
Hierarchical Channel-spatial Encoding for
Communication-efficient Collaborative Learning

Qihua Zhou1, Song Guo1∗ , Yi Liu1, Jie Zhang1, Jiewei Zhang1,
Tao Guo1, Zhenda Xu1, Xun Liu1, Zhihao Qu2

1Department of Computing, The Hong Kong Polytechnic University
2School of Computer and Information, Hohai University
{csqzhou,csyiliu,csjwzhang}@comp.polyu.edu.hk

{jieaa.zhang,cocotao.guo,jackal.xu,compxun.liu}@connect.polyu.hk
song.guo@polyu.edu.hk, quzhihao@hhu.edu.cn

Abstract

It witnesses that the collaborative learning (CL) systems often face the performance
bottleneck of limited bandwidth, where multiple low-end devices continuously
generate data and transmit intermediate features to the cloud for incremental
training. To this end, improving the communication efficiency by reducing traffic
size is one of the most crucial issues for realistic deployment. Existing systems
mostly compress features at pixel level and ignore the characteristics of feature
structure, which could be further exploited for more efficient compression. In
this paper, we take new insights into implementing scalable CL systems through
a hierarchical compression on features, termed Stripe-wise Group Quantization
(SGQ). Different from previous unstructured quantization methods, SGQ captures
both channel and spatial similarity in pixels, and simultaneously encodes features
in these two levels to gain a much higher compression ratio. In particular, we
refactor feature structure based on inter-channel similarity and bound the gradient
deviation caused by quantization, in forward and backward passes, respectively.
Such a double-stage pipeline makes SGQ hold a sublinear convergence order as the
vanilla SGD-based optimization. Extensive experiments show that SGQ achieves a
higher traffic reduction ratio by up to 15.97× and provides 9.22× image processing
speedup over the uniform quantized training, while preserving adequate model
accuracy as FP32 does, even using 4-bit quantization. This verifies that SGQ can
be applied to a wide spectrum of edge intelligence applications.

1 Introduction

Recent years have seen great prospects of deploying vision tasks on tiny edge devices by using
their always-on microprocessors, embedded sensors and neural chips. Considering the realistic
environment that new data is continuously generated on user devices that cannot be aggregated at
once due to the privacy and energy concerns, it comes to the rise of collaborative learning (CL)
paradigm [1, 22, 15]. Considering the resource constraints in CL systems, it is expected to partition
the models between multiple edge devices and the cloud, and coordinate the two sides during the
training procedure [32, 7]. In the forward pass of CL, the shallow cut layers deployed on edge devices
are used for low-level feature extraction and the intermediate features will be transmitted to cloud for
the subsequent processing on deep remaining layers. Also, in the backward pass, the cloud returns
the derivative flows of the transmitted features to the devices for model updating. By adopting such a
learning paradigm, devices can update parameters and evolve models continuously.

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

C
h

a
n

n
el

 (
C

)

Structured Stripe-wise Unstructured Pixel-wise

Feature Size = W*H*C

C=1

Figure 1: Visualization of the structured stripe-wise quantization (the left, ours, maintaining 4-channel
structure) v.s. the unstructured pixel-wise quantization (the right, e.g., UQ [42, 14, 41], flattening
original structure as 1 channel), which are with the 3× 3 and 6× 6 pixel plane, respectively. The
batch size is set as 1 for illustration convenience.

Prior work and limitations. In general, deploying an efficient CL system needs to address com-
munication deficiency caused by limited bandwidth [15, 27], where reducing feature size is the key
to improve communication performance. Existing communication-optimized methods, including
progressive model slicing (e.g., CLIO [12]), matrix factorization (e.g., Poseidon [37]) and top-k filter
(e.g., Async-opt [3]), either hold an insufficient traffic reduction ratio or may degrade the model
accuracy if compressing features. Besides, existing quantization methods cannot directly be adopted
to feature compression as they are specifically designed for weights [19, 42, 38] or activations [4],
which hold different distribution characteristic from the features [8]. Simply applying these methods
cannot fundamentally reduce feature size as verified by our experiments (see §4.3), which is not
applicable to realistic CL systems. This motivates us to design a new quantization scheme that
provides a desired compression ratio on feature maps while not sacrificing the model quality.

Observations and challenges. Actually, the feature regions often hold specific pixel similarity
across channels when the kernels aim at extracting interrelated features, especially in shallow layers
[8, 23, 40, 26, 2]. We could leverage this property to quantize each pixel along all the channels in
a structured manner (i.e., the stripe wise in Figure 1), rather than the “flat” perspective (i.e., the
pixel wise in Figure 1) of Uniform Quantization (UQ) [42, 14, 41]. However, by analyzing the value
distribution of each channel inside the feature, we observe that some channels hold quite different
features when the corresponding filters are orthogonal to each other. This indicates that simply
adopting the vanilla Product Quantization (PQ) [30, 5] along the whole channel dimension will
introduce a significant representation error on features and finally degrade the model accuracy. We
need to reorganize the features into groups based on their channel-level similarity, instead of treating
the features as a whole or roughly partitioning them into successive subsets. Therefore, capturing
such channel-dimension structured information is the key to fundamentally compress feature size,
which is often omitted by conventional quantization methods designed for parameters, activations or
gradients. As to each group, we need to find a collection of representative pixels, each of which can
replace other pixels similar to it.

