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Abstract

Recovering linear subspaces from data is a fundamental and important task in
statistics and machine learning. Motivated by heterogeneity in Federated Learning
settings, we study a basic formulation of this problem: the principal component
analysis (PCA), with a focus on dealing with irregular noise. Our data come from n
users with user i contributing data samples from a d-dimensional distribution with
mean µi. Our goal is to recover the linear subspace shared by µ1, . . . , µn using
the data points from all users, where every data point from user i is formed by
adding an independent mean-zero noise vector to µi. If we only have one data point
from every user, subspace recovery is information-theoretically impossible when
the covariance matrices of the noise vectors can be non-spherical, necessitating
additional restrictive assumptions in previous work. We avoid these assumptions
by leveraging at least two data points from each user, which allows us to design
an efficiently-computable estimator under non-spherical and user-dependent noise.
We prove an upper bound for the estimation error of our estimator in general
scenarios where the number of data points and amount of noise can vary across
users, and prove an information-theoretic error lower bound that not only matches
the upper bound up to a constant factor, but also holds even for spherical Gaussian
noise. This implies that our estimator does not introduce additional estimation
error (up to a constant factor) due to irregularity in the noise. We show additional
results for a linear regression problem in a similar setup.

1 Introduction

We study the problem of learning low-dimensional structure amongst data distributions, given multiple
samples from each distribution. This problem arises naturally in settings such as federated learning,
where we want to learn from data coming from a set of individuals, each of which has samples
from their own distribution. These distributions however are related to each other, and in this work,
we consider the setting when these distributions have means lying in a low-dimensional subspace.
The goal is to learn this subspace, even when the distributions may have different (and potentially
non-spherical) variances. This heterogeneity can manifest itself in practice as differing number of
samples per user, or the variance differing across individuals, possibly depending on their mean.
Recovery of the subspace containing the means can in turn help better estimate individual means.
In other words, this can allow for learning good estimator for all individual means, by leveraging
information from all the individuals.
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The irregularity of the noise makes this task challenging even when we have sufficiently many
individual distributions. For example, suppose we have n individuals and for every i = 1, . . . , n,
an unknown µi ∈ Rd. For simplicity, suppose that µ1, . . . , µn are distributed independently as
N(0, σ2uuT) for σ ∈ R≥0 and an unknown unit vector u ∈ Rd. In this setting, our goal is to
recover the one-dimensional subspace, equivalently the vector u. For every i, we have a data point
xi = µi+zi where zi ∈ Rd is a mean-zero noise vector. If zi is drawn independently from a spherical
Gaussian N(0, α2I), we can recover the unknown subspace with arbitrary accuracy as n grows to
infinity because 1

n

∑
xix

T
i concentrates to E[xix

T
i ] = σ2uuT + α2I , whose top eigenvector is ±u.

However, if the noise zi is drawn from a non-spherical distribution, the top eigenvector of 1
n

∑
xix

T
i

can deviate from ±u significantly, and to make things worse, if the noise zi is drawn independently
from a non-spherical Gaussian N(0, σ2(I−uuT)+α2I), then our data points xi = µi+zi distribute
independently as N(0, (σ2 + α2)I), giving no information about the vector u.1

The information-theoretic impossibility in this example however disappears as soon as one has at least
two samples from each distribution. Indeed, given two data points xi1 = µi + zi1 and xi2 = µi + zi2
from user i, as long as the noise zi1, zi2 are independent and have zero mean, we always have
E[xi1x

T
i2] = σ2uuT regardless of the specific distributions of zi1 and zi2. This allows us to recover

the subspace in this example, as long as we have sufficiently many users each contributing at least
two examples.

As this is commonly the case in our motivating examples, we make this assumption of multiple data
points per user, and show that this intuition extends well beyond this particular example. We design
efficiently computable estimators for this subspace recovery problem given samples from multiple
heteroscedastic distributions (see Section 1.1 for details). We prove upper bounds on the error of our
estimator measured in the maximum principal angle (see Section 2 for definition). We also prove an
information-theoretic error lower bound, showing that our estimator achieves the optimal error up to
a constant factor in general scenarios where the number of data points and the amount of noise can
vary across users. Somewhat surprisingly, our lower bound holds even when the noise distributes as
spherical Gaussians. Thus non-spherical noise in setting does not lead to increased error.

We then show that our techniques extend beyond the mean estimation problem to a linear regression
setting where for each µi, we get (at least two) samples (xij , x

T
ijµi + zij) where zij is zero-mean

noise from some noise distribution that depends on i and xij . This turns out to be a model that
was recently studied in the meta-learning literature under more restrictive assumptions (e.g. zij is
independent of xij) [Kong et al., 2020, Tripuraneni et al., 2021, Collins et al., 2021, Thekumparampil
et al., 2021]. We show a simple estimator achieving an error upper bound matching the ones in prior
work without making these restrictive assumptions.

1.1 Our contributions

PCA with heterogeneous and non-isotropic noise: Upper Bounds. In the PCA setting, the data
points from each user i are drawn from a user-specific distribution with mean µi ∈ Rd, and we
assume that µ1, . . . , µn lie in a shared k-dimensional subspace that we want to recover. Specifically,
we have mi data points xij ∈ Rd from user i for j = 1, . . . ,mi, and each data point is determined by
xij = µi + zij where zij ∈ Rd is a noise vector drawn independently from a mean zero distribution.
We allow the distribution of zij to be non-spherical and non-identical across different pairs (i, j).
We use ηi ∈ R≥0 to quantify the amount of noise in user i’s data points by assuming that zij is an
ηi-sub-Gaussian random variable.

