
Exploration-Guided Reward Shaping
for Reinforcement Learning under Sparse Rewards

Rati Devidze1 Parameswaran Kamalaruban2 Adish Singla1
rdevidze@mpi-sws.org kparameswaran@turing.ac.uk adishs@mpi-sws.org

1Max Planck Institute for Software Systems (MPI-SWS), Saarbrucken, Germany
2The Alan Turing Institute, London, UK

Abstract

We study the problem of reward shaping to accelerate the training process of
a reinforcement learning agent. Existing works have considered a number of
different reward shaping formulations; however, they either require external domain
knowledge or fail in environments with extremely sparse rewards. In this paper,
we propose a novel framework, Exploration-Guided Reward Shaping (EXPLORS),
that operates in a fully self-supervised manner and can accelerate an agent’s
learning even in sparse-reward environments. The key idea of EXPLORS is to
learn an intrinsic reward function in combination with exploration-based bonuses
to maximize the agent’s utility w.r.t. extrinsic rewards. We theoretically showcase
the usefulness of our reward shaping framework in a special family of MDPs.
Experimental results on several environments with sparse/noisy reward signals
demonstrate the effectiveness of EXPLORS.

1 Introduction

Training reinforcement learning (RL) agents in environments with extremely sparse or distracting
rewards is challenging. Existing works have studied several approaches to design informative rewards
that speed up the agent’s convergence [1–7]. One well-studied line of work is potential-based
reward shaping, where a potential function is specified by an expert or obtained via transfer learning
techniques (see [3, 8–17]). Another popular approach is to learn rewards via Inverse-RL using
expert demonstrations [18]. Alternatively, one could also consider a manual specification of rewards,
e.g., using distance-based metrics [19]. However, these reward design techniques typically rely on
high-quality domain knowledge and may fail in practice. In fact, the RL agents can easily exploit
poorly designed rewards and get stuck in local optima. This naturally leads to the fundamental
question of how to do online reward shaping without relying on expert domain knowledge. More
concretely, can we design informative rewards that will accelerate the agent’s training process by
leveraging experience gained online during the agent’s training lifetime itself? [20–24]

To tackle this question, recent works [24–26] have explored fully self-supervised learning of paramet-
ric intrinsic rewards that can improve the performance of RL agents. In particular, these methods
alternate between intrinsic reward parameter learning and the agent’s policy optimization w.r.t. the
learned reward. For instance, Learning Intrinsic Rewards for Policy Gradient (LIRPG) technique
[25] updates the intrinsic reward parameters to maximize the extrinsic rewards received by the policy
from the environment. Self-supervised Online Reward Shaping (SORS) technique [26] infers an
intrinsic reward using a classification-based reward inference algorithm, TREX [27]. However, these
fully self-supervised reward shaping techniques might fail to produce meaningful agent behavior
in environments with extremely sparse rewards (called hard-exploration domains) as they lack an

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

explicit explorative component. Intuitively, these techniques will not be able to make updates to
parameters of their intrinsic reward functions, without receiving a non-zero extrinsic reward signal.

In a parallel line of work, several techniques have been proposed to specifically tackle the challenges
of extreme sparsity and exploration. One such line of work is to add more stochasticity in the
agent’s behavior (e.g., [28–30]); however such techniques typically succeed in tasks with already
well-shaped rewards. Another important line of work, relevant to our proposed framework, is bonus-
driven exploration techniques for tackling hard-exploration domains – these techniques augment
the extrinsic rewards with additional intrinsic bonus signals to encourage extra exploration [31]. A
popular category of intrinsic bonuses is count-based bonuses that encourage RL agents to experience
infrequently visited states [32–34]. Another category of intrinsic bonuses is providing rewards for
improving the agent’s knowledge about the environment [35–40]. However, simply relying on these
bonus-driven signals can mislead the agent towards sub-optimal or bad behaviors — for instance,
in noisy-distractive domains such as the “noisy TV” problem [41], unpredictable random or noisy
outputs would attract the agent’s attention forever.

An important research question that we seek to address is: How can we design an online intrinsic
reward function, without any domain knowledge, that can speed up the agent’s learning process
even in environments with extremely sparse rewards and noisy distractions? To this end, we propose
a novel framework, Exploration-Guided Reward Shaping (EXPLORS), that learns an intrinsic reward
function in combination with exploration-based bonuses to maximize the agent’s utility. EXPLORS
operates in a fully self-supervised manner, and alternates between reward learning and policy
optimization. Our main results and contributions are:

I. We propose a novel reward shaping framework, EXPLORS, that operates in a fully self-
supervised manner and can accelerate an agent’s learning even in sparse-reward environments.
(Section 3.1).

II. We derive intuitive meta-gradients for updating the intrinsic reward component of EXPLORS
that enables our framework to be broadly applicable to any RL agent and not only policy-
gradient based agents (Sections 3.2 and 3.3).

III. We theoretically showcase the usefulness of our reward shaping framework in accelerating an
agent’s learning in a special family of chain environments (Section 3.4).

IV. We empirically demonstrate the effectiveness of EXPLORS on several environments with
sparse and noisy reward signals (Section 4).1

2 Problem Setup

In Section 2.1, we present a general framework of online reward shaping technique for RL agents. In
Section 2.2, we discuss the limitations of existing reward shaping techniques.

2.1 General Framework of Online Reward Shaping

Preliminaries. An environment is defined as a Markov Decision Process (MDP) M :=
(S,A, T, P0, γ, R), where the state and action spaces are denoted by S and A respectively.
T : S × S × A → [0, 1] captures the state transition dynamics, i.e., T (s′ | s, a) denotes the
probability of landing in state s′ by taking action a from state s. γ is the discounting factor, and P0

is the initial state distribution. The reward function is given by R : S × A → [−Rmax, Rmax], for
some Rmax > 0. We denote the true underlying extrinsic reward function by R and the designed
reward function by R̂. We denote a stochastic policy π : S → ∆ (A) as a mapping from a state to
a probability distribution over actions, and a deterministic policy π : S → A as a mapping from a
state to an action. For any trajectory ξ = {(st, at)}t=0,1,...,H , we define its cumulative return w.r.t.

reward function R as J(ξ,R) :=
∑H
t=0 γ

t ·R(st, at). Then, the expected cumulative return (value)
of a policy π w.r.t. R is defined as J(π,R) := E [J(ξ,R)|P0, T, π], where s0 ∼ P0(·), at ∼ π(·|st),
and st+1 ∼ T (·|st, at). The learner seeks to find a policy that has maximum value w.r.t. the extrinsic
reward function R, i.e., maxπ J(π,R).

1Github repo: https://github.com/machine-teaching-group/neurips2022_exploration-guided-reward-shaping.

2

https://github.com/machine-teaching-group/neurips2022_exploration-guided-reward-shaping

Algorithm 1 Online Reward Shaping

1: Input: Extrinsic reward R, and RL algorithm L

2: Initialization: π0, R̂0

3: for k = 1, 2, . . . ,K do
4: update policy πk ← L(πk−1, R̂k−1)

5: update reward R̂k using R̂k−1 and πk
6: Output: πK

Online reward shaping. A general framework of online reward shaping for RL agents is given in
Algorithm 1. A natural objective here is to design informative rewards R̂k at each round k so that the
resulting final policy πK performs better (i.e., has high value w.r.t. R) compared to the corresponding
policy obtained via the standard training with R̂k = R. Note that we consider a single lifetime
training setting for an RL agent on a single task, i.e., there is no resetting of the policy between rounds.

2.2 Existing Techniques and Issues

A popular technique for reward shaping is potential-based reward shaping (PBRS) which guarantees
that any optimal policy induced by the designed reward function is also optimal under the extrinsic
reward function [3]. However, for PBRS to be effective in accelerating the training process of an RL
agent, we need to have access to good potential functions based on expert domain knowledge [42].
The focus of our work is on designing fully self-supervised reward shaping techniques. Below,
we provide a discussion of existing techniques that do not require any expert guidance or domain
knowledge, and also discuss their limitations.

Reward shaping based on exploration bonuses. In the bonus-driven exploration framework [32–
34], a count-based intrinsic bonus Bk(s) is given to the agent to encourage exploration. The bonus
Bk(s) measures the “novelty” of a state s given the history of all transitions up to round k. The
authors in [34] extend the classic exploration methods with count-based intrinsic bonuses [43–46]
to high-dimensional, continuous state spaces. However, these “exploration-only” reward shaping
techniques do not appropriately combine the successful extrinsic reward signals received from the
environment. When there are distractive zones in the state space, these methods will keep on exploring
the state space even after obtaining extrinsic reward signals.

Fully self-supervised reward shaping: LIRPG [25]. Learning Intrinsic Rewards for Pol-
icy Gradient (LIRPG) technique [25] considers a parametric reward function of the form
R̂LIRPG(s, a) = R(s, a) +Rφ(s, a), and learns the parameter φ of the intrinsic reward function Rφ
in a fully self-supervised manner. LIRPG alternates between learning the intrinsic reward parameter
φ and the agent’s policy optimization w.r.t. the learned reward R̂LIRPG. At round k, for fixed πk,
LIRPG updates the parameter φk−1 to φk by considering the effect such a change would have on the
expected cumulative return (w.r.t. R) of the learner through the change in the policy πk, i.e., update φ
using the gradient

[
∇φJ(L(πk, R̂

LIRPG), R)
]
φk−1

. In order to develop an update rule for φ, LIRPG

considers policy gradient style learning algorithm L with parametric policies
{
πθ : θ ∈ Rdθ

}
. More

concretely, for a parameter θk at round k s.t. πk := πθk , the learner’s policy update depends on φ
as L(πk, R̂

LIRPG) := πθ(φ), where θ(φ) = θk + α ·
[
∇θJ(πθ, R̂

LIRPG)
]
θk

. Based on this learner

update, the LIRPG update for the intrinsic reward parameters, at round k, is based on the following
meta-gradients: φk = φk−1 + η · [∇φθ(φ)]φk−1

·
[
∇θ(φ)J(πθ(φ), R)

]
φk−1

, where η is the learning
rate. We note that the LIRPG technique could fail in environments with extremely sparse rewards
as the agent may not receive a non-zero extrinsic reward signal needed to update the parameter φ.
Moreover, the LIRPG technique is applicable only to policy-gradient based RL agents.