Our solution. We achieve the above target by proposing the Stripe-wise Group Quantization (SGQ,
§2.1) method, which captures both channel and spatial-level similarity in pixels, and hierarchically
encodes the features in these two levels to achieve a much higher compression ratio. Specifically, we
introduce the Channel-attention Grouping (CAG, §2.2) block to measure the per-channel significance
and reorganize the entire features along the channel dimension into several groups, each of which
holds similar inter-channel texture and pixel intensity reflected by channel significance. In each
group, we employ K-means to divide the feature maps into several clusters based on pixel similarity
along the stripe (i.e., vector) and represents all the pixels belonging to each cluster by its centroid.
As all the pixels are clustered along the channel dimension simultaneously, more volume of the
features can be quantized over the conventional unstructured pixel-wise quantization, yielding a
much smaller pixel plane. Thus, given the same quantization bits, SGQ could achieve a higher
compression ratio, especially for features with a large channel number, which is common in modern
CNNs. For example, as to the 4-channel 3× 3 feature map shown in Figure 1, SGQ provides a 4×
higher compression ratio over the unstructured pixel-wise UQ using same quantization bits. We
implement our idea into a novel CL framework, which could automatically insert the SGQ block
into different models and adjust clustering hyper-parameters according to model characteristics in

2

Device Side:

Cut Layers

Original Features K-means
Clustering

Channel-attention

Grouping

Channel
Attention

Feature Groups

Quantized
Features

Encoding

Stripe-wise Group

Quantization

Forward Pass

Backward Pass
Cloud Side:

Remaining
Layers

Gradient

Calibration

Code&Codebook

Derivative Flows

Figure 2: The overview of our framework across edge devices and the cloud.

the forward pass. To preserve model accuracy, we also design the Gradient Calibration (GC, §2.3)
module to adjust the corresponding gradients of quantized features and CAG block in the backward
pass, which holds a sublinear convergence order as the vanilla SGD. This double-pass pipeline makes
SGQ a communication-efficient method to enable model evolution on multiple edge devices without
sacrificing much model accuracy as the FP32 training.

Advantages and contributions. Evaluation based on NVIDIA Jetson Nano [24] and HUAWEI
Atlas 200DK [13] shows that SGQ could effectively alleviate the communication overhead for
feature transmission and provide comparable model quality as the original FP32 training, supporting
various CNN models. Thus, SGQ can serve as a lightweight module for the resource-constrained CL
environments. Overall, the key contributions of our work are as follows:

• Scalable collaborative learning framework: We propose a scalable CL framework that
enables model evolution on multiple edge devices and match the requirements of continuous
analytics. It will be open-source2 and will support commodity edge devices (e.g., NVIDIA
Jetson Nano and HUAWEI Atlas 200DK), thus can be easily deployed in realistic scenarios.

• General feature compression method: We address the communication bottleneck by
capturing the structured pixel similarity in both channel and spatial levels, and propose the
SGQ method (§2.1) to hierarchically encode the features in these two levels for a much
higher compression ratio over existing methods. SGQ can serve as a general quantization
block supporting different CNN models, without sacrificing much model accuracy as the
FP32 training.

• Efficient convergence order: We formulate the impact of quantized features on the training
process and present the theoretical analysis to bound the gradient deviation in backward
pass, making SGQ-based training holds a sublinear convergence order (§3) as the vanilla
SGD algorithm.

To the best of our knowledge, the proposed SGQ is the first general traffic reduction method exploiting
the quantization feasibility in both spatial and channel levels for building communication-efficient
CL systems. It achieves a much higher feature compression ratio over the pertinent existing methods
while not sacrificing model accuracy even in 4 bits, thus providing great advantages for real-world
implementation. We believe SGQ could constantly contribute to the further development of edge
intelligence applications.

2 Methodology

The key of our collaborative learning framework is to quantize feature maps for traffic reduction and
fetch the corresponding gradients for model updating in forward and backward passes, respectively.
As shown in Figure 2, this target is resolved by the Stripe-wise Group Quantization (SGQ) based on
Channel-attention Grouping (CAG) block and the Gradient Calibration (GC) method.

2Source codes will be shared at Github after the double-blind review.

3

2.1 Stripe-wise Group Quantization

SGQ is used for compressing the feature map size at the end of device’s cut layers by converting the
FP32 values to low-bit format (e.g., INT8). It contains two key steps: (1) feature discretization and
(2) pixel encoding.

Step #1: Feature discretization. In this step, all the pixels of the feature maps belonging to a same
group are categorized into several clusters, which transfers the “continuous” FP32 values to the
discrete ones. The number of clusters is called the quantization level and directly impacts the data
representation precision. Pixels will be covered by 2n clusters if we use the n-bit quantization, where
n is usually set as 8 or 4.