As mentioned earlier, if we only have a single data point from each user, it is information-theoretically
impossible to recover the subspace. Thus, we focus on the case where mi ≥ 2 for every i = 1, . . . , n.
In this setting, for appropriate weights w1, . . . , wn ∈ R≥0, we compute a matrix A:

A =

n∑
i=1

wi

mi(mi − 1)

∑
j1 ̸=j2

xij1x
T
ij2 , (1)

where the inner summation is over all pairs j1, j2 ∈ {1, . . . ,mi} satisfying j1 ̸= j2. Our estimator is
then defined by the subspace spanned by the top-k eigenvectors of A. Although the inner summation

1This information-theoretic impossibility naturally extends to recovering k-dimensional subspaces for k > 1
by replacing the unit vector u ∈ Rd with a matrix U ∈ Rd×k with orthonormal columns.
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is over mi(mi − 1) terms, the time complexity for computing it need not grow quadratically with mi

because of the following equation:

∑
j1 ̸=j2

xij1x
T
ij2 =

mi∑
j=1

xij

mi∑
j=1

xij

T

−
mi∑
j=1

xijx
T
ij .

The flexibility in the weights w1, . . . , wn allows us to deal with variations in mi and ηi for different
users i. In the special case where η1 = · · · = ηn = η and m1 = · · · = mn = m, we choose
w1 = · · · = wn = 1/n and we show that our estimator achieves the following error upper bound
with success probability at least 1− δ:

sin θ = O

((
ησ1

σ2
k

√
m

+
η2

σ2
km

)√
d+ log(1/δ)

n

)
.

Here, θ is the maximum principal angle between our estimator and the true subspace shared by
µ1, . . . , µn, and we define σℓ ≥ 0 such that σ2

ℓ is the ℓ-th largest eigenvalue of
∑n

i=1 wiµiµ
T
i . Our

error upper bound for general mi, ηi, wi is given in Theorem 3.1.

We instantiate our error upper bound to the case where µ1, . . . , µn are drawn iid from a Gaussian
distribution N(0, σ2UUT), where the columns of U ∈ Rd×k form an orthonormal basis of the
subspace containing µ1, . . . , µn. By choosing the weights w1, . . . , wn according to m1, . . . ,mn and
η1, . . . , ηn, our estimator achieves the error upper bound

sin θ ≤ O

(√
d+ log(1/δ)∑n

i=1 γ
′
i

)
(2)

under a mild assumption (Assumption 3.2), where γ′
i is defined in Definition 3.1 and often equals(

η2
i

σ2mi
+

η4
i

σ4m2
i

)−1

.

PCA: Lower Bounds. We show that the error upper bound (2) is optimal up to a constant factor
by proving a matching information-theoretic lower bound (Theorem 3.7). Our lower bound holds
for general mi and ηi that can vary among users i, and it holds even when the noise vectors zij are
drawn from spherical Gaussians, showing that our estimator essentially pays no additional cost in
error or sample complexity due to non-isotropic noise.

We prove the lower bound using Fano’s method on a local packing over the Grassmannian manifold.
We carefully select a non-trivial hard distribution so that the strength of our lower bound is not
affected by a group of fewer than k users each having a huge amount of data points with little noise.

Linear Models. While the PCA setting is the main focus of our paper, we extend our research to a
related linear models setting that has recently been well studied in the meta-learning and federated
learning literature [Kong et al., 2020, Tripuraneni et al., 2021, Collins et al., 2021, Thekumparampil
et al., 2021]. Here, the user-specific distribution of each user i is parameterized by βi ∈ Rd, and
we again assume that β1, . . . , βn lie in a k-dimensional linear subspace that we want to recover.
From each user i we observe mi data points (xij , yij) ∈ Rd × R for j = 1, . . . ,mi drawn from
the user-specific distribution satisfying yij = xT

ijβi + zij for an O(1)-sub-Gaussian measurement
vector xij ∈ Rd with zero mean and identity covariance and an ηi-sub-Gaussian mean-zero noise
term zij ∈ R. While it may seem that non-isotropic noise is less of a challenge in this setting since
each noise term zij is a scalar, our goal is to handle a challenging scenario where the variances
of the noise terms zij can depend on the realized measurements xij , which is a more general and
widely applicable setting compared to those in prior work. Similarly to the PCA setting, our relaxed
assumptions on the noise make it information-theoretically impossible to do subspace recovery if we
only have one data point from each user (see Section 4), and thus we assume each user contributes at
least two data points. For appropriate weights w1, . . . , wn ∈ R≥0, we use the subspace spanned by
the top-k eigenvectors of the following matrix A as our estimator:

A =

n∑
i=1

wi

mi(mi − 1)

∑
j1 ̸=j2

(xij1yij1)(xij2yij2)
T. (3)
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In the special case where η1 = · · · = ηn = η,m1 = · · · = mn = m, and ∥βi∥2 ≤ r for all i, our
estimator achieves the following error upper bound using weights w1 = · · · = wn = 1/n:

sin θ ≤ O

(
log3(nd/δ)

√
d(r4 + r2η2 + η4/m)

mnσ4
k

)
, (4)

where θ is the maximum principal angle between our estimator and the true subspace shared by
β1, . . . , βn, and σ2

k is the k-th largest eigenvalue of
∑n

i=1 wiβiβ
T
i (Corollary L.2). Our error upper

bound extends smoothly to more general cases where ηi and mi vary among users (Theorem L.1).
Moreover, our upper bound matches the ones in prior work [e.g. Tripuraneni et al., 2021, Theorem 3]
despite requiring less restrictive assumptions.