Fully self-supervised reward shaping: SORS [26]. Self-supervised Online Reward Shaping
(SORS) technique [26] considers a reward function of the form R̂SORS(s, a) = Rφ(s, a), and
infers the parameter φ using a classification-based reward inference algorithm, T-REX [27]. However,
unlike T-REX that requires rankings over the trajectories as input, SORS uses the extrinsic rewardR as
a self-supervised learning signal to rank the trajectories generated by the agent during training. By de-

3

sign, SORS only enforces the relative pairwise ordering over the trajectories w.r.t. R when trainingRφ
and ignores the scale of the returns associated with trajectories w.r.t. R. This makes training a policy
challenging when the environment has noisy or distractive reward signals. Further, similar to LIRPG,
the SORS technique could fail in environments with extremely sparse rewards as the agent may not
obtain any trajectories with non-zero extrinsic reward signal needed to update the parameter φ.

In this paper, we seek to develop an online reward shaping technique that can accelerate the agent’s
training process in environments with extremely sparse and distractive rewards, without any expert
domain knowledge. As discussed above, techniques that rely only on intrinsic bonuses [32–34]
could mislead the agent towards sub-optimal behaviors in noisy-distractive domains. Similarly,
the fully self-supervised reward shaping techniques (LIRPG and SORS) might be ineffective in
environments with extremely sparse rewards. We overcome these limitations by designing a novel
reward shaping framework that appropriately balances exploration (via an intrinsic bonus component)
and exploitation (via an intrinsic reward component) of extrinsic reward signals.

3 Exploration-Guided Reward Shaping

In Sections 3.1, 3.2, and 3.3, we propose an exploration-guided reward shaping framework, EXPLORS,
to accelerate an RL agent’s training process. In Section 3.4, we theoretically showcase the usefulness
of our framework in a chain environment.

3.1 Our Reward Formulation

We consider the following parametric reward function for EXPLORS (see Algorithm 1):

R̂EXPLORS(s, a) := R(s, a) +RSELFRS
φ (s, a) +BEXPLOB

w (s), (1)

where φ ∈ Rdφ and w ∈ Rdw . Here, RSELFRS
φ corresponds to the intrinsic rewards in self-supervised

reward shaping techniques, and BEXPLOB
w corresponds to the intrinsic bonuses in exploration-only

reward shaping techniques. At round k of Algorithm 1, R̂EXPLORS
k−1 (s, a) is designed with parameters

(φk−1, wk−1). Then, given updated policy πk, we update the parameters (φk−1, wk−1) to (φk, wk).

Notation. For the remainder of this section, we drop the superscripts (EXPLORS, SELFRS, and
EXPLOB) when referring to the reward functions in Eq. (1). In the subscript of the expectations E, let
π(a|s) mean a ∼ π(·|s), µπ(s, a) mean s ∼ dπ, a ∼ π(·|s), and µπ(s) mean s ∼ dπ. Further, we
use shorthand notation µks,a and µks to refer µπθk (s, a) and µπθk (s), respectively.

Intrinsic reward Rφ. We model the intrinsic reward Rφ using any parameterized function. At
round k, for fixed πk and wk−1, we update the parameter φk−1 to φk by considering the effect
such a change would have on the the expected cumulative return w.r.t. R through the change in the
policy πk [24, 25]. In particular, we update φ using the gradient

[
∇φJ(L(πk, R̂), R)

]
φk−1

, where

R̂(s, a) = R(s, a) + Rφ(s, a) + Bwk−1
(s). However, when considering L with neural policies,

it is challenging to directly analyze the impact of φ in the policy πk. Since our goal is to design a
reward shaping technique that is applicable to any RL agent, we consider a simple surrogate learning
algorithm L̃ for our analysis. In particular, we consider L̃ with parametric policies

{
πθ : θ ∈ Rdθ

}
that does single-step vanilla policy gradient update with Q-values computed using h-depth planning.
We map the policy πk to a parameter θk ∈ Rdθ and define:

L̃(θk, R̂) := θk + α ·
[
∇θJ(πθ, R̂)

]
θk

= θk + α · Eµks,a
[[
∇θ log πθ(a|s)

]
θk
Q
πθk
R̂,h

(s, a)
]
,

where α is the learning rate and Q
πθk
R̂,h

(s, a) = E
[∑h

t=0 γ
tR̂(st, at)

∣∣s0 = s, a0 = a, T, πθk

]
is the

h-depth Q-value w.r.t. R̂. Then, we update φ using the following bi-level optimization:

arg max
φ

J(πθ(φ), R) (P1.U)

subject to θ(φ)← L̃(θk, R̂), (P1.L)

4

where R̂(s, a) := R(s, a) +Rφ(s, a) +Bwk−1
(s). In the above bi-level formulation, L̃ with h-depth

planning for small values of h essentially requires designing more informative intrinsic rewards to
benefit the agent’s training process [24].

Intrinsic bonus Bw. Given a state abstraction ψ : S → Xψ (with |Xψ| = dw), we maintain the
visitation count of the abstracted states inw, i.e., w[x] corresponds to the visitation counts of the states
{s ∈ S : ψ(s) = x}. This allows us to implicitly maintain pseudo-counts Nw(s) of visiting states
s ∈ S . In particular, we set Nw(s) =

(
λ
Bmax

)2
+ w[ψ(s)] for some Bmax, λ > 0. Then, we define the

intrinsic bonus as follows: Bw(s) = λ√
Nw(s)

. We update w based on the rollouts in round k [32–34].

3.2 Derivation of Gradient Updates for Rφ

In this subsection, we first obtain high-level meta-gradient updates for Rφ similar to LIRPG [25].
Then, we derive intuitive meta-gradient updates that would allow EXPLORS to be compatible with
any RL agent.

High-level gradient updates for Rφ. We solve the bi-level optimization problem (P1.U)-(P1.L) of
the intrinsic reward component in an iterative manner using the gradient updates that we derive below.
At round k, for fixed πk and wk−1, we update the parameter φk−1 to φk as follows:

φk = φk−1 + η ·
[
∇φJ(πθ(φ), R)

]
φk−1

(a)
= φk−1 + η ·

[
∇φθ(φ) · ∇θ(φ)J(πθ(φ), R)

]
φk−1

(b)
≈ φk−1 + η · [∇φθ(φ)]φk−1︸ ︷︷ ︸

1©

·
[
∇θJ(πθ, R)

]
θk︸ ︷︷ ︸

2©

, (2)

where η is the learning rate, the equality in (a) is due to chain rule, and the approximation in (b)

is made by assuming a smoothness condition of
∥∥∥[∇θJ(πθ, R)

]
θ(φk−1)

−
[
∇θJ(πθ, R)

]
θk

∥∥∥
2
≤

c · ‖θ(φk−1)− θk‖2 for some c > 0. By using the meta-gradient derivations in [47–49], we write the

term 1© as follows: [∇φθ(φ)]φk−1
= α · Eµks,a

[[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

·
[
∇θ log πθ(a|s)

]>
θk

]
, where

R̂(s, a) := R(s, a) +Rφ(s, a) +Bwk−1
(s). By using the policy gradient theorem [50], we write the

term 2© as follows:
[
∇θJ(πθ, R)

]
θk

= Eµks,a
[[
∇θ log πθ(a|s)

]
θk
Q
πθk
R

(s, a)
]
. The above gradient

update of φk, involving the terms 1© and 2©, resembles the LIRPG [25] update. However, both the
terms 1© and 2© require computing the gradient of the policy, i.e., ∇θ log πθ(a|s). This requirement
makes the above update applicable only for policy-gradient based agents. Below, we derive intuitive
simplifications of the above two terms, 1© and 2©, that would enable our technique to be applicable
to any RL agent, and not only policy-gradient based agents.

Intuitive gradient updates for Rφ. In order to obtain intuitive forms of the terms 1© and 2©, we
consider further simplifications to the surrogate learning algorithm L̃ introduced in Section 3.1. In
particular, for our analysis and derivation, we let L̃ use tabular representation θ ∈ R|S|·|A| and

softmax policy given by πθ(a|s) :=
exp
(
θ(s,a)

)
∑
b exp

(
θ(s,b)

) ,∀s ∈ S, a ∈ A. We define A
πθk
R̂,h

(s, a) :=

Q
πθk
R̂,h

(s, a) − V
πθk
R̂,h

(s) and A
πθk
R

(s, a) := Q
πθk
R

(s, a) − V
πθk
R

(s). Based on this, the following
proposition provides intuitive gradient updates for Rφ.

Proposition 1. For the simplified surrogate learning algorithm L̃ with h-depth planning, the gradient
term [∇φθ(φ)]φk−1

·
[
∇θJ(πθ, R)

]
θk

in Eq. (2) takes the following form:

α · Eµks,a

[
µks,a ·A

πθk
R

(s, a) ·
[
∇φA

πθk
R̂,h

(s, a)
]
φk−1

]
.

For the special case of h = 1, the gradient term further simplifies to the following form:

α · Eµks,a

[
µks,a ·A

πθk
R

(s, a) ·
[
∇φ
(
Rφ(s, a)− Eπθk (b|s)[Rφ(s, b)]

)]
φk−1

]
.

5

Compared to Eq. (2), the intuitive gradient update term in the above proposition does not require
computing the policy gradient∇θ log πθ(a|s). This allows us to develop an update rule for intrinsic
reward parameter φ that is applicable to any RL agent. In particular, given the current policy πk
(possibly without any differentiable parameterization), we simplify Eq. (2) and propose the following
gradient update rule for parameter φ:

φk ≈ φk−1 + η′ · Eµks,a
[
µks,a ·A

πk
R

(s, a) ·
[
∇φ
(
Rφ(s, a)− Eπk(b|s)[Rφ(s, b)]

)]
φk−1

]
, (3)

where η′ = η ·α. Note that the above gradient update only requires black-box access to the policy πk
in the form of trajectory rollouts as in the SORS technique [26].