This procedure can be handled by the K-means clustering under given bits. Considering the computa-
tional overhead of K-means, we need to downsamples the feature maps first and generate the K-means
clustering model based on these samples, instead of the whole feature maps. Thus, the overhead can
be restricted within 6% of the forward pass time by using the suggested 4-bit quantization (details are
in §4.5). Given the feature maps X = {x1,x2, · · · ,xm} generated at the end of device’s cut layers,
we categorize X into k (k = 2n) clusters {c1, c2, · · · , ck}, where each xi is a pixel of X and the
corresponding clustering centroid matrix is U = {u1,u2, · · · ,uk}. Therefore, the cost function of
K-means clustering can be formulated as:

J =

m∑
i=1

k∑
j=1

ri,j∥xi − uj∥22, ri,j ∈ Rm×k, (1)

ri,j =

{
1, xi ∈ cj ,

0, else.
(2)

where R is the pixel mapping matrix generated by K-means clustering, reflecting whether xi belongs
to cj . For each pixel xi, we can calculate its clustering centroid yi as:

yi = argmin
j∈{1,2,··· ,k}

∥xi − uj∥2. (3)

By restricting the partial derivatives of Eq. (1) as 0, we can figure out the latest centroids as:

uk =

∑m
i=1 ri,kxi∑m
i=1 ri,k

. (4)

The above procedure will repeat until all the centroids are stable enough to form the clustering model
and we finally formulate the feature discretization as Ym×1 = D(Xm×C), where D represents the
discretization function that maps each pixel xi to the one-hot cluster label yi (yi ∈ Y).

Step #2: Pixel encoding. This step represents each pixel by the centroid of the cluster it belonging
to, such that all the pixels are encoded as the unique index of the corresponding clustering centroid,
which can be covered by n bits. The entire feature maps is compressed to n

32 of the original FP32
size. For brief, such encoding procedure that reflects the mapping function between the original pixel
and the centroid is called the codebook.

This procedure can be handled by a series of matrix transformation. Given the pixel mapping matrix
Rm×k and the clustering centroid matrix U, each row rj of the pixel mapping matrix R represents
the cluster label of yj in the one-hot form. Therefore, we can get the transformation relation between
Ym×1 and Rm×k as R = onehot(Y). Then, the pixel encoding process can be formulated as:

Q(xi) =

k∑
j=1

ri,juj ,xi ∈ X, (5)

Q(X) = R ·U = onehot(Y) ·U. (6)

By approximating the one-hot Y via the softmax function, we can get each encoded pixel x̂i as:

x̂i = Q(xi) =

∑k
j=1 uje

−(xi−uj)(xi−uj)
⊤∑k

j=1 e
−(xi−uj)(xi−uj)⊤

, x̂i ∈ Q(X). (7)

4

where the distance between xi and ui is minimized. In summary, the above two steps constitute the
basic function of SGQ and we can get the final quantized feature map Q(X).

Traffic analysis. Different from the existing quantization methods that flats the entire feature maps
and conduct quantization in the pixel wise, SGQ quantizes all the pixels along with the channel
dimension (i.e., the stripe wise), thus providing a much higher compression ratio of feature maps.
As shown in Figure 1, we make a comparison of the traffic size by using conventional Uniform
Quantization (UQ) [42, 20, 14] and SGQ, under the same quantization bits.

As the original model is split between edge devices and the cloud, the cloud needs both quantized
feature maps and codebook to recover the intermediate results generated by the cut layers, so as
to promote the computation of remaining layers. The major network traffic is dominated by the
quantized feature maps and codebook. Note that the codebook is still represented in the FP32 data
format while the quantized feature maps only requires n bits. Given G groups, each of which holds
Ci channels, the traffic size SSGQ by using SGQ can be described as:

SSGQ =

G∑
i=1

(n ·WH︸ ︷︷ ︸
feature

+32 · 2n · Ci︸ ︷︷ ︸
codebook

), (8)

where W , H represent the with and height of the pixel plane, respectively. Correspondingly, the UQ
can be regarded as a special version that entire feature map is flatted as 1 channel, thus the traffic size
SUQ based on UQ is described as:

SUQ = n ·WH ·
G∑
i=1

Ci︸ ︷︷ ︸
feature

+ 32 · 2n︸ ︷︷ ︸
codebook

. (9)

To make SGQ generate less traffic size, we require SSGQ < SUQ and this inequation can be simplified
as:

n ·WH

2n+5
>

∑G
i=1 Ci − 1∑G
i=1 Ci −G︸ ︷︷ ︸

≈1

. (10)

As G is usually far smaller than
∑G

i=1 Ci in practice, Eq. (10) is easy to satisfy in common CNN
models. For example, if we cut ResNet18 at CONV1 with 4-bit and 10-group SGQ, we will have
the quantitative relation that 4×112×112

29 ≫ 64−1
64−10 . Therefore, SGQ can provide a much higher

compression ratio over conventional UQ, thus effectively reducing traffic size of feature transmission.

2.2 Channel-attention Grouping Block

Recall that SGQ makes feature discretization based on K-means clustering, which closely replies
on the distance measurement between pixels. Actually, not all channels are equally important to the
representation of feature maps. Assigning each channel with equal distance weighting cannot well
capture the characteristics of the entire feature map. A natural idea is to precisely reflect per-channel
significance and “pay attention” to the most significant channels for more efficient clustering. More
seriously, channels may hold similar texture or orthogonal to each other. Simply conducting the
vanilla Product Quantization (PQ) [30, 5] to pixels along the channel dimension will introduce
a significant representation error because it is hard or even impossible for PQ to find the proper
cluster centroids that can replace other pixels, thus finally degrading the model accuracy. We need
to reorganize the features into groups based on their channel-level similarity, instead of treating the
features as a whole or roughly partitioning them into successive subsets.

Consequently, we design the Channel-attention Grouping (CAG) block to capture the channel-
dimension structured information for more precise clustering. As shown in Figure 2, the key of CAG
block is to form a one-dimension vector with C elements, each of which represents the distance
weighting of corresponding channel. This function can be abstracted as a series of affine transforma-
tion A(X) that converting the original feature maps into the C-element channel significance vector
V1×C , i.e., V = A(X).