1.2 Related Work

Principal component analysis under non-isotropic noise has been studied by Vaswani and Narayana-
murthy [2017], Zhang et al. [2018] and Narayanamurthy and Vaswani [2020]. When translated to
our setting, these papers focus on having only one data point from each user and thus they require
additional assumptions—either the level of non-isotropy is low, or the noise is coordinate-wise
independent and the subspace is incoherent. The estimation error guarantees in these papers depend
crucially on how well these additional assumptions are satisfied. Zhu et al. [2019] and Cai et al.
[2021] study PCA with noise and missing data, and Chen et al. [2021] and Cheng et al. [2021] study
eigenvalue and eigenvector estimation under heteroscedastic noise. These four papers all assume that
the noise is coordinate-wise independent and the subspace/eigenspace is incoherent.

The linear models setting we consider has recently been studied as a basic setting of meta-learning
and federated learning by Kong et al. [2020], Tripuraneni et al. [2021], Collins et al. [2021], and
Thekumparampil et al. [2021]. These papers all make the assumption that the noise terms zij are
independent of the measurements xij , an assumption that we relax in this paper. Collins et al. [2021]
and Thekumparampil et al. [2021] make improvements in sample complexity and error guarantees
compared to earlier work by Kong et al. [2020] and Tripuraneni et al. [2021], but Collins et al.
[2021] focus on the noiseless setting (zij = 0) and Thekumparampil et al. [2021] require at least
Ω(k2) examples per user. Tripuraneni et al. [2021] and Thekumparampil et al. [2021] assume that
the measurements xij are drawn from the standard (multivariate) Gaussian distribution, where as
Kong et al. [2020], Collins et al. [2021] and our work make the relaxed assumption that xij are
sub-Gaussian with identity covariance, which, in particular, allows the fourth-order moments of xij

to be non-isotropic. There is a large body of prior work on meta-learning beyond the linear setting
[see e.g. Maurer et al., 2016, Tripuraneni et al., 2020, Du et al., 2020].

When collecting data from users, it is often important to ensure that private information about users is
not revealed through the release of the learned estimator. Many recent works proposed and analyzed
estimators that achieve user-level differential privacy in settings including mean estimation [Levy
et al., 2021, Esfandiari et al., 2021], meta-learning [Jain et al., 2021] and PAC learning [Ghazi et al.,
2021]. Recently, Cummings et al. [2021] study one-dimensional mean estimation in a setting similar
to ours, under a differential privacy constraint.

The matrix A we define in (1) is a weighted sum of Ai :=
1

mi(mi−1)

∑
j1 ̸=j2

xij1x
T
ij2

over users
i = 1, . . . , n, and each Ai has the form of a U -statistic [Halmos, 1946, Hoeffding, 1948]. U -statistics
have been applied to many statistical tasks including tensor completion [Xia and Yuan, 2019] and
various testing problems [Zhong and Chen, 2011, He et al., 2021, Schrab et al., 2022]. In our
definition of Ai, we do not make the assumption that the distributions of xi1, . . . , ximi are identical
although the assumption is commonly used in applications of U -statistics. The matrix A in (3) is also
a weighted sum of U -statistics where we again do not make the assumption of identical distribution.

1.3 Paper Organization

In Section 2, we formally define the maximum principal angle and other notions we use throughout
the paper. Our results in the PCA setting and the linear models setting are presented in Sections 3
and 4, respectively. We defer most technical proofs to the appendices.
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2 Preliminaries

We use ∥A∥ to denote the spectral norm of a matrix A, and use ∥u∥2 to denote the ℓ2 norm of a
vector u. For positive integers k ≤ d, we use Od,k to denote the set of matrices A ∈ Rd×k satisfying
ATA = Ik, where Ik is the k × k identity matrix. We use Od to denote Od,d, which is the set of
d× d orthogonal matrices. We use col(A) to denote the linear subspace spanned by the columns of a
matrix A. We use the base-e logarithm throughout the paper.

Maximum Principal Angle. Let U, Û ∈ Od be two orthogonal matrices. Suppose the columns of U
and Û are partitioned as U = [U1 U2], Û = [Û1 Û2] where U1, Û1 ∈ Od,k for an integer k satisfying
0 < k < d. Let Γ (resp. Γ̂) be the k-dimensional linear subspace spanned by the columns of U1 (resp.
Û1). Originating from [Jordan, 1875], the maximum principal angle θ ∈ [0, π/2] between Γ and Γ̂,
denoted by ∠(Γ, Γ̂) or ∠(U1, Û1), is defined by sin θ = ∥U1U

T
1 − Û1Û

T
1 ∥ = ∥UT

1 Û2∥ = ∥UT
2 Û1∥.

It is not hard to see that the maximum principal angle depend only on the subspaces Γ, Γ̂ and not
on the choices of U and Û , and sin∠(Γ, Γ̂) is a natural metric between k-dimensional subspaces
(see Appendix A for more details where we discuss the definition of principal angles for any two
subspaces with possibly different dimensions).

With the definition of the maximum principal angle, we can now state a variant of the Davis–Kahan
sin θ theorem [Davis and Kahan, 1970] that will be useful in our analysis (see Appendix E for proof):

Theorem 2.1 (Variant of Davis–Kahan sin θ theorem). Let A, Â ∈ Rd×d be symmetric matrices.
Let λi denote the i-th largest eigenvalue of A. For a positive integer k smaller than d, let θ denote
the maximum principal angle between the subspaces spanned by the top-k eigenvectors of A and Â.
Assuming λk > λk+1,

sin θ ≤ 2∥A− Â∥
λk − λk+1

.