3.3 Empirical Updates and Practical Aspects

In this subsection, we present a concrete pseudocode for training an RL agent with EXPLORS reward
shaping technique. Algorithm 2 provides a sketch of the overall training process, interleaving the
agent’s training with EXPLORS. The sketch presented in Algorithm 2 is adapted from the training
process proposed for the SORS technique [26]. Further, we consider rollouts where each round
corresponds to a single rollout, instead of environment steps, as in SORS. Below, we discuss the
empirical updates for intrinsic reward and bonus components of Eq. (1).

Empirical updates for intrinsic reward Rφ. We translate the final expectation-based update of φk
in Eq. (3) to its empirical counterpart using the rollout data D collected by executing the current
policy πk (or recent policies) in the MDPM . At any round k, letD contain a collection of trajectories{
ξi
}n
i=1

, where ξi = (si0, a
i
0, s

i
1, a

i
1, . . . , s

i
H). For a given trajectory ξi and time index t, we denote

a partial trajectory as ξit = (sit, a
i
t, . . . , s

i
H). Based on this notation, we empirically update the

parameter φ as follows:

φk ← φk−1 + ηφk ·
∑
ξit

πk(ait|sit) ·
(
J(ξit, R)− V πk

R
(sit)

)
·
[
∇φAπkR̂,1(sit, a

i
t)
]
φk−1

, (4)

where we absorb the normalization factors into ηφk , ignore the term µπk(sit), and set[
∇φAπkR̂,1(sit, a

i
t)
]
φk−1

=
[
∇φ
(
Rφ(sit, a

i
t)− Eπk(b|sit)

[
Rφ(sit, b)

])]
φk−1

. Similar to LIRPG [25],

we also maintain a critic VR,φ̃k−1
(·) to approximate V πk

R
(·) in Eq. (4). We update the parameters of

the critic, φ̃k−1 to φ̃k, using the same rollout data D and learning rate ηφ̃k . In Algorithm 2, hyper-
parameters Nr and Nπ control the frequency of updates for the intrinsic reward Rφ and policy π,
respectively. For stability reasons, we update the policy more frequently compared to the intrinsic
reward, i.e., Nπ < Nr. We provide full implementation details in Section 4 and appendices.

Empirical updates for intrinsic bonus Bw. We update Bw based on the history of all the states
visited up to round k. Similar to #Exploration [34], we use the count-based intrinsic bonuses with a
state abstraction ψ : S → Xψ. We maintain the visitation count of the abstracted states in w. For
each rollout ξk, we update the parameter w of the intrinsic bonus as follows:

wk[x] = wk−1[x] +
∑
skt∈ξk

1
{
ψ(skt) = x

}
, ∀x ∈ Xψ. (5)

Similar to the existing count-based exploration techniques [32–34], we use a lookahead step when
incorporating the bonus term (see line 5 in Algorithm 2). In our implementation, we update the
intrinsic bonus at a more fine-grained level, i.e., we update Bw at each environment step t within
each round k directly, instead of waiting for the rollout to finish. However, for clear presentation in
Algorithm 2, we write the Bw update at the level of round k, not at the level of environment step t.
We provide full implementation details in Section 4 and appendices.

3.4 Theoretical Analysis

In this subsection, we theoretically showcase the usefulness of our exploration-guided reward shaping
framework in accelerating an agent’s learning in a chain environment with extremely-sparse rewards
and distractive zones in the state space. Our analysis considers a stylized learning setting with
simplified versions of different reward shaping techniques.

6

Algorithm 2 RL Training with EXPLORS

1: Inputs and hyperparameters: RL algorithm L; first-in-first-out buffer D with size Dmax;
abstraction ψ; learning rates {ηφk}, {η

φ̃
k}; bonus parameters Bmax, λ; update rates Nr, Nπ

2: Initialization: Initialize the parameters for intrinsic reward and its critic (φ0, φ̃0), parameters
for intrinsic bonus w0, and the policy π0

3: for k = 1, 2, . . . ,K do
// policy update

4: if k%Nπ = 0 then
5: Define reward R̂k−1(s, a, s′) := R(s, a) +Rφk−1

(s, a) +Bwk−1
(s′)

6: Obtain updated policy πk ← L(πk−1, R̂k−1) using the latest rollouts in D
7: else
8: Keep previous policy πk ← πk−1

// data collection
9: Rollout the policy πk in the MDP M to obtain a trajectory ξk =

(
sk0 , a

k
0 , s

k
1 , a

k
1 , . . . , s

k
H

)
10: Store ξk in the buffer D.add(ξk); if the buffer D is full, remove the oldest trajectory

// intrinsic reward update
11: if k%Nr = 0 then
12: Obtain updated reward parameter φk from φk−1 as in Eq. (4) usingD and learning rate ηφk
13: Obtain updated critic parameter φ̃k from φ̃k−1 using D and learning rate ηφ̃k
14: else
15: Keep previous parameters φk ← φk−1 and φ̃k ← φ̃k−1

// intrinsic bonus update
16: Update wk as in Eq. (5) using the states visited in the trajectory ξk

17: Define bonus Bwk(s) = λ√
Nwk (s)

, where Nwk(s) =
(

λ
Bmax

)2
+ wk[ψ(s)]

18: Output: Policy πK

Chain environment. We consider a chain environment M =
(
S,A, T, P0, γ, R

)
of length

n1 + n2 + 1. Let the state space be S = {x−n2
, . . . , x−1, x0, x1, . . . , xn1

}, and the action
space be A = {←,→}. We always start in the state x0, i.e., the initial state distribution is
P0(x0) = 1. The transition dynamics is deterministic and given as follows: T (xi+1|xi,→) = 1
for −n2 ≤ i ≤ n1 − 1, T (xi−1|xi,←) = 1 for −(n2 − 1) ≤ i ≤ n1, T (terminal|xn1

,→) = 1,
and T (terminal|x−n2

,←) = 1. The reward function is defined as follows: R(xi,→) = 0 for
−n2 ≤ i ≤ n1 − 1, R(xn1 ,→) = 1, and R(xi,←) = 0 for −n2 ≤ i ≤ n1. We consider an infinite
horizon setting with discounted returns, i.e., H →∞ and γ < 1.

Learning algorithm and reward shaping techniques. For our theoretical analysis, we consider a
stylized learning setting with a TD-style RL algorithm L and simplified versions of different reward
shaping techniques; details are provided in appendices. We analyze the total number time steps
required for L to learn an optimal policy in the chain environment under four different settings: (i)
CaseL(SELFRS = 0,EXPLOB = 0) is a default setting without any shaping; (ii) CaseL(SELFRS =
0,EXPLOB = 1) uses only the intrinsic bonuses; (iii) Case L(SELFRS = 1,EXPLOB = 0) uses
only the intrinsic rewards; (iv) Case L(SELFRS = 1,EXPLOB = 1) combines intrinsic bonuses with
intrinsic rewards. The following theorem compares these four settings and showcases the usefulness
of our framework, i.e., Case L(SELFRS = 1,EXPLOB = 1) – proof is provided in appendices.
Theorem 1. Consider the chain environment M and the algorithm L defined above. Let
cost(L(SELFRS,EXPLOB)) denote the total number time steps required for L(SELFRS,EXPLOB)
to learn an optimal policy in M . Then, we have the following (expected) costs for the four settings:

(i) E [cost(L(SELFRS = 0,EXPLOB = 0))] ≥ 2n1−1;
(ii) cost(L(SELFRS = 0,EXPLOB = 1)) = n1 · (n1 + n2 + 2);

(iii) E [cost(L(SELFRS = 1,EXPLOB = 0))] ≥ 2n1−1;
(iv) cost(L(SELFRS = 1,EXPLOB = 1)) ≤ n1 + n2 + 2

The proof and additional details about the learning setting are provided in appendices.

7

4 Experimental Evaluation
In this section, we evaluate our reward shaping framework on three environments: CHAIN (Sec-
tion 4.1), ROOM (Section 4.2), and LINEK (Section 4.3). CHAIN corresponds to a navigation task
in a chain, adapted from the environment used for theoretical analysis in Section 3.4; this is a
canonical environment used for studying extremely sparse-reward settings [7]. ROOM corresponds
to a navigation task in a grid-world where the agent has to learn a policy to quickly reach the goal
location in one of four rooms, starting from an initial location. Even though this environment has
a small state/action space, it provides a very rich and intuitive problem setting to validate different
reward shaping techniques. In fact, variants of ROOM have been used extensively in the litera-
ture [10, 11, 14, 17, 51–54]—the environment used in our experiments is adapted from [54]. LINEK
corresponds to a navigation task in a one-dimensional space where the agent has to first pick the
correct key and then reach the goal. The agent’s location is represented as a point on a line segment.
This environment is inspired by variants of navigation tasks in the literature where an agent needs to
perform subtasks [3, 54, 55]—the environment used in our experiments is adapted from [54]. We give
an overview of main results here, and provide a more detailed description of the setup and additional
implementation details in appendices.

4.1 Evaluation on CHAIN

Figure 1: CHAIN0 / CHAIN+

CHAIN (Figure 1). We represent the chain environment of
length n1 + n2 + 1 as an MDP with state-space S consisting
of an initial location x0 (shown as “blue-circle”), n1 nodes to
the right of x0, and n2 nodes to the left of x0. The rightmost
node of the chain is the “goal” state (shown as “green-star”). In the left part of the chain, there
can be a “distractor” state (shown as “green-plus”). The agent can take two actions given by
A := {“left”, “right”} – an action takes the agent to the intended neighboring node with probability
of (1− prand) for prand = 0.05. The agent receives a reward of Rmax = 1 for the “right” action at the
goal state, Rdis for the “left” action at the distractor state, and 0 for all other state-action pairs. There
is a discount factor γ = 0.99 and the environment resets after a horizon ofH = n2 steps. We consider
two different variants of the chain environment: (i) CHAIN0 with (n1 = 20, n2 = 40, Rdis = 0); (ii)
CHAIN+ with (n1 = 20, n2 = 40, Rdis = 0.01). We defer the full environment details to appendices.