5

In practice, we could employ a two-layer fully-connected network to approximate this procedure,
which is inspired by the self-attention mechanism [6, 34, 11, 35]. At beginning, we use common
downsampling methods (e.g., AVG pooling) to shrink each channel of the feature map into one pixel,
thus the feature map is compressed as a C-element vector V1×C . Then, the two-layer fully-connected
block conducts an affine transformation to extract channel-level significance and the transformed
vector V represents the distance weighting of each channel. We can use this vector to adjust the
distance measurement for K-means, which is described as:

m∑
i=1

k∑
j=1

vi · ri,j∥xi − uj∥22, vi ∈ V. (11)

Consequently, the CAG block helps SGQ extract the most informative channels and preserves the
spatial characteristics of feature maps after pixel encoding.

2.3 Gradient Calibration

As the feature maps generated by the cut layers have been quantized in the forward pass, we need to
adjust the corresponding derivative flows in the backward pass, so as to figure out the correct gradients
of both feature maps and CAG block for preserving model convergence. We achieve this target by
designing the Gradient Calibration (GC) module. The theoretical analysis of model convergence by
employing GC module will be discussed in §3. Here, we will highlight the gist of how GC works to
feature maps and CAG block, respectively.

Gradients of quantized feature maps. Based on the formulation of SGQ function in Eq. (7), we can
calculate the theoretical gradients of quantized feature maps as:

∂Q(xi)

∂xi
=

2
∑k

j=1

∑k
l=1 u

⊤
j (uj − ul)pjpl∑k

j=1

∑k
l=1 pjpl

, (12)

≈ 2x̂i ·U+ ·Uo − 2x̂⊤
i · x̂i (13)

where pj = e−(xi−uj)(x−uj)
⊤

and U+ is the pseudoinverse of U. Note that Uo is the dot product
matrix, where the i-th element is u⊤

i ui. As the dot product of clustering centroid matrix ui may
introduce extra computational overhead in Eq. (13), we can store these clustering matrices and
conduct the calculation on the cloud side. Then, the cloud only needs to return the intermediate
derivative flow of ∂Q(xi)

∂xi
to edge devices during the backward pass, which will not yield much traffic.

Full derivation of Eq. (13) is in the supplementary material of § B.

Gradients of CAG block. The CAG block serves as an independent branch to measure the channel-
level significance and the transformed vector V is merged to the SGQ method for distance calculation.
Therefore, the gradient calculation of CAG block involves the operations of branch merging and
duplication. Based on the derivative flow generated by the backward pass of quantized feature maps,
the gradients of branch merging is described as:

∂A(X)

∂X
=

∂A(X)

∂Q(X)
· ∂Q(X)

∂X
= V ∗ ∂Q(X)

∂X
, (14)

where ∗ denotes the element-wise multiplication that broadcasts each vi ∈ V to the corresponding
position of ∂Q(X)

∂X . Also, the gradients of branch duplication can be regarded as the sum of derivative
flows. Thus, the final gradients of CAG block is described as:

∂A(X)

∂X
= V ∗ ∂Q(X)

∂X
+

∂Q(X)

∂X
. (15)

Note that CAG block only holds a slight computational overhead (less than 2%) in both forward and
backward passes. The detailed analysis will be discussed in §4.5.

3 Convergence Analysis

Theorem 1. Assuming each pixel follows ||x||2 ≤ B, the upper bound of the approximate gradients
can be described as ||∂Q(x)

∂x ||2 ≤ 2B2. Meanwhile, given m pixels and C channels, the upper bound

6

Figure 3: Comparison of convergence curves using different benchmarks and baselines.

Table 1: Summary of average model accuracy (%) using 4-bit compression, compared with FP32.
Method VGG11, FM MobileNet-V1, CF10 ResNet34, MI ShuffleNet-x1.0, MI

FP32 (Upper Bound) 97.55 94.74 80.31 78.73
UQ 95.12 92.41 36.89 53.15
PQ 95.94 92.67 69.61 70.16
CLIO 21.02 19.16 13.06 11.10
SGQ 96.57 93.45 74.37 74.86

of real gradients is described as C
m ≤ ||gx||2 ≤ C. Therefore, the approximate gradients generated

by GC follows ||∂Q(x)
∂x ||2 ≤ 2B2m

C ||gx||2.

Theorem 1 indicates that the ℓ2−norm of the gradient derived under quantized feature map is bounded
by the product of a constant and the ℓ2−norm of the original gradient. Under the widely applied
assumption of bounded gradient and the conclusion of Doublesqueeze [31, 29], the proposed SGQ
approach holds the same convergence order as the SGD method without quantization on feature maps.
The detailed proof can be found in the supplementary material of § C.