Sub-Gaussian and sub-exponential distributions. We say a random variable x ∈ R with ex-
pectation E[x] ∈ R has sub-Gaussian constant b ∈ R≥0 if E[|x − E[x]|p]1/p ≤ b

√
p for every

p ≥ 1. We say x has sub-exponential constant b ∈ R≥0 if E[|x− E[x]|p]1/p ≤ bp for every p ≥ 1.
We say a random vector y ∈ Rd has sub-Gaussian (resp. sub-exponential) constant b ∈ R≥0 if
for every unit vector u ∈ Rd (i.e., ∥u∥2 = 1), the random variable uTy ∈ R has sub-Gaussian
(resp. sub-exponential) constant b. We say y is b-sub-Gaussian (resp. b-sub-exponential) if it has
sub-Gaussian (resp. sub-exponential) constant b.

3 Principal Component Analysis

In the principal component analysis (PCA) setting, our goal is to recover the k-dimensional subspace
Γ spanned by the user-specific means µ1, . . . , µn ∈ Rd of the n users. From each user i, we have
mi ≥ 2 data points

xij = µi + zij for j = 1, . . . ,mi. (5)

We assume the noise zij ∈ Rd is drawn independently from a mean zero distribution with sub-
Gaussian constant ηi. We do not assume that the variance of zij is the same along every direction,
nor do we assume that the distribution of zij is the same for different (i, j). We first show an error
upper bound for our estimator when the user-specific means µ1, . . . , µn are deterministic vectors
(Section 3.1) and then apply this result to the case where µ1, . . . , µn are drawn from a sub-Gaussian
distribution (Section 3.2). In Section 3.3 we prove an information-theoretic error lower bound
matching our upper bound.

3.1 Fixed User-Specific Means

We first focus on the case where µ1, . . . , µn are deterministic vectors. In this case, all the random-
ness in the data comes from the noise zij . Our estimator is the subspace Γ̂ spanned by the top-k
eigenvectors of A defined in (1). For ℓ = 1, . . . , d, we define σℓ ≥ 0 such that σ2

ℓ is the ℓ-th largest
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eigenvalue of
∑n

i=1 wiµiµ
T
i . Since µ1, . . . , µn share a k-dimensional subspace, σℓ = 0 for ℓ > k.

We prove the following general theorem on the error guarantee of our estimator:

Theorem 3.1. Define ξ2 = ∥
∑n

i=1 w
2
i µiµ

T
i η

2
i /mi∥ and let θ denote the maximum principal angle

between our estimator Γ̂ and the true subspace Γ spanned by µ1, . . . , µn. For any δ ∈ (0, 1/2), with
probability at least 1− δ,

sin θ = O

σ−2
k

√√√√(d+ log(1/δ))

(
ξ2 +

n∑
i=1

w2
i η

4
i

m2
i

)
+ σ−2

k (d+ log(1/δ))max
i

wiη
2
i

mi

 . (6)

We can simplify the bound in Theorem 3.1 by considering special cases:

Corollary 3.2. Assume max{η1/
√
m1, . . . , ηn/

√
mn} = t and we choose w1 = · · · = wn = 1/n.

For any δ ∈ (0, 1/2), with probability at least 1− δ,

sin θ = O

(
tσ1 + t2

σ2
k

√
d+ log(1/δ)

n

)
. (7)

In particular, when η1 = · · · = ηn = η, and m1 = · · · = mn = m, error bound (7) becomes

sin θ = O

((
ησ1

σ2
k

√
m

+
η2

σ2
km

)√
d+ log(1/δ)

n

)
.

We defer the complete proof of Theorem 3.1 and Corollary 3.2 to Appendices F and G. Our proof is
based on the Davis-Kahan sin θ theorem (Theorem 2.1). Since σ2

k+1 = 0, Theorem 2.1 implies

sin θ ≤
2∥A−

∑n
i=1 wiµiµ

T
i ∥

σ2
k

. (8)

This reduces our goal to proving an upper bound on the spectral norm of A−
∑n

i=1 wiµiµ
T
i . Since

for distinct j1 and j2 in {1, . . . ,mi} we have E[xij1x
T
ij2

] = µiµ
T
i , our construction of A in (1)

guarantees E[A] =
∑n

i=1 wiµiµ
T
i . Therefore, our goal becomes controlling the deviation of A from

its expectation, and we achieve this goal using techniques for matrix concentration inequalities.

3.2 Sub-Gaussian User-Specific Means

We apply our error upper bound in Theorem 3.1 to the case where µ1, . . . , µn ∈ Rd are drawn iid
from N(0, σ2UUT) for an unknown U ∈ Od,k. We still assume that each data point xij ∈ Rd is
generated by adding a noise vector zij ∈ Rd to the user-specific mean µi as in (5). We do not assume
that the noise vectors (zij)1≤i≤n,1≤j≤mi

are independent of the user-specific means (µi)1≤i≤n, but
we assume that when conditioned on (µi)1≤i≤n, every noise vector zij independently follows a
distribution with mean zero and sub-Gaussian constant ηi. We use the same estimator Γ̂ as before: Γ̂ is
the subspace spanned by the top-k eigenvectors of A defined in (1). We determine the optimal weights
w1, . . . , wn in (1) as long as m1, . . . ,mn and η1, . . . , ηn satisfy a mild assumption (Assumption 3.2),
achieving an error upper bound in Theorem 3.4. In the next subsection, we prove an error lower
bound (Theorem 3.7) that matches our upper bound (Theorem 3.4) up to a constant factor, assuming
d ≥ (1 + Ω(1))k and δ = Θ(1).