Evaluation setup. We conduct our experiments with two different types of RL agents for CHAIN:
tabular REINFORCE agent [7] and tabular Q-learning agent [7]. Algorithm 2 provides a sketch of the
overall training process, and shows how agent’s training interleaves with reward shaping techniques.
We compare the performance of the following reward shaping techniques: (i) R̂ORIG := R is a default
baseline without any shaping; (ii) R̂SORS’ := R+RSORS

φ is based on the SORS technique [26] (see
Section 2.2);2 (iii) R̂LIRPG’ is obtained via adapting the LIRPG technique [25] to our training pipeline
(see Algorithm 2, Sections 2.2 and 3.2)—note that R̂LIRPG’ is not applicable to Q-learning agent;3 (iv)
R̂EXPLOB := R+BEXPLOB

w uses only the intrinsic bonuses; (v) R̂SELFRS := R+RSELFRS
φ uses only the

intrinsic rewards; (vi) R̂EXPLORS := R+RSELFRS
φ +BEXPLOB

w combines intrinsic bonuses with intrinsic
rewards. We provide full details about the implementation and hyperparameters in appendices.

Results. During training, the agent receives rewards based on R̂ and is evaluated based onR. Figure 2
shows results for both the variants of CHAIN environment; the reported results are averaged over
20 runs and convergence plots show the mean performance with standard error bars. These results
demonstrate the effectiveness of our exploration-guided reward shaping framework (R̂EXPLORS), in
comparison to baselines (R̂ORIG, R̂SORS’, R̂LIRPG’, R̂EXPLOB, R̂SELFRS). Next, we summarize some
of our key findings. First, our results show that R̂EXPLORS outperforms the baselines in both CHAIN0

and CHAIN+ environments, irrespective of the RL agent (REINFORCE and Q-learning). Second, the
performance of R̂EXPLORS is better than variants which only use either intrinsic bonuses or intrinsic

2In our implementation, we use a variant of the SORS technique which also incorporates the extrinsic reward
component R as done in all other techniques in our evaluation setup.

3Throughout the experimental evaluation, we refer to our implementation of the LIRPG technique as R̂LIRPG’

instead of R̂LIRPG – our implementation of the LIRPG technique is not based on computing meta-gradients as in
the original work [25]. Instead, we implemented R̂LIRPG’ as a variant of R̂SELFRS where we set h → ∞ instead
of 1 in A

πθk
R̂,h

(s, a) (see Section 3.2). We provide additional implementation details in appendices.

8

0 1.5 3
Episode (x104)

0

5

10

15
E

xp
ec

te
d

re
w

ar
d

EXPLORS
SELFRS
EXPLOB

SORS′

ORIG

LIRPG′

(a) CHAIN0, REINFORCE

0 1.5 3
Episode (x104)

0

5

10

15

E
xp

ec
te

d
re

w
ar

d

EXPLORS
SELFRS
EXPLOB

SORS′

ORIG

LIRPG′

(b) CHAIN+, REINFORCE

0 1.5 3
Episode (x104)

0

5

10

15

E
xp

ec
te

d
re

w
ar

d

EXPLORS
SELFRS
EXPLOB

SORS′

ORIG

(c) CHAIN0, Q-learning

0 1.5 3
Episode (x104)

0

5

10

15

E
xp

ec
te

d
re

w
ar

d

EXPLORS
SELFRS
EXPLOB

SORS′

ORIG

(d) CHAIN+, Q-learning
Figure 2: Results for CHAIN environment. These plots show convergence in performance of the
agent w.r.t. training episodes. (a, b) show results for REINFORCE agent on CHAIN0 (i.e., CHAIN
variant without any distractor state) and CHAIN+ (i.e., CHAIN variant with a distractor state). (c, d)
show results for Q-learning agent on CHAIN0 and CHAIN+. See Section 4.1 for details.

rewards, i.e., R̂EXPLOB or R̂SELFRS – this demonstrates the utility of combining these two signals.
Third, results in Figures 2b and 2d show that three reward shaping techniques (R̂SORS’, R̂LIRPG’,
R̂SELFRS) could fail or lead to sub-optimal policies because of the presence of distractor states.

4.2 Evaluation on ROOM

Figure 3: ROOM0 / ROOM+

ROOM (Figure 3). This environment is based on the work of [54];
however, we adapted it to have a “distractor” state (shown as “green-
plus”) that provides a small reward. Similar to the two variants of
CHAIN, we have two variants of this environment: (i) ROOM0 has
Rdis = 0 at the distractor state shown as “green-plus” (equivalently,
there is no distractor state); (ii) ROOM+ hasRdis = 0.01 at the distractor
state. The environment-specific parameters (including prand, Rmax, γ)
are kept same as in Section 4.1. We defer full details to appendices.

Evaluation setup and results. Our evaluation setup for this environment is exactly same as that used
for CHAIN environment (described in Section 4.1); here, we consider only the tabular REINFORCE
agent. In particular, all the hyperparameters (related to the REINFORCE agent, reward shaping
techniques, and training process) are the same as in Section 4.1. Figures 5a and 5b show the agent’s
performance for environments ROOM0 and ROOM+ (averaged over 20 runs). These results, along
with results obtained in Figure 2, further demonstrate the effectiveness and robustness of R̂EXPLORS

across different environments in comparison to baselines.

4.3 Evaluation on LINEK

Figure 4: LINEK0 / LINEK+

LINEK (Figure 4). This environment corresponds to a navigation
task in a one-dimensional space where the agent has to first pick
the correct key and then reach the goal. The environment used in
our experiments is based on the work of [54]; however, we adapted
it to have multiple keys (only one being correct) and “distractor”
states that provide a small reward at goal locations even without
the correct key. The environment comprises of the following main elements: (a) an agent whose
current location (shown as “blue-circle”) is a point x in [0, 1]; (b) goal (shown as “green-star”) is
available in locations on the segment [0.9, 1]; (c) a set of k keys that are available in locations on
the segment [0.0, 0.1], (d) among k keys, only 1 key is correct and the remaining k − 1 keys are
wrong (i.e., irrelevant at the goal). Moreover, we consider the agent with two different actions
related to picking a key: (a) “pickCorrect” makes the agent collect the correct key required at the
goal; (b) “pickWrong” makes the agent collect one of the k − 1 wrong keys, chosen at random.
Similar to Sections 4.1 and 4.2, we use two adaptations of the environment: (i) LINEK0 with
(k = 10, Rdis = 0); (ii) LINEK+ with (k = 10, Rdis = 0.01). We defer full details to appendices.

Experimental setup. We conduct our experiments with a neural REINFORCE agent using a two-
layered neural network architecture (i.e., one fully connected hidden layer with 256 nodes and RELU
activation) [7]. Similar to Section 4.1, we compare the performance of six techniques. As a crucial
difference, here we use neural-network based reward functions for R̂SORS’, R̂LIRPG’, R̂SELFRS, and

9

0 1.5 3
Episode (x104)

0

5

10

15
E

xp
ec

te
d

re
w

ar
d

EXPLORS
SELFRS
EXPLOB

SORS′

ORIG

LIRPG′

(a) ROOM0, REINFORCE

0 1.5 3
Episode (x104)

0

5

10

15

E
xp

ec
te

d
re

w
ar

d

EXPLORS
SELFRS
EXPLOB

SORS′

ORIG

LIRPG′

(b) ROOM+, REINFORCE

0 1 2 3 4 5
Episode (x104)

0

5

10

15

E
xp

ec
te

d
re

w
ar

d

EXPLORS
SELFRS
EXPLOB

SORS′

ORIG

LIRPG′

(c) LINEK0, REINFORCE

0 1 2 3 4 5
Episode (x104)

0

5

10

15

E
xp

ec
te

d
re

w
ar

d

EXPLORS
SELFRS
EXPLOB

SORS′

ORIG

LIRPG′

(d) LINEK+, REINFORCE
Figure 5: Results for ROOM and LINEK environments. These plots show convergence in performance
of the agent w.r.t. training episodes. (a, b) show results for REINFORCE agent on ROOM0 (i.e.,
ROOM variant without any distractor state) and ROOM+ (i.e., ROOM variant with a distractor state).
(c, d) show results for REINFORCE agent on LINEK0 (i.e., LINEK variant without any distractor
state) and LINEK+ (i.e., LINEK variant with distractor states). See Sections 4.2 and 4.3 for details.

R̂EXPLORS (see Footnotes 2 and 3). Based on [25, 26], we use the same neural-network architecture
for intrinsic reward functions as used for the agent’s policy by applying appropriate transformations
at the output layer (e.g., instead of using soft-max, use tanh-clipping to get output reward values
for actions). We provide full details about the implementation and hyperparameters in appendices.

Results. During training, the agent receives rewards based on R̂ and is evaluated based on R.
Figures 5c and 5d show results for both the variants of LINEK environment; the reported results are
averaged over 30 runs and convergence plots show the mean performance with standard error bars.
These plots showcase the performance of different techniques as we vary Rdis ∈ {0.00, 0.01} – this
in turn decides whether there are any distractor states that can serve as local minima for the agent.
The convergence behavior in Figures 5c and 5d demonstrates the effectiveness of our exploration-
guided reward shaping framework (R̂EXPLORS), in comparison to baselines (R̂ORIG, R̂SORS’, R̂LIRPG’,
R̂EXPLOB, R̂SELFRS). Next, we summarize some of our key findings. First, our results show that
R̂EXPLORS outperforms all the baselines in both LINEK0 and LINEK+ environments. Second, results
in Figure 5d show that three reward shaping techniques (R̂SORS’, R̂LIRPG’, R̂SELFRS) performed worse
than R̂ORIG – this is because of the presence of distractor states which create local minima for the
agent and these shaped functions could further encourage learning a sub-optimal policy. In contrast,
R̂EXPLORS combines the benefits of intrinsic rewards (R̂SELFRS) and intrinsic bonuses (R̂EXPLOB) to
speed up agent’s learning in a robust and efficient manner. Overall, these results demonstrate that
our shaping technique R̂EXPLORS results in efficient learning even when dealing with complex state
representations and when learning neural-network based intrinsic reward functions.

