLAB dataset (Table @, GDGNN achieved SOTA performance. On
the OGBL-PPA dataset, vertical GDGNN can obtain a very competitive result. Horizontal GDGNN
does not perform as well possibly because a single path has limited distinguishing power in a graph
with high density. On both OGB datasets, GDGNN improves greatly over its basic GNN, GCN.
Moreover, as shown in Table 3] GDGNN has running-time superiority over methods achieving
comparable performance and has a memory advantage to handle large graphs where NBFNet cannot
when links do not share common nodes. To make a fair running time comparison, we run all models
on 32 CPUs and 1 Nvidia GeForce 1080Ti GPU. We also include ablation studies on all components
of GDGNN in Appendix

5.2 Graph Classification

Datasets. We use two types of datasets for graph classification. (1) TU datasets contain D&D[11],
MUTAG[9], PROTEINS[[11]], PTC_MR[37]. The evaluation metric is Accuracy (%). We follow the
evaluation protocol in [52]], where we use 10-fold cross-validation to compute the score. (2) OGB
datasets[[18]], including OGBG-MOLHIV and OGBG-MOLPCBA. The task of the OGBG-MOLHIV
dataset is to predict whether a molecule inhibits the HIV virus. We use Area Under ROC Curve
(AUCQ) to evaluate the OGBG-MOLHIV dataset. OGBG-MOLPCBA dataset has 128 classification
tasks. We follow the evaluation protocol provided by the OGB team and use Average Precision
(AP) averaged across all classes to evaluate the dataset. (3) Synthetic datasets, including EXP[1]]
and CSL[28]]. These datasets contain graphs that can be only distinguished by models with > 1-WL
expressiveness. We report accuracy for these datasets.

Baselines. For the TU dataset, we compare GDGNN with another plug-and-play GNN framework,
Nested-GNNJ[52]]. Both GDGNN and Nested-GNN use GIN and GCN as their basic GNNs. For
the OGB dataset, we use GIN as the basic GNN, we compare GDGNN with methods achieving top
places on the OGB leaderboard, including GIN[45], GIN-AK [55]], LSPE [[14]], Nested GNN [52]],
Directional GSN (DGSN) [3]], PF-GNN [13]].

Implementation details. We use vertical geodesic in the graph-level tasks because of its theoretical
advantage over horizontal GDGNN. For TU datasets, we search the GNN layers and d,, 4, in {2,3,4}.
We train on the TU dataset for 100 epochs with a batch size of 64. For OGB datasets, we search the
number of GNN layers in {2,3,4,5}, and train for 100 epochs with a batch size of 256. We adopt the
virtual node technique [16] to increase the connectivity of graphs for the OGBG-MOLPCBA dataset.
For synthetic datasets, we search the number of GNN layers in {2,3,4}, and train for 50 epochs with a
batch size of 16. For the synthetic datasets, we report GDGNN'’s performance with different numbers
of layers {2,3,4}. We train the models for 100 epochs with a batch size of 8.

Table 5: Graph classification results (%) on TU. Table 6: Graph classification results (%) on OGB.

D&D MUTAG PROTEINS PTC_MR Method OGBG-MOLHIV OGBG-MOLPCBA

Avg. #nodes 284.32 17.93 39.06 14.29 GIN 75.58 + 1.40 27.03+0.23
GCN 71.6+28 734+108 717447 56.4+71 LSPE - 28.40+0.20
GIN 71.6+£3.0 740+88 71.2+52 57.0+55 Nested-GIN 78.34 £1.86 28.32£0.41
Nested-GCN 76.3+3.8 829+11.1 73.3+40 57.3+7.7 DGSN 80.39 + 0.90 -

Nested-GIN ~ 77.8+3.9 87.9+82 739+51 54.1+77 GIN-AK 78.22 4+ 0.75 29.30 +0.44
GDGCN 776440 884466 73.7+£34 603+45 PF-GNN 80.15 +0.68 ~