We prove our error upper bound in a slightly more general setting than µ1, . . . , µn drawn iid from
N(0, σ2UUT). Specifically, we make the following assumption on the distribution of µ1, . . . , µn:

Assumption 3.1. The user-specific means µ1, . . . , µn ∈ Rd are mean-zero independent random
vectors supported on an unknown k-dimensional subspace Γ. Moreover, for a parameter σ > 0, for
every i = 1, . . . , n, µi has sub-Gaussian constant O(σ), and the k-th largest eigenvalue of E[µiµ

T
i ]

is at least σ2.

Under this assumption, we have the following lower bound on the σ2
k in Theorem 3.1 (see Appendix H

for proof):
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Claim 3.3. Under Assumption 3.1, let w1, . . . , wn ∈ R≥0 be user weights satisfying w1+ · · ·+wn =
1 and σ2

k be the k-th largest eigenvalue of
∑n

i=1 wiµiµ
T
i . There exists an absolute constant C∗ > 1

such that for any δ ∈ (0, 1/2), as long as max1≤i≤n wi ≤ 1/C∗(k + log(1/δ)), then σ2
k ≥ σ2/2

with probability at least 1− δ/2.

The following definition is important for us to choose the weights w1, . . . , wn in (1) optimally:

Definition 3.1. Define γi =
(

η2
i

σ2mi
+

η4
i

σ4m2
i

)−1

and assume w.l.o.g. that γ1 ≥ · · · ≥ γn. Define

γ′
i = γi if i ≥ k, and γ′

i = γk if i < k.

Intuitively, we can view γi as measuring the “amount of information” provided by the data points
from user i. This is consistent with the fact that γi increases as the number mi of data points from
user i increases, and γi decreases as the noise magnitude ηi from user i increases. With the users
sorted so that γ1 ≥ · · · ≥ γn, the quantity γ′

i is then defined to be γk for the k most “informative”
users i = 1, . . . , k, and γ′

i = γi for other users. We make the following mild assumption on γ′
i under

which we achieve optimal estimation error:
Assumption 3.2.

∑n
i=1 γ

′
i ≥ C∗(k + log(1/δ))γ′

1 for C∗ defined in Claim 3.3.

By the definition of γ′
i, it is easy to show that Assumption 3.2 is equivalent to

∑n
i=k+1 γi ≥

((C∗ − 1)k + C∗ log(1/δ))γk. Therefore, if we view γi as the “amount of information” from user i,
Assumption 3.2 intuitively requires that a significant contribution to the total “information” comes
from outside the k most “informative” users. This assumption allows us to avoid the case where
we only have exactly n = k users: in that case, we would have σ2

k ≈ σ2/k2 for uniform weights
w1 = · · · = wn (see [Rudelson and Vershynin, 2008] and references therein), as opposed to the
desired σ2

k ≥ σ2/2 in Claim 3.3.

Assumption 3.2 is a mild assumption. For example, when γk = · · · = γn, Assumption 3.2 holds as
long as n ≥ C∗(k+log(1/δ)). Also, since γ′

1 = · · · = γ′
k ≥ γ′

k+1 ≥ · · · ≥ γ′
n ≥ 0, it trivially holds

that
∑n

i=1 γ
′
i ≥ kγ′

1. Assumption 3.2 is relatively mild when compared to this trivial inequality.

Under Assumption 3.2, we show that it is optimal to choose the weights w1, . . . , wn as

wi =
γ′
i∑n

ℓ=1 γ
′
ℓ

. (9)

Specifically, if we plug (9) into Theorem 3.1 and bound ξ and σk based on the distribution of
µ1, . . . , µn, we get the following error upper bound which matches our lower bound (Theorem 3.7)
in Section 3.3. We defer its proof to Appendix I.
Theorem 3.4. Under Assumptions 3.1 and 3.2, if we choose w1, . . . , wn as in (9) and define
θ = ∠(Γ, Γ̂), for δ ∈ (0, 1/2), with probability at least 1− δ,

sin θ ≤ O

(√
d+ log(1/δ)∑n

i=1 γ
′
i

)
. (10)

For comparison, consider the setting when σ = ηi = 1 for every i = 1, . . . , n. The result then says
that sin θ is bounded by approximately

√
d∑n

i=1 mi
. This is the same rate as we would get if we have∑n

i=1 mi users each contributing a single independent data point with homogeneous spherical noise.
Thus as long as the data points are not too concentrated on fewer than k users, the heterogeneity
comes at no additional cost.

3.3 Lower Bound

We prove a lower bound matching the upper bound in Theorem 3.4 up to constant in the setting where
δ = Θ(1), d ≥ (1 + Ω(1))k.

For every positive integer d, there is a natural “uniform” distribution over Od given by Haar’s theorem
[Haar, 1933] (see e.g. [Diestel and Spalsbury, 2014] for a textbook). We denote this distribution by
Haar(Od). A random matrix A drawn from Haar(Od) has the following invariance property: for any
deterministic matrix B ∈ Od, the random matrices A,AB and BA all have the same distribution.
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For an integer k ≤ d, we can construct a random matrix A1 ∈ Od,k by first drawing A ∈ Rd×d from
Haar(Od) and then take the first k columns of A. We denote the distribution of A1 by Haar(Od,k).
The invariance property of Haar(Od) immediately implies the following claims:
Claim 3.5. Let A ∈ Od be a random matrix drawn from Haar(Od) and let B ∈ Od,k be a fixed
matrix. Then AB distributes as Haar(Od,k).

Proof. The matrix B can be written as the first k columns of a matrix C ∈ Od. Now AB is the first
k columns of AC, where AC distributes as Haar(Od) by the invariance property. This implies that
AB distributes as Haar(Od,k).

Claim 3.6. Let B ∈ Od,k be a random matrix. Assume for every fixed matrix A ∈ Od, the random
matrices B and AB have the same distribution. Then B ∼ Haar(Od,k).