5 Concluding Discussions
We proposed a novel reward shaping framework, EXPLORS, that operates in a fully self-supervised
manner and could accelerate an agent’s learning even in sparse-reward environments. Next, we
discuss a few limitations of our work and outline a future plan to address them. First, the experimental
evaluation is conducted on simpler environments to study the performance of techniques w.r.t. the
three characteristics of (a) hard exploration, (b) local minima, and (c) “noisy TV” problem. It would
be interesting to evaluate different reward design techniques in more complex environments (e.g., with
continuous state/action spaces); this would also require designing benchmark environments that sys-
tematically capture the above three characteristics. Second, EXPLORS combines the intrinsic rewards
and intrinsic bonuses that allows it to overcome the limitations of state-of-the-art techniques. It would
be interesting to develop more principled ways to combine these two signals. Third, it would be useful
to provide rigorous analysis of EXPLORS in terms of convergence speed and stability of an agent.

6 Acknowledgments
Parameswaran Kamalaruban acknowledges support from The Alan Turing Institute. Funded/Co-
funded by the European Union (ERC, TOPS, 101039090). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

10

References
[1] Maja J. Mataric. Reward Functions for Accelerated Learning. In ICML, 1994.
[2] Jette Randløv and Preben Alstrøm. Learning to Drive a Bicycle Using Reinforcement Learning

and Shaping. In ICML, 1998.
[3] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy Invariance Under Reward Transfor-

mations: Theory and Application to Reward Shaping. In ICML, 1999.
[4] Adam Laud and Gerald DeJong. The Influence of Reward on the Speed of Reinforcement

Learning: An Analysis of Shaping. In ICML, 2003.
[5] Falcon Z. Dai and Matthew R. Walter. Maximum Expected Hitting Cost of a Markov Decision

Process and Informativeness of Rewards. In NeurIPS, 2019.
[6] Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes

Brandstetter, and Sepp Hochreiter. RUDDER: Return Decomposition for Delayed Rewards. In
NeurIPS, 2019.

[7] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT press,
2018.

[8] Eric Wiewiora. Potential-Based Shaping and Q-Value Initialization are Equivalent. Journal of
Artificial Intelligence Research, 19:205–208, 2003.

[9] Eric Wiewiora, Garrison W. Cottrell, and Charles Elkan. Principled Methods for Advising
Reinforcement Learning Agents. In ICML, 2003.

[10] John Asmuth, Michael L. Littman, and Robert Zinkov. Potential-based Shaping in Model-based
Reinforcement Learning. In AAAI, 2008.

[11] Marek Grzes and Daniel Kudenko. Plan-based Reward Shaping for Reinforcement Learning.
In International IEEE Conference on Intelligent Systems, volume 2, pages 10–22, 2008.

[12] Sam Devlin and Daniel Kudenko. Dynamic Potential-based Reward Shaping. In AAMAS, 2012.
[13] Marek Grzes. Reward Shaping in Episodic Reinforcement Learning. In AAMAS, 2017.
[14] Alper Demir, Erkin Çilden, and Faruk Polat. Landmark Based Reward Shaping in Reinforcement

Learning with Hidden States. In AAMAS, 2019.
[15] Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Using Natural Language for Reward

Shaping in Reinforcement Learning. In IJCAI, 2019.
[16] Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. Reward Shaping via

Meta-Learning. CoRR, abs/1901.09330, 2019.
[17] Yuqian Jiang, Suda Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter Stone. Temporal-

Logic-Based Reward Shaping for Continuing Reinforcement Learning Tasks. In AAAI, 2021.
[18] Pieter Abbeel and Andrew Y Ng. Apprenticeship Learning via Inverse Reinforcement Learning.

In ICML, 2004.
[19] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping Your Distance:

Solving Sparse Reward Tasks Using Self-Balancing Shaped Rewards. In NeurIPS, 2019.
[20] Satinder P. Singh, Andrew G. Barto, and Nuttapong Chentanez. Intrinsically Motivated Rein-

forcement Learning. In NeurIPS, 2004.
[21] Satinder Singh, Richard L Lewis, and Andrew G Barto. Where Do Rewards Come From? In

CogSci, 2009.
[22] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically Motivated

Reinforcement Learning: An Evolutionary Perspective. IEEE Transactions on Autonomous
Mental Development, 2(2):70–82, 2010.

[23] Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Internal Rewards Mitigate Agent
Boundedness. In ICML, 2010.

[24] Jonathan Sorg, Satinder P. Singh, and Richard L. Lewis. Reward Design via Online Gradient
Ascent. In NeurIPS, 2010.

[25] Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On Learning Intrinsic Rewards for Policy
Gradient Methods. In NeurIPS, 2018.

11

[26] Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-
Supervised Online Reward Shaping in Sparse-Reward Environments. In IROS, 2021.

[27] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating Beyond
Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations. In ICML,
2019.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-Level Control Through Deep Reinforcement Learning. Nature, 518(7540):529–533,
2015.

[29] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous Control with Deep Reinforcement Learning.
CoRR, abs/1509.02971, 2015.

[30] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
Region Policy Optimization. In ICML, 2015.

[31] Lilian Weng. Exploration Strategies in Deep Reinforcement Learning. lilianweng.github.io,
2020.

[32] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying Count-Based Exploration and Intrinsic Motivation. In NeurIPS, 2016.

[33] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-Based Exploration
with Neural Density Models. In ICML, 2017.

[34] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan,
John Schulman, Filip DeTurck, and Pieter Abbeel. #Exploration: A Study of Count-Based
Exploration for Deep Reinforcement Learning. In NeurIPS, 2017.

[35] Jürgen Schmidhuber. Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010).
IEEE Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

[36] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic Motivation Systems
for Autonomous Mental Development. IEEE Transactions on Evolutionary Computation,
11(2):265–286, 2007.

[37] Pierre-Yves Oudeyer and Frederic Kaplan. What is Intrinsic Motivation? A Typology of
Computational Approaches. Frontiers in Neurorobotics, 1:6, 2009.

[38] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing Exploration in Reinforcement
Learning with Deep Predictive Models. CoRR, abs/1507.00814, 2015.

[39] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-Driven Explo-
ration by Self-Supervised Prediction. In ICML, 2017.

[40] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational Information Maximizing Exploration. In NeurIPS, 2016.

[41] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random
Network Distillation. CoRR, abs/1810.12894, 2018.

[42] Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-Guided Reinforcement
Learning. In NeurIPS, 2021.

[43] Ronen I Brafman and Moshe Tennenholtz. R-max: A General Polynomial Time Algorithm for
Near-Optimal Reinforcement Learning. Journal of Machine Learning Research, 3:213–231,
2002.

[44] Alexander L Strehl and Michael L Littman. An Analysis of Model-Based Interval Estimation
for Markov Decision Processes. Journal of Computer and System Sciences, 74(8):1309–1331,
2008.

[45] J Zico Kolter and Andrew Y Ng. Near-Bayesian Exploration in Polynomial Time. In ICML,
2009.

[46] Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-Based Rewards for Approximate
Bayesian Reinforcement Learning. In UAI, 2010.

12

[47] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to Learn by Gradient Descent
by Gradient Descent. In NeurIPS, 2016.

[48] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-Learning with Memory-Augmented Neural Networks. In ICML, 2016.

[49] Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning Algorithms.
CoRR, abs/1803.02999, 2018.

[50] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In NeurIPS, 1999.

[51] Amy McGovern and Andrew G. Barto. Automatic Discovery of Subgoals in Reinforcement
Learning using Diverse Density. In ICML, 2001.

[52] Özgür Simsek, Alicia P. Wolfe, and Andrew G. Barto. Identifying Useful Subgoals in Rein-
forcement Learning by Local Graph Partitioning. In ICML, 2005.

[53] Michael R. James and Satinder P. Singh. Sarsalandmark: An Algorithm for Learning in
POMDPs with Landmarks. In AAMAS, 2009.

[54] Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla. Explicable
Reward Design for Reinforcement Learning Agents. In NeurIPS, 2021.

[55] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling Others using
Oneself in Multi-Agent Reinforcement Learning. In ICML, 2018.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The paper is organized according to the contributions
listed at the end of the introduction section.

(b) Did you describe the limitations of your work? [Yes] In Section 5, we discuss the
limitations of our work and outline a future plan to address these limitations.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This
work presents a new online reward shaping technique for reinforcement learning agents.
Given the algorithmic and empirical nature of our work applied to learning agents, we
do not foresee any direct negative societal impacts of our work in the present form.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We confirm that our paper conforms with the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions

are stated either as part of the theorem statements or the proofs.
(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs of

all theoretical results are included in appendices.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] The code is
provided as a URL in Footnote 1.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Details are provided in appendices.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Error bars are included in all the result graphs

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Details are provided in appendices.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Table of Contents

In this section, we give a brief description of the content provided in the appendices of the paper.