4 Experiments

4.1 Experiment Setting

Devices. To match the edge environment, we evaluate SGQ on two types of devices: (1) NVIDIA
Jetson Nano series [24], and (2) HUAWEI Atlas 200DK [13], both of which are connected to the
NVIDIA RTX 2080Ti server through 10GbE network.
Benchmarks. Our benchmarks are image classification tasks based on the training of AlexNet [18],
VGG-11 [28], ResNet-18/34 [9], ShuffleNet-V2-1.0x/0.5x [21], and MobileNet-V1 [10], with the
CIFAR-10/100 (CF10/100) [17], Fashion MNIST (FM) [36] and mini-ImageNet (MI) [33] datasets.
As to MI, the batch size is 32 with the SGD optimizer. As to CF and FM, the batch size is 100 with
the Adam [16] optimizer. All of these benchmarks are implemented via PyTorch-1.7.1 [25].
Baselines. We inspect the proposed SGQ method with four pertinent baselines: (1) the vanilla
full-precision training (FP32), (2) the uniform quantization (UQ) [42], (3) the product quantization
(PQ) [30] and (4) the progressive-slicing CLIO [12], which uses the top n

32 slices corresponding to
the same compression ratio of n-bit UQ. Note that our SGQ under same representation bits provides
a much higher compression ratio over n

32 . The details of traffic saving are in §4.3.

4.2 Convergence Efficiency

We inspect the training convergence curves of SGQ and other baselines. As shown in Figure 3, we can
observe that SGQ (red) achieves the highest accuracy over other baselines using different benchmarks,
verifying SGQ is a general feature compression method and can be applied to the training of most
CNNs. Even training on the small-scale FM and CF10 datasets, the CLIO-based training (gray)
cannot converge under the same compression ratio, although its Top-k like variants are widely
used for compressing parameters and gradients in distributed model training. This phenomenon
indicates that simply dropping a certain proportion of pixels or channels in feature maps will cause
significant information loss and finally destroys the training convergence. Meanwhile, UQ (green)
cannot preserve an acceptable model accuracy when training on the large-scale MI datasets, with
severe fluctuation along the epochs. This is because UQ needs to flat the entire feature maps before

7

quantization, thus losing the spatial characteristics of the pixels among different channels. Inversely,
both SGQ and PQ (pink) can maintain good model accuracy as their quantization schemes well
maintain the feature structure after pixel encoding. However, our SGQ achieves a faster convergence
rate and holds higher model accuracy over the PQ method, because the channel-agnostic PQ cannot
capture the difference of orthogonal channels and roughly quantizing features via successive division
will introduce quantization errors. For a more straightforward comparison, we summarize the average
model accuracy of different method using the same compression ration of 4 bits in Table 1. It is
clear that SGQ outperforms other baselines in different training configurations and does not much
sacrifice the model accuracy as FP32 does. Remarkably, Figure 3 and Table 1 only display the results
of 4-bit training, our SGQ method can also achieve good training performance even in extremely low
quantization bits (e.g., 3 bits), which well matches the resource constraints of edge devices.

4.3 Traffic Saving

4 5 6 7 8
Quantization Bits

0

10

20

30

40

50

60

Tr
a

 ic
 R

ed
uc

tio
n

Ra
tio

FM, AlexNet, C:384, B:32
W.r.t. FP32
W.r.t. CLIO
W.r.t. UQ
W.r.t. PQ

4 5 6 7 8
Quantization Bits

0

10

20

30

40

50

Tr
af

fic
 R

ed
uc

tio
n

Ra
tio

CF100, VGG11, C:256, B:100
W.r.t. FP32
W.r.t. CLIO
W.r.t. UQ
W.r.t. PQ

4 5 6 7 8
Quantization Bits

0

5

10

15

20

25

Tr
af

fic
 R

ed
uc

tio
n

Ra
tio

MI, ResNet18/34, C:128, B:32
W.r.t. FP32
W.r.t. CLIO
W.r.t. UQ
W.r.t. PQ

4 5 6 7 8
Quantization Bits

0
5

10
15
20
25
30
35

Tr
af
fic
 R
 d

uc
tio

n
Ra

tio

MI, Shuffl N t-x1.0, C:120, B:32
W.r.t. FP32
W.r.t. CLIO
W.r.t. UQ
W.r.t. PQ

Figure 4: Average traffic reduction ratio by using SGQ.

As shown in Figure 4, by presenting two pertinent cases, we highlight SGQ’s traffic reduction ratio,
over the FP32 training, CLIO (using top 25% slices) and UQ, where

Traffic Reduction Ratio =
Baselines′s Traffic

SGQ′s Traffic
.

We did not compare the results under 2 and 3 bits because UQ and CLIO cannot achieve stable model
accuracy in such configuration. With the hierarchical channel-spatial encoding, SGQ can compress
feature maps more efficiently, thus providing prominent traffic reduction ratios over the baselines.
Specifically, we can observe that SGQ’s reduction ratio increases when (1) using lower quantization
bits (e.g., 4 bits), (2) cutting at layers with more channels (e.g., C:256), and (3) using larger batch size
(e.g., B:100). In these three cases, the feature maps follow the long strip shape, where conducting
channel-level clustering based on lower bits will yield smaller quantized features and corresponding
codebook, thus significantly reducing the traffic size for transmitting feature maps. However, UQ
cannot quantize the pixels along the channel dimension simultaneously, limiting its effectiveness of
realistic deployment. Such a degree of reduction ratio makes SGQ an adequate feature compression
method for the low-bandwidth edge environment. Overall, the superiority of SGQ over existing
methods can be quickly understood by checking the results in Figure 5. SGQ explicitly outperforms
existing methods by achieving better trade-off between model accuracy and traffic size.