Proof. If we draw A independently from Haar(Od), the random matrices B and AB still have
the same distribution. By Claim 3.5, AB distributes as Haar(Od,k), so B must also distribute as
Haar(Od,k).

With the definition of Haar(Od,k), we state our lower bound in the following theorem:
Theorem 3.7. Let k, d, n be positive integers satisfying k < d and k ≤ n. Let m1, . . . ,mn be positive
integers and σ, η1, . . . , ηn be positive real numbers. Suppose we draw U ∈ Od,k from Haar(Od,k)
and then draw µ1, . . . , µn independently from N(0, σ2UUT). For every i = 1, . . . , n, we draw mi

data points xij for j = 1, . . . ,mi as xij = µi + zij , where each zij is drawn independently from the
spherical Gaussian N(0, η2i I). Let Γ̂ be any estimator mapping (xij)1≤i≤n,1≤j≤mi

to a (possibly
randomized) k-dimensional subspace of Rd. Let θ denote the maximum principal angle between
Γ̂((xij)1≤i≤n,1≤j≤mi

) and the true subspace Γ = col(U). If real numbers t ≥ 0 and δ ∈ [0, 1/2)
satisfy Pr[sin θ ≤ t] ≥ 1− δ, then

t ≥ Ω

(
min

{
1,

√
(d− k)(1− δ)∑n

i=k γi

})
, (11)

where γ1, . . . , γn are defined in Definition 3.1.

Note that γ′
i = γi for i ≥ k, so our upper bound in (10) matches the lower bound (11) up to a constant

factor assuming δ = Θ(1) and d ≥ (1 + Ω(1))k.

We use the local Fano method to prove the lower bound using the technical lemmas in Appendix D.
In particular, we reduce our goal to proving an upper bound on the KL divergence between Gaussian
distributions whose covariance matrices are defined based on matrices U, Û ∈ Od,k with ∥UUT −
Û ÛT∥F bounded. We prove the following lemma in Appendix J that upper bounds the KL divergence
using ∥UUT − Û ÛT∥F :

Lemma 3.8. For σ ∈ R≥0, η ∈ R>0, U, Û ∈ Od,k, define Σ = σ2UUT + η2I and Σ̂ = σ2Û ÛT +
η2I . Then,

Dkl(N(0, Σ̂)∥N(0,Σ)) =
σ4∥UUT − Û ÛT∥2F

4(σ2η2 + η4)
.

Lemma 3.8 and the results in Appendix D allow us to prove a version of (11) in which the sum in
the demoninator is over i = 1, . . . , n. This, however, is weaker and less useful than (11) in which
the sum in the denominator is over i = k, k + 1, . . . , n. To prove Theorem 3.7, we extract a hard
distribution in which the data points from users 1, . . . , k − 1 are “useless” in terms of subspace
recovery.

Let Γ1 be the (k − 1)-dimensional subspace spanned by µ1, . . . , µk−1. We let v1, . . . , vk−1 be a
random orthonormal basis of Γ1, and we append another vector vk ∈ Γ to form an orthonormal basis
v1, . . . , vk of Γ. We define V1 = [v1 · · · vk−1] ∈ Od,k−1 and V = [v1 · · · vk] ∈ Od,k. In Figure 1
we show a graphical model demonstrating the dependency among the random objects we defined.

Let us focus on the joint distribution of (V1, V, (µ1, . . . , µk−1)). By the invariance property, for any
matrices Ṽ1 ∈ Od,k−1, Ṽ ∈ Od,k, measurable set S ⊆ (Rd)k−1, and orthogonal matrix G ∈ Od,

Pr[(µ1, . . . , µk−1) ∈ S|V = Ṽ , V1 = Ṽ1] = Pr[(µ1, . . . , µk−1) ∈ SG|V = GṼ , V1 = GṼ1],
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(µ1, . . . , µk�1)
<latexit sha1_base64="91+Bz5vy3ICl6I2WX4wl1rSeI+c="></latexit>

V
<latexit sha1_base64="+yx7v0QaCLSgJPT7a8b6JmOkRRg="></latexit>

(µk, . . . , µn)
<latexit sha1_base64="TN8fPVqdnZBHklaikD73d5QfspE="></latexit>

U
<latexit sha1_base64="Op70zX+03N6bR/12joa4V/QOUjg="></latexit>

V1
<latexit sha1_base64="DgSM/I3nSRZMDaEWpjQDuGrqfY4="></latexit>

�
<latexit sha1_base64="drzCwOaCgV8ViZYCtlwmBZlTQlU="></latexit>

�1
<latexit sha1_base64="TOrIj5uSe/i8uSFg1ClDNfjokVo="></latexit>

Figure 1: Graphical model A.

where SG = {(Gµ̃1, . . . , Gµ̃k−1) : (µ̃1, . . . , µ̃k−1) ∈ S}. For any Ṽ , Ṽ ′ ∈ Od,k whose first
k − 1 columns are both Ṽ1, there exists G ∈ Od such that Ṽ ′ = GṼ and thus Ṽ1 = GṼ1. This
implies that for any µ̃ ∈ col(Ṽ1), we have Gµ̃ = µ̃, and thus (S ∩ col(Ṽ1)

k−1)G = S ∩ col(Ṽ1)
k−1

for any measurable S ⊆ (Rd)k−1. Here, col(Ṽ1)
k−1 = {(µ̃1, . . . , µ̃k−1) : µ̃i ∈ col(Ṽ1) for i =

1, . . . , k − 1} ⊆ (Rd)k−1. When conditioned on V1 = Ṽ1, for every i = 1, . . . , k − 1 we have
µi ∈ Γ1 = col(V1) = col(Ṽ1), which implies that (µ1, . . . , µk−1) ∈ col(Ṽ1)

k−1. Therefore,

Pr[(µ1, . . . , µk−1) ∈ S|V = Ṽ , V1 = Ṽ1]

= Pr[(µ1, . . . , µk−1) ∈ S ∩ col(Ṽ1)
k−1|V = Ṽ , V1 = Ṽ1]

= Pr[(µ1, . . . , µk−1) ∈ (S ∩ col(Ṽ1)
k−1)G|V = GṼ , V1 = GṼ1]

= Pr[(µ1, . . . , µk−1) ∈ S ∩ col(Ṽ1)
k−1|V = Ṽ ′, V1 = Ṽ1]

= Pr[(µ1, . . . , µk−1) ∈ S|V = Ṽ ′, V1 = Ṽ1].