• Appendix B provides derivations for the intuitive gradient updates for Rφ. (Section 3.2)
• Appendix C provides proof for the theoretical analysis. (Section 3.4)
• Appendix D provides additional details for CHAIN. (Section 4.1)
• Appendix E provides additional details for ROOM. (Section 4.2)
• Appendix F provides additional details for LINEK. (Section 4.3)

B Derivation of Gradient Updates for Rφ: Proof (Section 3.2)

Proof of Proposition 1. For any s ∈ S, a ∈ A, let 1s,a ∈ R|S|·|A| denote a vector with 1 in the
(s, a)-th entry and 0 elsewhere. First, we simplify the term 1© as follows:

1

α
· [∇φθ(φ)]φk−1

= Eµks,a
[[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

·
[
∇θ log πθ(a|s)

]>
θk

]
= Eµks,a

[∇φQπθkR̂,h
(s, a)

]
φk−1

·

(
1s,a −

∑
a′

πθk(a′|s) · 1s,a′
)>

= Eµks

∑
a

πθk(a|s) ·
[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

·

(
1s,a −

∑
a′

πθk(a′|s) · 1s,a′
)>

= Eµks

[∑
a

πθk(a|s)
[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

1>s,a −
∑
a

πθk(a|s)
[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

(∑
a′

πθk(a′|s)1>s,a′

)]

= Eµks

[∑
a

πθk(a|s)
[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

1>s,a −
[
∇φ
∑
a

πθk(a|s)Qπθk
R̂,h

(s, a)

]
φk−1

(∑
a′

πθk(a′|s)1>s,a′

)]

= Eµks

∑
a

πθk(a|s) ·
[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

· 1>s,a −
[
∇φV

πθk
R̂,h

(s)
]
φk−1

·

(∑
a′

πθk(a′|s) · 1s,a′
)>

= Eµks

[∑
a

πθk(a|s) ·
[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

· 1>s,a −
[
∇φV

πθk
R̂,h

(s)
]
φk−1

·

(∑
a

πθk(a|s) · 1>s,a

)]

= Eµks

[∑
a

πθk(a|s) ·
[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

· 1>s,a −
∑
a

πθk(a|s) ·
[
∇φV

πθk
R̂,h

(s)
]
φk−1

· 1>s,a

]
= Eµks,a

[[
∇φQ

πθk
R̂,h

(s, a)
]
φk−1

· 1>s,a −
[
∇φV

πθk
R̂,h

(s)
]
φk−1

· 1>s,a
]

= Eµks,a

[[
∇φ
(
Q
πθk
R̂,h

(s, a)− V πθk
R̂,h

(s)
)]

φk−1

· 1>s,a
]
.

Then, we simplify the term 2© as follows:[
∇θJ(πθ, R)

]
θk

= Eµks,a
[[
∇θ log πθ(a|s)

]
θk
·Qπθk

R
(s, a)

]
= Eµks,a

[(
1s,a −

∑
a′

πθk(a′|s) · 1s,a′
)
·Qπθk

R
(s, a)

]

= Eµks

[∑
a

πθk(a|s) ·

(
1s,a −

∑
a′

πθk(a′|s) · 1s,a′
)
·Qπθk

R
(s, a)

]

15

= Eµks

[∑
a

πθk(a|s) ·Qπθk
R

(s, a) · 1s,a −
∑
a

πθk(a|s) ·Qπθk
R

(s, a) ·

(∑
a′

πθk(a′|s) · 1s,a′
)]

= Eµks

[∑
a

πθk(a|s) ·Qπθk
R

(s, a) · 1s,a − V
πθk
R

(s) ·

(∑
a′

πθk(a′|s) · 1s,a′
)]

= Eµks

[∑
a

πθk(a|s) ·Qπθk
R

(s, a) · 1s,a −
∑
a′

πθk(a′|s) · V πθk
R

(s) · 1s,a′
]

= Eµks

[∑
a

πθk(a|s) ·Qπθk
R

(s, a) · 1s,a −
∑
a

πθk(a|s) · V πθk
R

(s) · 1s,a

]

= Eµks

[∑
a

πθk(a|s) ·
(
Q
πθk
R

(s, a)− V πθk
R

(s)
)
· 1s,a

]
= Eµks,a

[(
Q
πθk
R

(s, a)− V πθk
R

(s)
)
· 1s,a

]
.

Finally, we consider the following:

[∇φθ(φ)]φk−1
·
[
∇θJ(πθ, R)

]
θk

= α · Eµks,a

[[
∇φA

πθk
R̂,h

(s, a)
]
φk−1

· 1>s,a
]
· Eµk

s′,a′

[
A
πθk
R

(s′, a′) · 1s′,a′
]

= α · Eµks,a

[[
∇φA

πθk
R̂,h

(s, a)
]
φk−1

· 1>s,a · Eµk
s′,a′

[
A
πθk
R

(s′, a′) · 1s′,a′
]]

= α · Eµks,a

[[
∇φA

πθk
R̂,h

(s, a)
]
φk−1

· 1>s,a · µks,a ·A
πθk
R

(s, a) · 1s,a
]

= α · Eµks,a

[
µks,a ·A

πθk
R

(s, a) ·
[
∇φA

πθk
R̂,h

(s, a)
]
φk−1

]
= α · Eµπθk (s,a)

[
µπθk (s) · πθk(a|s) ·Aπθk

R
(s, a) ·

[
∇φA

πθk
R̂,h

(s, a)
]
φk−1

]
.

C Theoretical Analysis: Proof (Section 3.4)

Proof of Theorem 1. We prove Theorem 1 via case-by-case analysis.

Case L(SELFRS = 0,EXPLOB = 0). This case corresponds to learning without any reward shaping,
i.e., learning with the extrinsic reward only: R(s, a). Then, we note the following:

I. Initially, we have a random policy except at state xn1
, where we take the optimal action→

(line 7). We maintain zero value function Vt for all the states (line 9) until we obtain the first
success complete rollout, i.e., st+1 is terminal and R(st, at) = 1.

II. With an initial random policy and starting from x0, probability of obtaining a success com-
plete rollout is

(
1
2

)n1
+
(
1
2

)n1+2
+
(
1
2

)n1+4
+ . . . , which is upper bounded by pmax =∑∞

i=0

(
1
2

)n1+i
=
(
1
2

)n1−1.

III. Let E [T1] be the expected number of steps required for the first occurrence of the above
successful rollout. Then, we have: E [T1] ≥ 1

pmax
= 2n1−1.

IV. After the first successful rollout, we will have Vt(xn1) = 1 and zero elsewhere (line 9). Then,
we will have a random policy except at xn1 and x(n1−1), where we take the optimal action
(line 7). This effectively repeats the same steps above for the chain without xn1 .

V. Let E [T2] be the expected number of steps required for the second occurrence of the above
successful rollout. Then, we have: E [T2] ≥ 2n1−2.

16

Algorithm 3 Simplified RL Algorithm L with Reward Shaping

1: Input: Binary flags SELFRS and EXPLOB
2: Initialize: V0(s) = 0; R(s, a) = 0, B(s) = 1, ∀s ∈ S, a ∈ A; λ ∈ (0, 1)
3: s1 = x0; B(s1) = λ
4: for each t = 1, 2, . . . do
5: if EXPLOB = 0 then
6: B(s) = 0, ∀s ∈ S

// bonus component used for action selection
7: at = arg maxa′ R(st, a

′) +R(st, a
′) +B(T (st, a

′)) + γ · Vt−1(T (st, a
′))

8: st+1 = T (st, at)
// we do not consider the bonus component when updating the value function

9: Vt(st) = R(st, at) +R(st, at) + γ · Vt−1(st+1)
10: if st+1 = terminal then
11: if R(st, at) = 1 and SELFRS = 1 then

// update the intrinsic reward component
12: φ(s) = 0, ∀s ∈ S
13: Update φ(s) for all the states in the current rollout as the discounted return
14: R(s, a) = γ · φ(T (s, a))− φ(s), ∀s ∈ S, a ∈ A

// reset the value function to account for change in R
15: Vt(s) = 0, ∀s ∈ S
16: reset st+1 = x0

// update the bonus component
17: B(st+1) = λ ·B(st+1)

18: Output: policy πt

VI. After the second successful rollout, we will have Vt(xn1
) = 1, Vt(x(n1−1)) = γ, and zero

elsewhere (line 9). Then, we will have a random policy except at xn1
, x(n1−1), and x(n1−2),

where we take the optimal action (line 7). This effectively repeats the same steps above for the
chain without xn1 and x(n1−1).

VII. After following the above procedure for n1 success rollouts, we will have the optimal
value/policy learnt for the chain (solving the MDP). Thus, the expected sample complexity is
lower bounded by E [cost(L(SELFRS = 0,EXPLOB = 0))] =

∑n1

i=1 E [Ti] ≥
∑n1

i=1 2n1−i.

Case L(SELFRS = 0,EXPLOB = 1) This case corresponds to learning with the extrinsic reward
and intrinsic bonus: R(s, a) +B(T (s, a)). Then, we note the following (here, we need λ ≤ γ):

I. We have zero value function (line 9) until we get the first success complete rollout, i.e., st+1 is
terminal and R(st, at) = 1.

II. W.l.o.g. we take→ action at time t = 1 at x0. Then, we continue to take→ action (for n1 + 1
steps) until we reach rightmost terminal state, since λ < 1 (lines 7 and 17).

III. After the first successful rollout, we will have Vt(xn1
) = 1 and zero elsewhere (line 9). Note

that Vt(terminal) = 0,∀t.

IV. Once we reset to x0, we take← since λ < 1 (line 7). Then, we continue to take← action (for
n2 + 1 steps) until we reach leftmost terminal state, since λ < 1 (lines 7 and 17).

V. This alternating one-sided navigation process will continue until Vt values are updated for all
the nodes right to x0 (one node at a time per one full cycle). The condition λ ≤ γ ensures
that after all the nodes right to x0 get updated with right Vt values, there will be no further
exploration on the left-side of x0. Thus, the sample complexity is given by cost(L(SELFRS =
0,EXPLOB = 1)) = n1 · (n1 + n2 + 2).

Case L(SELFRS = 1,EXPLOB = 0) This case corresponds to learning with the extrinsic reward
and intrinsic reward : R(s, a) +R(s, a). Then, we note the following:

17

I. From the analysis for the case L(1, 1), we have: E [T1] ≥ 1
pmax

= 2n1−1.

II. However, after the first successful rollout, we obtain the optimal policy (line 7) immediately
since the shaping reward (line 14) contains myopic-optimality information. Thus, the expected
sample complexity is lower bounded by E [cost(L(SELFRS = 1,EXPLOB = 0))] = E [T1] ≥
2n1−1.

Case L(SELFRS = 1,EXPLOB = 1) This case corresponds to learning with the extrinsic reward
and intrinsic reward and bonus: R(s, a) +R(s, a) +B(T (s, a)). Then, we note the following (here,
we need λ2 ≤ γn1):

I. From the analysis for the case L(1, 0), we obtain first successful trajectory after n1 + n2 + 2
steps (utmost). Then, as in the case of L(0, 1), shaping reward (line 14) will propagate myopic-
optimality information immediately. The condition λ2 ≤ γn1 ensures that after all the nodes
right to x0 get updated with right Vt values, there will be no further exploration on the left-side
of x0. Thus, the sample complexity is upper bounded by cost(L(SELFRS = 1,EXPLOB =
1)) ≤ n1 + n2 + 2.