GDGIN 778+36 894471 73.6+25 57.9+34 GDGIN 79.07 +1.20 28.59 + 0.63

Results and discussions. On the TU datasets (Table[5), GDGNNs consistently outperform the basic
GNNs. Compared to Nested-GNN, GDGNN is able to bring a larger performance increase. This
shows GDGNN’s enhancing power. On the OGB datasets (Table [6)), we can see that GDGNN’s
performance is lower than PF-GNN and Directional GSN (so are GIN-AK and Nested-GNN). This
might indicate that pairwise conditional information is less effective for graph tasks than for link tasks.
Neverthelgss, GDGNN still outperforms the bagic GIN a 1ot,. and as Table 7: Synthetic Results.
GDGNN is a general framework that can be applied to any basic GNN,
the performance can be further improved. We notice that GDGNN outper- EXp GSL
forms LSPE on the OGB-MOLPCBA dataset, which might indicate that GIN 50.0 10.0
the pair-wise relation encoded by GDGNN is sufficient in representing RN 99.7 160
the positional information of a node. On the synthetic data, we achieve PR-GNN 10001000
. . o5 2-GDGNN 50.0 30.0
comparable results to the universal PF-GNN, which verifies our theory. 3.GDGNN 100.0 60.0
We include ablation studies of graph-level geodesics in Appendix [E] 4-GDGNN 100.0 100.0

5.3 Node Classification

Datasets. We use airport datasets, Brazil-Airport, Europe-Airport, and USA-Airport for our node
classification experiments. The task is to predict passenger flow level from the flight traffic network,
where graph structure matters and expressive GNNs are useful. Following the setting in Li ez al. [23]],
we split the dataset with a train/test/valid ratio of 8:1:1 and run experiments with independent random
initialization 20 times and report the average accuracy and 95% confidence range.

Baselines. For GNN baselines, we compare to 1-WL GNNs, including
GCN and GIN, and DE-GNN [25] that also relies on distance information.
We further compare to Struc2vec[30], Table 8: Node classification results (%).

PhUSION]J57]] that encodes graph structures - - -
without GNN. DE-GNN and PhUSION have Method Bra.-Airports Eur.-Airports USA-Airports
several variants and we take their best results g%‘] %gg i gé? gggz i ggi ?gig i %}é
here. Like in graph classification, we use Ver- - pyqion 723372000 56.02+0.00 63.49 + 0.00
tical geodesics because of its good theoretical — sguc2vec 70.88 £4.26 57.94+4.01 61.92 + 2.61
properties. We search the GNN layers and DE-GNN 7537+3.25 5841+3.20 64.16+1.70
dmaz in {2,3,4}. We train on all datasets for GDGIN 78.614+220 53.97+3.50 6436+ 1.62

200 epochs with a batch size of 32.

Results and discussions. From Table[§] we can see that GDGNN achieves very competitive results
compared to DE-GNN, and significantly improves the performance of basic GIN on two datasets,
which experimentally verifies our claim that node-level geodesic is more expressive than plain GNNG.
For GDGNN, because the GNN is applied to the graph only once in the entire node classification
process, it can maintain a good efficiency comparable to that of the basic GNNs.

6 Conclusions

In this paper, we propose a general GNN framework that incorporates geodesic information to
generate node, link, and graph representations. Our framework is more powerful than basic GNNs
both practically and theoretically and is more efficient than current more-expressive GNNs as
demonstrated by the running-time experiments. Our framework has the potential to make GNN's
encoding conditional information really applicable to large-scale real-world graphs.

Acknowledgement. LK and YC are supported by NSF grant CBE-2225809. MZ is supported by
NSF China (No0.62276003) and CCF-Baidu Open Fund (NO.2021PP15002000).

10

References

[1] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising
power of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179,
2020.

[2] Siddhant Arora. A survey on graph neural networks for knowledge graph completion. arXiv
preprint arXiv:2007.12374, 2020.

[3] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Lio. Directional graph networks. In International Conference on Machine Learning, pages
748-758. PMLR, 2021.

[4] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

[5] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[6] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

[7] Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyper-
spherical variational auto-encoders. arXiv preprint arXiv:1804.00891, 2018.

[8] Daniel Daza, Michael Cochez, and Paul Groth. Inductive entity representations from text via link
prediction. In Proceedings of the Web Conference 2021, pages 798-808, 2021.

[9] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786-797, 1991.

[10] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Thirty-second AAAI conference on artificial intelligence, 2018.

[11] Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of Molecular Biology, 330(4):771-783, 2003.

[12] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.
Advances in neural information processing systems, 32, 2019.

[13] Mohammed Haroon Dupty, Yanfei Dong, and Wee Sun Lee. Pf-gnn: Differentiable particle
filtering based approximation of universal graph representations. In International Conference on
Learning Representations, 2021.

[14] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

[15] Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J Gray. Deep learning in protein
structural modeling and design. Patterns, 1(9):100142, 2020.

[16] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pages
1263-1272. PMLR, 2017.

[17] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025-1035, 2017.

11

[18] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118-22133, 2020.