This implies that (µ1, . . . , µk−1) and V are conditionally independent given V1. Therefore, the joint
distribution of (V1, V, (µ1, . . . , µk−1)) can be formed by first drawing V and V1, and then drawing
µ1, . . . , µk−1 based only on V1 and not on V . Since µk, . . . , µn are drawn iid from N(0, σ2UUT) =
N(0, σ2V V T), we have the graphical model shown in Figure 2.

V
<latexit sha1_base64="+yx7v0QaCLSgJPT7a8b6JmOkRRg=">AAACe3icbZHNThsxEMedpXxty2ePXKxGSFUVRbsJlFwqEBzaI1RNQMpGyOudBQvbu7K9LSvLT8C1PAEPwyNUfZhKdT4OEBjJ1l8zvxmPZ9KSM22i6G8jWHizuLS8shq+fbe2vrG5tT3QRaUo9GnBC3WREg2cSegbZjhclAqISDmcpzcn4/j5T1CaFfKHqUsYCXIlWc4oMd51NrjcbEbtaGL4pYhnonn4GH4pH/6Ep5dbjSzJCloJkIZyovUwjkozskQZRjm4MKk0lITekCsYeimJAD2yk04d3vWeDOeF8kcaPPE+zbBEaF2L1JOCmGs9Hxs7X4sNK5P3RpbJsjIg6fShvOLYFHj8bZwxBdTw2gtCFfO9YnpNFKHGDycMkwxyP8FJP1bUKa/A2e9fj52NWjiOe/763HPzmIJsRnW6By3c3fNY11MSftFCCCIzm9w6a5NndW/dHFI/RcY1a+f8XuL5LbwUg0477rY7Z3Hz6BhNbQXtoA/oI4rRATpC39Ap6iOKAN2h3+i+8S9oBp+C1hQNGrOc9+iZBfv/ASpXxcU=</latexit>

(µ1, . . . , µk�1)
<latexit sha1_base64="91+Bz5vy3ICl6I2WX4wl1rSeI+c="></latexit>

(µk, . . . , µn)
<latexit sha1_base64="TN8fPVqdnZBHklaikD73d5QfspE="></latexit>

V1
<latexit sha1_base64="DgSM/I3nSRZMDaEWpjQDuGrqfY4="></latexit>

Figure 2: Graphical model B.

By Claim 3.6, the marginal distribution of V is Haar(Od,k). By Claim 3.5, we can implement this
distribution by first drawing W ∼ Haar(Od) and then drawing E independently from any distribution
over Od,k and let V = WE. We choose the distribution of E later, where we ensure that the first

k − 1 columms of E is always
[
Ik−1

0

]
. This guarantees that the first k − 1 columns of W and V are

the same, and thus V1 is exactly the first k− 1 columns of W , resulting in the graphical model shown
in Figure 3.

(µ1, . . . , µk�1)
<latexit sha1_base64="91+Bz5vy3ICl6I2WX4wl1rSeI+c="></latexit>

(µk, . . . , µn)
<latexit sha1_base64="TN8fPVqdnZBHklaikD73d5QfspE="></latexit>

E
<latexit sha1_base64="BFSMAICcEctDo/fz2v1/+kooZIY="></latexit>

W
<latexit sha1_base64="RqObarb1ZppDj86bQKT13tzS1v0="></latexit>

V
<latexit sha1_base64="+yx7v0QaCLSgJPT7a8b6JmOkRRg=">AAACe3icbZHNThsxEMedpXxty2ePXKxGSFUVRbsJlFwqEBzaI1RNQMpGyOudBQvbu7K9LSvLT8C1PAEPwyNUfZhKdT4OEBjJ1l8zvxmPZ9KSM22i6G8jWHizuLS8shq+fbe2vrG5tT3QRaUo9GnBC3WREg2cSegbZjhclAqISDmcpzcn4/j5T1CaFfKHqUsYCXIlWc4oMd51NrjcbEbtaGL4pYhnonn4GH4pH/6Ep5dbjSzJCloJkIZyovUwjkozskQZRjm4MKk0lITekCsYeimJAD2yk04d3vWeDOeF8kcaPPE+zbBEaF2L1JOCmGs9Hxs7X4sNK5P3RpbJsjIg6fShvOLYFHj8bZwxBdTw2gtCFfO9YnpNFKHGDycMkwxyP8FJP1bUKa/A2e9fj52NWjiOe/763HPzmIJsRnW6By3c3fNY11MSftFCCCIzm9w6a5NndW/dHFI/RcY1a+f8XuL5LbwUg0477rY7Z3Hz6BhNbQXtoA/oI4rRATpC39Ap6iOKAN2h3+i+8S9oBp+C1hQNGrOc9+iZBfv/ASpXxcU=</latexit>

V1
<latexit sha1_base64="DgSM/I3nSRZMDaEWpjQDuGrqfY4="></latexit>

Figure 3: Graphical model C.