D Evaluation on CHAIN: Additional Details (Section 4.1)

CHAIN (Figure 1). We expand on the details of the CHAIN environment, introduced in Section 4.1.
We represent the chain environment of length n1 + n2 + 1 as an MDP with state-space S consisting
of an initial location x0 (shown as “blue-circle”), n1 nodes to the right of x0, and n2 nodes to the left
of x0. The rightmost node of the chain is the “goal” state (shown as “green-star”). In the left part of
the chain, there can be a “distractor” state (shown as “green-plus”). The agent can take two actions
given by A := {“left”, “right”}. An action takes the agent to the neighboring node represented by
the direction of the action. However, taking “left” action at the leftmost node (shown as “thick-red-
circle”) leads to termination, and “right” action at the rightmost node (goal) keeps the agent at the
current location. Furthermore, when an agent takes an action a ∈ A, there is prand probability that an
action a′ ∈ A \ {a} will be executed instead of a. The agent receives rewards as follows: Rmax for
the “right” action at the goal state, Rdis for the “left” action at the distractor state, and 0 for all other
state-action pairs. There is a discount factor γ and the environment resets after a horizon of H = n2
steps. In our evaluation, we set prand = 0.05, Rmax = 1, Rdis = 0 or 0.01, and γ = 0.99. We obtain
different variants of the chain environment by changing the values of (n1, n2, Rdis). We consider
two different variants of the chain environment: (i) CHAIN0 with (n1 = 20, n2 = 40, Rdis = 0); (ii)
CHAIN+ with (n1 = 20, n2 = 40, Rdis = 0.01). The “distractor” state (shown as “green-plus”) with
Rdis reward is located 15 nodes to the left of x0 in both the environments.

Evaluation setup: agents. As mentioned in Section 4.1, we conduct our experiments with two
different types of RL agents for CHAIN: tabular REINFORCE agent [7] and tabular Q-learning
agent [7]. First, we consider tabular REINFORCE agent that maintain scores θ[s, a] for each state-
action pair and applies soft-max operation over the scores to obtain the policy π. When computing the
agent’s performance during evaluation, we also use the agent’s soft-max policy (instead of choosing
actions greedily). Second, we consider tabular Q-learning agent with exploration factor ε = 0.05.
When computing the agent’s performance during evaluation, we also use the agent’s ε-greedy policy
(instead of choosing actions greedily). Algorithm 2 provides a sketch of the overall training process,
and shows how agent’s training interleaves with reward shaping techniques – the agent’s policy
is updated in lines 4–8 of the algorithm. For the agent’s training process, we use a fixed set of
hyperparameters irrespective of the type of agent or the reward shaping technique. More concretely,
we have the following: (a) the agent’s learning rate is set to 0.1; (b) frequency of updates Nπ is set to
be 2, i.e., update after every 2 rollouts in the environment; (c) a rollout buffer (first-in-first-out) D of
size 10 is maintained and we update the agent’s policy using the last 5 rollouts in D. In the tabular
setting with CHAIN, we find that the overall quantitative results are robust to these hyperparameters –
we use the exact same set of hyperparameters for evaluation on ROOM, described in Section 4.2.

Evaluation setup: shaping techniques. Next, we describe different reward shaping techniques used
during the agent’s training phase. Specifically, during training, the agent receives rewards based on

18

the shaped reward function R̂; the performance (as reported in the plots) is always evaluated w.r.t.
the extrinsic reward function R. More concretely, we have the following shaping techniques:

• R̂ORIG := R. This serves as a default baseline where extrinsic reward function is used during
training without any shaping.

• R̂SORS’ := R + RSORS
φ . This is based on the SORS technique[26]; see additional details in

Section 2.2 (also see Footnote 2 about R̂SORS’). For CHAIN environment, we use tabular repre-
sentation for RSORS

φ and perform gradient updates as described in the work of [26]. Algorithm 2
provides a sketch of the overall training process – the RSORS

φ updates would be applied in lines
11–15 in the algorithm. In fact, the training process presented in Algorithm 2 is adapted from the
training process proposed for the SORS technique [26]. We update the intrinsic reward function
using the following hyperparameters: (a) the learning rate is set to 0.01; (b) frequency of updates
Nr is set to be 5, i.e., update after every 5 rollouts in the environment; (c) we have a rollout
buffer D of size 10 and sample a set of 10 pairs of rollouts for the gradient updates (in our
implementation, we prioritized sampling of pairs that have non-zero gap between returns).

• R̂LIRPG’ := R + RLIRPG’
φ . This is obtained via adapting the LIRPG technique of [25] to our

training pipeline; see Algorithm 2, Sections 2.2 and 3.2 (also see Footnote 3 about R̂LIRPG’).
More specifically, when considering tabular REINFORCE agent, we implemented R̂LIRPG’ as
an adaptation of R̂SELFRS where we set h → ∞ instead of 1 (see Section 3.2) – the rest of the
implementation is same as described below for R̂SELFRS. Note that the LIRPG technique is not
applicable to Q-learning agent.

• R̂EXPLOB := R+BEXPLOB
w . This corresponds to a part of our reward shaping technique which uses

only the intrinsic bonuses BEXPLOB
w . As discussed in Sections 3.1 and 3.3, we use a count-based

bonus BEXPLOB
w . For CHAIN environment, we use a tabular representation for BEXPLOB

w where w[s]
captures the state-visitation counts for a state s. Algorithm 2 provides a sketch of the overall
training process – the BEXPLOB

w updates are applied in lines 16–17 in the algorithm. We set the
hyperparameters Bmax and λ to be same as Rmax (= 1.0 for CHAIN).4

• R̂SELFRS := R+RSELFRS
φ . This corresponds to a part of our reward shaping technique which uses

only the intrinsic rewards RSELFRS
φ . For CHAIN environment, we use a tabular representation for

RSELFRS
φ where φ[s, a] reward values are learned for each state-action pair and RSELFRS

φ (s, a) :=

φ[s, a] ∀(s, a). Along with RSELFRS
φ , a tabular value-function VR,φ̃ is maintained w.r.t. R, serving

as critic to compute values V πk
R

(s) as needed for the empirical updates (see Section 3.3). For
updating VR,φ̃, we use Monte Carlo updates based on the trajectory returns as target and using
a `2-norm loss function [7]. Algorithm 2 provides a sketch of the overall training process – the
RSELFRS
φ updates are applied in lines 11–15 in the algorithm. We set the following values for

hyperparameters: (a) learning rate for updating φ parameters is set to 0.01; (b) learning rate for
updating φ̃ parameters is set to 0.01; (c) frequency of updates Nr is set to be 5, i.e., update after
every 5 rollouts in the environment; (d) we have a rollout buffer D of size 10. Furthermore, in all
our experiments with Q-learning agent, we clipped the values of φ in the range [−0.01, 0.01] (see
Section 4.3 and Appendix F for another variant of clipping used with neural agents).

• R̂EXPLORS := R+RSELFRS
φ +BEXPLOB

w . This is our exploration-guided reward shaping technique
that combines intrinsic bonuses with intrinsic rewards. Algorithm 2 provides a sketch of the
overall training process; we update RSELFRS

φ and BEXPLOB
w in the same way as described in the

previous two points above.

Note that, for stability, we update the policy more frequently than the intrinsic reward (Nπ = 2 vs.
Nr = 5) and at a higher learning rate (0.1 vs. 0.01), as considered in the work of [25, 26]. In the tabu-
lar setting with CHAIN, we find that the overall quantitative results are robust to hyperparameters men-
tioned above – we use the exact same set of hyperparameters for evaluation on ROOM in Section 4.2.

4In our implementation, we do a more fine-grained update where the counts are updated during the rollout
itself, instead of waiting for the end of the rollout. Moreoever, in our implementation, the bonus reward given for
state-action (s, a) corresponds to bonus associated with the next state s′ visited in the rollout.

19

Evaluation setup: compute resources. We ran the experiments on a cluster comprising of machines
with 3.30 GHz Intel Xeon CPU E5-2667 v2 processor and 256 GB RAM.

E Evaluation on ROOM: Additional Details (Section 4.2)

ROOM (Figure 3). The environment used in our experiments is based on the work of [54]; however,
we adapted it to have a “distractor” state (shown as “green-plus”) that could provide a small positive
reward. Next, we present additional details about the environment. We represent the environment as
an MDP with S states, each corresponding to cells in the grid-world indicating the agent’s current loca-
tion (shown as “blue-circle”). The goal (shown as “green-star”) is located at the top-right corner cell;
in the bottom-left room, there can be a “distractor” state (shown as “green-plus”) that could provide a
small positive reward. The agent can take four actions given byA := {“up”, “left”, “down”, “right”}.
An action takes the agent to the neighbouring cell represented by the direction of the action; however,
if there is a wall (shown as “brown-segment”), the agent stays at the current location. There are
also a few terminal walls (shown as “thick-red-segment”) that terminate the episode, located at the
bottom-left corner cell, where “left” and “down” actions terminate the episode. Furthermore, when
an agent takes an action a ∈ A, there is prand probability that an action a′ ∈ A \ {a} will be executed
instead of a. The agent gets a reward ofRmax after it has navigated to the goal and then takes a “right”
action (i.e., the reward can be accumulated in this state); similarly, the “up” action in the distractor
state gives a reward of Rdis. The reward is 0 for all other state-action pairs. There is a discount factor
γ and an episode terminates after H = 30 steps. The environment-specific parameters (including
prand, Rmax, Rdis, γ) are kept same as in Section 4.1, i.e., prand = 0.05, Rmax = 1, Rdis = 0 or 0.01,
and γ = 0.99. Similar to the two variants of CHAIN environment, we have two variants of this
environment: (a) ROOM0 has Rdis = 0 at the distractor state shown as “green-plus” (equivalently,
there is no distractor state); (b) ROOM+ has Rdis = 0.01 at the distractor state.