10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

SGQ

PQ

UQ

CLIO

VGG11, FM

Traffic Size (MB)

Ac
cu

ra
cy

 (%
)

10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30

SGQ

PQ

UQ

CLIO

MobileNet-V1, CF10

Traffic Size (MB)

Ac
cu

ra
cy

 (%
)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

SGQ

PQ

UQ

CLIO

ResNet34, MI

Traffic Size (MB)

Ac
cu

ra
cy

 (%
)

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

SGQ

PQ

UQ

CLIO

ShuffleNet-x1.0, MI

Traffic Size (MB)

Ac
cu

ra
cy

 (%
)

Figure 5: SGQ significantly outperforms existing methods in both model accuracy and traffic size.

4.4 Ablation Study

Impact of quantization bits. We also compare the final model accuracy of SGQ by using different
quantization bits and training benchmarks in Figure 6. As the quantization bits directly impact

8

2 3 4 5 6
Quantization Bits

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CF10, Batch:100

AlexNet
VGG11
ResNet18
MobileNet-V1

2 3 4 5 6
Quantization Bits

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

MI, Batch:32

ResNet18
ResNet34
ShuffleNet-1.0x
ShuffleNet-0.5x

0 20 40
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

VGG11, CF

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

0 20 40
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MobileNet-V1, CF

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

Figure 6: Average model accuracy by using different bits, where the 4-bit configuration is recom-
mended for SGQ’s deployment in practice. The detailed convergence curves of each model under
different bits are provided in the supplementary material of § D.

the cluster numbers in feature discretization, lower bits will lead to more accuracy degradation. In
most cases, SGQ achieves acceptable accuracy under different bits, even for the 2-bit training. (e.g.,
MobileNet and ShuffleNet). This property makes SGQ can effectively save traffic size for transmitting
feature maps. Note that the training quality is also related to the splitting position of cut layers.
Generally, given the same quantization bits, cutting at the shallower layers holding relatively larger
feature section (i.e., the product of width and height) but smaller channel number can achieve higher
model accuracy. However, in the extreme case that features are with wide channels (e.g., 512) while
with small pixel plane (e.g., 4× 4), SGQ’s performance may degrade as there is not enough clustering
space to conduct feature discretization. Although we can reshape the feature maps to reduce channels
and expand the pixel plane, the compression ratio of feature size will also decrease. As the 4-bit SGQ
is sufficient to reduce communication traffic while maintaining good model accuracy, we recommend
to use this as the default training configuration in practice.

FP32 4-bit SGQ 4-bit PQ

Figure 7: The heat maps of the output features generated by different training schemes, which
highlight the class-discriminative regions of model’s prediction results.

Visualization of quantized features. Based on the training of ShuffleNet-1.0x with mini-ImageNet
under different baselines, we employ the Grad-CAM++ [2] method to generate the heat maps of
output features and inspect which feature regions impact the model’s decision most. As shown in
Figure 7, we can observe that SGQ holds a compact heat map as FP32 does, with similar texture and
focal points. However, PQ’s heat map skews far away from FP32’s focal points with fuzzy texture.
This indicates that SGQ can correctly localize significant regions while PQ may make mistakes, thus
achieving a higher model accuracy over PQ.

4.5 System Overhead

Table 2: Average system overhead proportion (%) of computational time in different SGQ modules.
Bits SGQ CAG’s FP CAG’s BP GC Total

8 bits 31.93 1.09 1.88 8.67 43.57
6 bits 14.86 1.06 1.76 4.51 22.19
4 bits (Suggested) 5.51 1.05 1.75 1.62 9.89
2 bits 4.12 1.04 1.73 1.24 8.14

9

Controlling system overhead is also a crucial issue to deploy SGQ on realistic edge devices. As
shown in Table 2, we inspect the overhead proportion (%) of computational time cost in different
modules during the training procedure. SGQ is the most fundamental module in the forward pass,
where the vanilla K-means clustering dominates the computational time. By employing the pixel
sampling based on average pooling, we could restrict the overhead proportion within 5.51% when
using the suggested 4-bit quantization. Meanwhile, by employing softmax-based approximation and
affine transformation, the overhead of GC module is well bounded within 1.62% during backward
pass. Note that the CAG block involves both forward and backward passes as its FC layers requires
parameter updating. CAG block holds slight overhead in these two stages and is independent to
quantization bits, thus providing a good extensibility to general CNN models. Based on the three
modules, the total overhead of SGQ is controlled in an acceptable range that matches the on-device
computational capacities. In practice, we suggest using 4-bit quantization to make a balance between
system overhead and model accuracy. In such setting, our SGQ method could improve the image
processing speed (images/sec) and achieve good speedup from 9.22× to 11.37×, on average, over
the baselines.

5 Conclusion

This work develops new insights into traffic saving to build a communication-efficient collaborative
learning paradigm. Unlike previous methods aiming at improving bandwidth utilization or using
an unstructured pixel-wise compression, we jointly capture the channel and spatial-level feature
redundancy, and conduct a hierarchical compression in these two levels to achieve a much higher
traffic reduction ratio. Specifically, we propose the Stripe-wise Group Quantization (SGQ) method
to better leverage the pixel similarity by reorganizing the features into groups based on channel
significance, handled by the Channel-attention Grouping (CAG) block in forward pass. Meanwhile,
we calibrate the gradients of quantized features with a comprehensive theoretical analysis of the
convergence rate. Evaluations show that SGQ provides a significant traffic reduction over existing
methods while not sacrificing much model accuracy under different quantization bits, achieving good
training flexibility and communicational efficiency. We believe SGQ can contribute to the further
development of edge intelligence applications.