Note that in Figure 3 there is no directed path from E to (µ1, . . . , µk−1). Intuitively, this means that
knowing (µ1, . . . , µk−1) gives us no information about E. Now by choosing the distribution of E
appropriately, we can prove (11) in which the denominator does not contain γ1, . . . , γk−1. We defer
the complete proof of Theorem 3.7 to Appendix K.

4 Linear Models

In the linear models setting, the data distribution of user i is parameterized by an unknown vector
βi ∈ Rd. As before, we assume that the vectors β1, . . . , βn from the n users lie in an unknown
k-dimensional subspace Γ. Our goal is to recover the subspace using the following data. For every
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i = 1, . . . , n, we have mi data points from user i: (xi1, yi1), . . . , (ximi , yimi) ∈ Rd × R. For every
j = 1, . . . ,mi, we assume the measurement xij ∈ Rd is a random vector drawn independently from
an O(1)-sub-Gaussian distribution with zero mean and identity covariance matrix. The measurement
outcome yij is determined by yij = xT

ijβi + zij , where the random noise zij ∈ R can depend
on the measurements xi1, . . . , ximi

. When conditioned on xi1, . . . , ximi
, we assume every zij for

j = 1, . . . ,mi is independently drawn from an ηi-sub-Gaussian distribution with zero mean, but
we do not assume that the conditional distribution of zij is the same for every j = 1, . . . ,mi. The
(in)dependence among xij and zij for i = 1, . . . , n and j = 1, . . . ,mi can be summarized by the
example graphical model in Figure 4.

x11
<latexit sha1_base64="fNI75DHtPS5ItnvJuES/kZw9cJE="></latexit>

z11
<latexit sha1_base64="isbHuQuydy+VX4oV9wJ/czKhPIE="></latexit>

x12
<latexit sha1_base64="015tTkdoI4mInrvf0i3bzM4b8f4="></latexit>

z12
<latexit sha1_base64="J4kWcdhGOsPuCcuta3rfadwG1lU="></latexit>

x21
<latexit sha1_base64="/WTQMCUQjdkv+r9+gNW/BYX3ySM="></latexit>

z21
<latexit sha1_base64="xxc4pOkj57BNNOhIixfjvjdRXjg="></latexit>

x22
<latexit sha1_base64="ftVNzUJ7cDR7xSXalQMcyNfRTLU="></latexit>

z22
<latexit sha1_base64="au0PlCTLlZIz/4NMJECNnoEHL7Q="></latexit>

x23
<latexit sha1_base64="aLjjd2uhprW1EuxfBQN7CD2+JJE="></latexit>

z23
<latexit sha1_base64="1f1F/Ov9M+Wgiqv2BKj4gi2dcmQ="></latexit>

x31
<latexit sha1_base64="oLpNRmUVYc4ighVuSLYp8Sf0l5k="></latexit>

z31
<latexit sha1_base64="qegFYKrYdh4XKoBkAQZ2q/9zEoU="></latexit>

x32
<latexit sha1_base64="SoEqaoMfTLhqv8hcq/9iM5NC4fU=">AAACgHicbZHNbhMxEMed5auErxYkLlwsIqQeqrDOojbiFIUDHFtE0krZKPJ6Z1tT27uyvSUry+/AFd6Bt+AluPAseJMc2pSRbP0185vxeCarBDc2jv90ojt3791/sPOw++jxk6fPdveeT01ZawYTVopSn2XUgOAKJpZbAWeVBiozAafZ5Yc2fnoF2vBSfbFNBXNJzxUvOKM2uKbLhUsGfrHbi/vxyvBtQTaiN3p58pf/Gv8+Xux18jQvWS1BWSaoMTMSV3buqLacCfDdtDZQUXZJz2EWpKISzNyt2vX4TfDkuCh1OMrilfd6hqPSmEZmgZTUXpjtWOv8X2xW22I4d1xVtQXF1g8VtcC2xO3fcc41MCuaICjTPPSK2QXVlNkwoW43zaEIY1z142STiRq8+/xx7F18gAkZhutw6LcxDfmGGiRHBzh5F7AkUAq+sVJKqnKXLr1z6Y26S7+FNNeRtmbj272Q7S3cFtNBnyT9wQnpjcZobTvoFXqN9hFBR2iEPqFjNEEMfUXf0Q/0M4qi/ehtRNZo1NnkvEA3LHr/D2IyxzY=</latexit>

z32
<latexit sha1_base64="YbdDBg5Y4fgSHKkjDM27dQZcC+g="></latexit>

Figure 4: An example for n = 3,m1 = 2,m2 = 3,m3 = 2.

Since we allow the noise zij to depend on the measurements xij , it is information-theoretically
impossible to recover the subspace if we only have one data point from every user. Consider the
scenario where every βi is drawn independently from N(0, σ2uuT) for an unknown unit vector
u ∈ Rd and every xij is drawn independently and uniformly from {−1, 1}d. If we set zij to be
zij = xT

ijνij where νij is independently drawn from N(0, σ2(I − uuT)), then every yij satisfies
yij = xT

ij(βi + νij) where βi + νij distributes as N(0, σ2I) independently from xij . This implies
that the joint distribution of ((xi1, yi1))i=1,...,n does not change with u, i.e., we get no information
about u from one data point per user.

Thus, we assume mi ≥ 2 for every user i. In this case, we achieve error upper bounds that match
the ones in [Tripuraneni et al., 2021] despite our relaxed assumptions on the noise. Our estimator is
the subspace Γ̂ spanned by the top-k eigenvectors of A defined in (3). We defer the analysis of our
estimator to Appendix L.
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