F Evaluation on LINEK: Additional Details (Section 4.3)

LINEK (Figure 4). We expand on the details of the LINEK environment, introduced in Section 4.3.
As discussed in Section 4.3, this environment corresponds to a navigation task in a one-dimensional
space where the agent has to first pick the correct key and then reach the goal. The environment used
in our experiments is based on the work of [54]; however, we adapted it to have multiple keys (only
one being correct) and “distractor” states that provide a small reward at goal locations even without
the correct key. The environment comprises of the following main elements: (a) an agent whose
current location (shown as “blue-circle”) is a point x in [0, 1]; (b) goal (shown as “green-star”) is
available in locations on the segment [0.9, 1]; (c) a set of k keys that are available in locations on the
segment [0.0, 0.1]; (d) among k keys, only 1 key is correct and the remaining k − 1 keys are wrong
(i.e., irrelevant at the goal). The agent’s initial location is sampled from [0.3, 0.4].

The agent can take four actions given by A := {“left”, “right”, “pickCorrect”, “pickWrong”}. “pick-
Correct” action does not change the agent’s location, however, when executed in locations where keys
are available, the agent acquires the correct key required at the goal; if the agent already possesses
any key, the action has no effect. “pickWrong” action does not change the agent’s location, however,
when executed in locations where keys are available, the agent acquires one of the k − 1 wrong keys
(chosen at random); if agent possesses a key, the action has no effect. A move action of type “left” or
“right” takes the agent from the current location in the direction of the move with the dynamics of the
final location captured by two hyperparameters (∆a,1,∆a,2); for instance, with current location x
and action “left”, the new location x′ is sampled uniformly among locations from (x−∆a,1 −∆a,2)
to (x−∆a,1 + ∆a,2). The agent’s move action is not applied if the new location crosses the wall,
and there is prand probability of a random action.

The agent receives rewards as follows: (a) Rmax once it has navigated to the goal location after
acquiring the correct key and then takes a “right” action (the action doesn’t terminate the episode and
reward can be accumulated); (b) Rdis after it has navigated to the goal location without acquiring the
correct key and then takes a “right” action (the action doesn’t terminate the episode and reward can
be accumulated); (c) the reward is 0 elsewhere. We have a discount factor γ and the environment
resets after a horizon of H . We set prand = 0.05, Rmax = 1, Rdis = 0 or 0.01, H = 60, γ = 0.99,
∆a,1 = 0.075, and ∆a,2 = 0.01.

20

We obtain different variants of the environment by changing the values of Rdis and number of keys
k. Similar to Sections 4.1 and 4.2, we use two adaptations of the environment: (i) LINEK0 with
(k = 10, Rdis = 0) (i.e., without any distractor state); (ii) LINEK+ with (k = 10, Rdis = 0.01) (i.e.,
with distractor states). In our experiments, we represent the environment as an MDP with S states
comprising of the following: (a) the agent’s current location (a point x in [0, 1]); (b) one bit indicating
if the agent is on a segment with keys; (c) one bit indicating if the agent is on a segment with the goal;
(d) k bits, corresponding to each of the k keys, indicating whether agent has that key or not (at most
one of these bits can be one, as the agent can acquire only one key at any point in time, according to
the transition dynamics specified above). This state representation is the input observation space for
neural networks used by our policy and intrinsic reward functions.

Evaluation setup: agents. We conduct our experiments with a neural REINFORCE agent using
a two-layered neural network architecture (i.e., one fully connected hidden layer with 256 nodes
and RELU activation) [7]. In all the experiments that used neural-network based policies for agents,
we also kept an exploration factor of ε = 0.05, i.e., the agent uses soft-max neural policy with
probability (1− ε) and chooses a random action with ε. Algorithm 2 provides a sketch of the overall
training process, and shows how agent’s training interleaves with reward shaping techniques – the
agent’s policy is updated in lines 4–8 of the algorithm. For the agent’s training process, we use a
fixed set of hyperparameters irrespective of the type of reward shaping technique or specific variant
of the environment. More concretely, we have the following: (a) the agent’s learning rate is set to
10−5; (b) frequency of updates Nπ is set to be 2, i.e., update after every 2 rollouts in the environment;
(c) a rollout buffer (first-in-first-out) D of size 10 is maintained and we update the agent’s policy
using the last 5 rollouts in D. Most of these hyperparameters are close to what we used for the
tabular REINFORCE agent in the CHAIN environment, described in Appendix D.

Evaluation setup: shaping techniques. Next, we describe different reward shaping techniques used
during the agent’s training phase. Specifically, during training, the agent receives rewards based on
the shaped reward function R̂; the performance (as reported in the plots) is always evaluated w.r.t. the
extrinsic reward function R. Similar to Section 4.1, we compare the performance of six techniques.
As a crucial difference, here we use neural-network based reward functions for R̂SORS’, R̂LIRPG’,
R̂SELFRS, and R̂EXPLORS. We provide details of the different reward shaping techniques below:

• R̂ORIG := R. This serves as a default baseline where extrinsic reward function is used during
training without any shaping.

• R̂SORS’ := R + RSORS
φ . This is based on the SORS technique [26]; see additional details in

Section 2.2 (also see Footnote 2 about R̂SORS’). Following the neural architectures used for
reward functions in [25, 26], we use the same neural-network architecture as used for the agent’s
policy – instead of using soft-max at the output layer to compute probability distribution over
actions, here we use tanh-clipping (with a scaling factor of 0.10) to get output reward values
for actions. Algorithm 2 provides a sketch of the overall training process – the RSORS

φ updates
would be applied in lines 11–15 in the algorithm. We update the intrinsic reward function using
the following hyperparameters: (a) the learning rate is set to 10−3; (b) frequency of updates Nr is
set to be 20, i.e., update after every 20 rollouts in the environment; (c) we have a rollout buffer D
of size 10 and sample a set of 10 pairs of rollouts for the gradient updates (in our implementation,
we prioritized sampling of pairs that have non-zero gap between returns).

• R̂LIRPG’ := R + RLIRPG’
φ . This is obtained via adapting the LIRPG technique of [25] to our

training pipeline; see Algorithm 2, Sections 2.2 and 3.2 (also see Footnote 3 about R̂LIRPG’). More
specifically, in our experiments, we implemented R̂LIRPG’ as an adaptation of R̂SELFRS where we
set h→∞ instead of 1 in A

πθk
R̂,h

(s, a) (see Section 3.2) – the rest of the implementation is same

as described below for R̂SELFRS. When computing A
πθk
R̂,h

(s, a) for h > 1, we need an additional
rollout to be able to compute this quantity. In our experiments with LINEK, we set h→∞ only
for the starting state of the episode and kept h = 1 for the rest of the trajectory – this helped in
reducing the computation time and variance.

• R̂EXPLOB := R+BEXPLOB
w . This corresponds to a part of our reward shaping technique which uses

only the intrinsic bonuses BEXPLOB
w . As discussed in Sections 3.1 and 3.3, we use a count-based

bonus BEXPLOB
w . For this environment, we use an abstraction that discretizes the continuous

21

location part of the state to 0.1-length segments, i.e., creating 10 segments in total; the bits used
to represent different indicator flags are then used along with these segments to represent an
abstracted state. Given this abstraction, the rest of the process and hyperparameters for updating
BEXPLOB
w are the same as discussed in Appendix D.

• R̂SELFRS := R + RSELFRS
φ . This corresponds to a part of our reward shaping technique which

uses only the intrinsic rewards RSELFRS
φ . By following the neural architectures used for reward

functions in [25, 26], we use the same neural-network architecture as used for the agent’s policy.
In particular, we use two networks for R̂SELFRS: (a) one network is used for the reward function
RSELFRS
φ that applies tanh-clipping (with a scaling factor of 0.10) instead of soft-max to get output

reward values for actions; (b) the second network is used for learning value-function VR,φ̃ that
applies a linear layer instead of a soft-max layer to obtain state-values. For updating VR,φ̃, we use
Monte Carlo updates based on the trajectory returns as target and using a `2-norm loss function [7].
Algorithm 2 provides a sketch of the overall training process – the RSELFRS

φ updates are applied
in lines 11–15 in the algorithm. We set the following values for hyperparameters: (a) learning
rate for updating φ parameters is set to 10−3; (b) learning rate for updating φ̃ parameters is set
to 5 · 10−3; (c) frequency of updates Nr is set to be 20, i.e., update after every 20 rollouts in the
environment; (d) we have a rollout buffer D of size 10.

• R̂EXPLORS := R+RSELFRS
φ +BEXPLOB

w . This is our exploration-guided reward shaping technique
that combines intrinsic bonuses with intrinsic rewards. Algorithm 2 provides a sketch of the
overall training process; we update RSELFRS

φ and BEXPLOB
w in the same way as described in the

previous two points above.

We update the policy more frequently than the intrinsic reward (Nπ = 2 vs. Nr = 20), as considered
in the work of [25, 26]. Moreover, for the first 5000 episodes of training, we do not supply intrinsic
reward signals from neural network components of R̂SORS’, R̂LIRPG’, R̂SELFRS, or R̂EXPLORS (even
though we keep updating their neural network components as usual) – this helps in preventing
spuriourous reward signals associated with initialization of neural networks.

22

	1 Introduction
	2 Problem Setup
	2.1 General Framework of Online Reward Shaping
	2.2 Existing Techniques and Issues

	3 Exploration-Guided Reward Shaping
	3.1 Our Reward Formulation
	3.2 Derivation of Gradient Updates for R
	3.3 Empirical Updates and Practical Aspects
	3.4 Theoretical Analysis

	4 Experimental Evaluation
	4.1 Evaluation on Chain
	4.2 Evaluation on Room
	4.3 Evaluation on LineK

	5 Concluding Discussions
	6 Acknowledgments
	A Table of Contents
	B Derivation of Gradient Updates for R: Proof (Section 3.2)
	C Theoretical Analysis: Proof (Section 3.4)
	D Evaluation on Chain: Additional Details (Section 4.1)
	E Evaluation on Room: Additional Details (Section 4.2)
	F Evaluation on LineK: Additional Details (Section 4.3)