6 Acknowledgements

This research was supported by fundings from the Key-Area Research and Development Program
of Guangdong Province (No. 2021B0101400003), Hong Kong RGC Research Impact Fund (No.
R5060-19), General Research Fund (No. 152221/19E, 152203/20E, and 152244/21E), the National
Natural Science Foundation of China (61872310), and Shenzhen Science and Technology Innovation
Commission (JCYJ20200109142008673).

References
[1] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for

efficient on-device learning. In Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[2] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N. Balasubramanian.
Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks.
In Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pages
839–847. IEEE Computer Society, 2018.

[3] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Józefowicz. Revisiting distributed
synchronous SGD. arXiv preprint, abs/1604.00981, 2016.

[4] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi
Srinivasan, and Kailash Gopalakrishnan. PACT: parameterized clipping activation for quantized
neural networks. arXiv preprint, abs/1805.06085, 2018.

[5] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint, abs/1412.6115, 2014.

10

[6] Jingcai Guo, Shiheng Ma, Jie Zhang, Qihua Zhou, and Song Guo. Dual-view attention
networks for single image super-resolution. In Proceedings of ACM International Conference
on Multimedia (MM), pages 2728–2736, 2020.

[7] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple
agents. J. Netw. Comput. Appl., 116:1–8, 2018.

[8] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More
features from cheap operations. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1577–1586. IEEE, 2020.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[10] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint, abs/1704.04861, 2017.

[11] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 7132–7141, 2018.

[12] Jin Huang, Colin Samplawski, Deepak Ganesan, Benjamin M. Marlin, and Heesung Kwon.
CLIO: enabling automatic compilation of deep learning pipelines across iot and cloud. In Pro-
ceedings of Annual International Conference on Mobile Computing and Networking (MobiCom),
pages 58:1–58:12, 2020.

[13] HUAWEI. Atlas 200dk ai developer kit. https://e.huawei.com/us/products/
cloud-computing-dc/atlas/atlas-200, 2020.

[14] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2704–2713, Salt Lake City, USA, 2018.

[15] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor N. Mudge, Jason Mars, and
Lingjia Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge.
In Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 615–629, 2017.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations (ICLR), San Diego, USA, 2015.

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto,
2009.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), pages 1106–1114, Lake Tahoe, USA, 2012.

[19] Yue Li, Wenrui Ding, Chunlei Liu, Baochang Zhang, and Guodong Guo. TRQ: ternary neural
networks with residual quantization. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 8538–8546. AAAI Press, 2021.

[20] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient
non-uniform discretization for neural networks. In Proceedings of the International Conference
on Learning Representations (ICLR), Addis Ababa, Ethiopia, 2020.

[21] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: practical guidelines
for efficient CNN architecture design. In Proceedings of the European Conference on Computer
Vision (ECCV), volume 11218 of Lecture Notes in Computer Science, pages 122–138. Springer,
2018.

11

https://e.huawei.com/us/products/cloud-computing-dc/atlas/atlas-200
https://e.huawei.com/us/products/cloud-computing-dc/atlas/atlas-200

[22] Bradley McDanel, Sai Qian Zhang, H. T. Kung, and Xin Dong. Full-stack optimization for
accelerating cnns using powers-of-two weights with FPGA validation. In Proceedings of the
ACM International Conference on Supercomputing (ICS), pages 449–460, Phoenix, USA, 2019.

[23] Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, and Xing Sun.
Pruning filter in filter. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[24] NVIDIA. Jetson nano developer kit. https://developer.nvidia.com/embedded/
jetson-nano-developer-kit, 2021.

[25] PyTorch. Pytorch: An open source machine learning framework. https://pytorch.org/,
2021.

[26] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. In Proceedings of IEEE International Conference on Computer Vision (ICCV),
pages 618–626. IEEE Computer Society, 2017.

[27] Wenqi Shi, Yunzhong Hou, Sheng Zhou, Zhisheng Niu, Yang Zhang, and Lu Geng. Improving
device-edge cooperative inference of deep learning via 2-step pruning. In Proceedings of IEEE
Conference on Computer Communications (INFOCOM), pages 1–6, 2019.

[28] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Proceedings of the International Conference on Learning Representations
(ICLR), San Diego, USA, 2015.

[29] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory.
In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pages
4452–4463, 2018.

[30] Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit
goes down: Revisiting the quantization of neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 2020.

[31] Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel
stochastic gradient descent with double-pass error-compensated compression. In Proceedings
of the International Conference on Machine Learning (ICML), volume 97, pages 6155–6165,
2019.

[32] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit Camtepe. Splitfed: When
federated learning meets split learning. arXiv preprint, abs/2004.12088, 2020.

[33] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), pages 3630–3638, 2016.

[34] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang
Wang, and Xiaoou Tang. Residual attention network for image classification. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6450–6458,
2017.

[35] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. CBAM: convolutional
block attention module. In Proceedings of the European Conference on Computer Vision
(ECCV), volume 11211, pages 3–19, 2018.

[36] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint, abs/1708.07747, 2017.

[37] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang
Wei, Pengtao Xie, and Eric P. Xing. Poseidon: An efficient communication architecture for
distributed deep learning on GPU clusters. In Proceedings of USENIX Annual Technical
Conference (ATC), pages 181–193, 2017.

12

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://pytorch.org/

[38] Kang Zhao, Sida Huang, Pan Pan, Yinghan Li, Yingya Zhang, Zhenyu Gu, and Yinghui
Xu. Distribution adaptive INT8 quantization for training cnns. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 3483–3491. AAAI Press, 2021.