[19] Batselem Jagvaral, Wan-Kon Lee, Jae-Seung Roh, Min-Sung Kim, and Young-Tack Park.
Path-based reasoning approach for knowledge graph completion using cnn-bilstm with attention
mechanism. Expert Systems with Applications, 142:112960, 2020.

[20] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[21] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[22] AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12—16, 1968.

[23] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching
networks for learning the similarity of graph structured objects. In International conference on
machine learning, pages 3835-3845. PMLR, 2019.

[24] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to
train deeper gens. arXiv preprint arXiv:2006.07739, 2020.

[25] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. Neural Information
Processing Systems (NeurIPS), 2020.

[26] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. Advances in neural information processing systems, 32, 2019.

[27] Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE Data Science Workshop (DSW), pages
225-228. IEEE, 2018.

[28] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663-4673. PMLR, 2019.

[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. CoRR, abs/1403.6652, 2014.

[30] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 385-394, 2017.

[31] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM:
end-to-end differentiable rule mining on knowledge graphs. CoRR, abs/1911.00055, 2019.

[32] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks, 2017.

[33] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. Al magazine, 29(3):93-93, 2008.

[34] Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional
node embeddings and structural graph representations. In International Conference on Learning
Representations, 2019.

[35] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph em-
bedding by relational rotation in complex space. In International Conference on Learning
Representations, 2019.

[36] Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph
reasoning. In International Conference on Machine Learning, pages 9448-9457. PMLR, 2020.

12

[37] Hannu Toivonen, Ashwin Srinivasan, Ross King, Stefan Kramer, and Christoph Helma. Sta-
tistical evaluation of the predictive toxicology challenge 2000-2001. Bioinformatics (Oxford,
England), 19:1183-93, 08 2003.

[38] Kristina Toutanova and Dangi Chen. Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd workshop on continuous vector space models and their
compositionality, pages 57-66, 2015.

[39] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. In International Conference on Learning Represen-
tations, 2019.

[40] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[41] Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang. Structure-
augmented text representation learning for efficient knowledge graph completion. In Proceedings
of the Web Conference 2021, pages 1737-1748, 2021.

[42] Hongwei Wang, Hongyu Ren, and Jure Leskovec. Relational message passing for knowledge
graph completion. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pages 1697-1707, 2021.

[43] Asiri Wijesinghe and Qing Wang. A new perspective on" how graph neural networks go beyond
weisfeiler-lehman?". In International Conference on Learning Representations, 2021.

[44] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys (CSUR), 2020.

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

[46] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1365-1374,
2015.

[47] Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In NIPS, 2017.

[48] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Interna-
tional conference on machine learning, pages 7134-7143. PMLR, 2019.

[49] Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. CoRR, abs/2101.10320, 2021.

[50] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
Neural Information Processing Systems, 31:5165-5175, 2018.

[51] Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks.
In International Conference on Learning Representations, 2020.

[52] Muhan Zhang and Pan Li. Nested graph neural networks. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021.

[53] Yongqgi Zhang and Quanming Yao. Knowledge graph reasoning with relational digraph. In
Proceedings of the ACM Web Conference 2022, pages 912-924, 2022.

[54] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34, 2021.

[55] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
gnn with local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

13

[56] Tao Zhou, Linyuan Lii, and Yi-Cheng Zhang. Predicting missing links via local information.
The European Physical Journal B, 71(4):623-630, 2009.

[57] Jing Zhu, Xingyu Lu, Mark Heimann, and Danai Koutra. Node proximity is all you need:
Unified structural and positional node and graph embedding. CoRR, abs/2102.13582, 2021.

[58] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-
ford networks: A general graph neural network framework for link prediction. arXiv preprint
arXiv:2106.06935, 2021.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We faithfully summarize the paper in the abstract.

(b) Did you describe the limitations of your work? [Yes] As described in the Section [5|and
Appendix [C]

(c) Did you discuss any potential negative societal impacts of your work? Our work
only involves existing datasets and solves general graph learning problem without
negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumption is
described in the Theorem/[I]
(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix [A]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] As described in the implementation details of SectionE]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] As shown in the experiment result tables.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] In the discussion of SectionE]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] The datasets and
model source code repositories are all cited.
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? The datasets and source code are open source information allowed
for research use.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? The data we are using is known to be de-
identified.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Preliminaries
	Geodesic Graph Neural Network
	Intuition and Overview
	Pair-wise Geodesic Representation
	Horizontal Geodesic Representation
	Vertical Geodesics Representation

	Task specific geodesic representation
	Expressive Power of GDGNN

	Related Works
	Experimental Results
	Link Prediction
	Graph Classification
	Node Classification

	Conclusions