[39] Hongyi Zheng, Wangmeng Zuo, and Lei Zhang. BS-MCVR: binary-sensing based mobile-cloud
visual recognition. In Proceedings of ACM International Conference on Multimedia (MM),
pages 1339–1347. ACM, 2020.

[40] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2921–2929. IEEE Computer Society, 2016.

[41] Qihua Zhou, Song Guo, Zhihao Qu, Jingcai Guo, Zhenda Xu, Jiewei Zhang, Tao Guo, Boyuan
Luo, and Jingren Zhou. Octo: INT8 training with loss-aware compensation and backward
quantization for tiny on-device learning. In Irina Calciu and Geoff Kuenning, editors, Proceed-
ings of the USENIX Annual Technical Conference (USENIX ATC), pages 177–191. USENIX
Association, 2021.

[42] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li, Xiuqi Yang,
and Junjie Yan. Towards unified INT8 training for convolutional neural network. arXiv preprint,
abs/1912.12607, 2019.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We discussed the extreme cases
that may degrade our method’s performance in §4.4.

(c) Did you discuss any potential negative societal impacts of your work? [No] We did
not discuss the potential negative societal impacts because we believe our research is
meaningful to deploy edge intelligence and will bring benefits to industry.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We provided
all the assumptions of our theoretical results.

(b) Did you include complete proofs of all theoretical results? [Yes] We provided the
detailed proof of our theoretical results in Appendix (supplemental material).

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We provide our
demo codes in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We discussed the experimental setting in §4.1.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [N/A] We mainly focused on the results based on average
performance.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [N/A] We discussed the device
configuration and benchmarks in §4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] All the datasets,
models and baselines used in our experiments are correctly cited.

(b) Did you mention the license of the assets? [N/A]

13

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Detailed Notations of SGQ in Sec. 2.1

Table 3: Notation list.
Notation Description

N The number of devices
J The cost function of K-means clustering
Q(·) The pixel encoding function of SGQ
X The collection of all pixels belonging to the features
x The original full-precision pixel that xi ∈ X
x̂ The quantized pixel that x̂i = Q(xi)
u The clustering centroid hold the same dimension as pixel x
U The matrix of all clustering centroids
U+ The generalized inverse of U that follows UU+U = U
Y The matrix of all cluster labels
yi The cluster label corresponding to pixel xi and yi ∈ Y
R The matrix of pixel mapping

ri,j
The j-th row of R indicating whether pixel xi

belongs to cluster label yj in the one-hot form
C The number of channels
∂Q(x)
∂x The approximate gradients of the quantized features

gx The real gradients of the quantized features
p The weight vector of clustering centroid
f(·) The loss function
∥ · ∥2 The ℓ2−norm

All the notations used in the supplementary material are listed in Table 3.

B Details of Gradient Calibration in Sec. 2.3

Here, we present the detailed analysis of gradient calibration. As to the formulation of our SGQ
method, we use softmax function to approximate the one-hot cluster label and the pixel encoding
function is described as:

x̂i = Q(xi) =

∑k
j=1 pjuj∑k
j=1 pj

, (16)

14

where pj = e−(xi−uj)(xi−uj)
⊤

. Therefore, pixel encoding can be regarded as a weighted mean of
each clustering centroid. Let p be the weight vector of encoded pixels, we have:

p =
[

p1

Σk
j=1pj

p2

Σk
j=1pj

· · · pk

Σk
j=1pj

]
, (17)

x̂i = Q(xi) = p ·U, (18)
p = x̂i ·U+, (19)

where U+ is the generalized inverse of U that follows UU+U = U. Then, the detailed calculation
of the gradients based on quantized feature maps can be described as:

∂Q(x)

∂x
=

−2
∑k

j=1 pju
⊤
j (x− uj)

∑k
j=1 pj + 2

∑k
j=1 pju

⊤
j

∑k
j=1 pj(x− uj)

(
∑k

j=1 pj)
2

,

=
−2

∑k
j=1

∑k
l=1 pjplu

⊤
j (x− uj) + 2

∑k
j=1

∑k
l=1 pjplu

⊤
j (x− ul)∑k

j=1

∑k
l=1 pjpl

,

=
2
∑k

j=1

∑k
l=1 pjplu

⊤
j (uj − ul)∑k

j=1

∑k
l=1 pjpl

, (20)

=
2
∑k

j=1

∑k
l=1 pjplu

⊤
j uj∑k

j=1

∑k
l=1 pjpl

−
2
∑k

j=1 pju
⊤
j

∑k
l=1 plul∑k

j=1 pj
∑k

l=1 pl
,

=
2
∑k

j=1 pju
⊤
j uj∑k

j=1 pj
− 2x̂⊤ · x̂. (21)

As the polynomial term
2
∑k

j=1 pju
⊤
j uj∑k

j=1 pj
holds an analogous expression of pixel encoding function, we

introduce a matrix Uo and use dot product to simplify the gradient formulation as follows.
∂Q(x)

∂x
= 2x̂ ·U+ ·Uo − 2x̂⊤ · x̂, (22)

Uo =

u
⊤
1 u1

u⊤
2 u2

· · ·
u⊤
k uk

 , (23)

∑k
j=1 pju

⊤
j uj∑k

j=1 pj
= p ·Uo. (24)

C Details of Convergence Analysis and Theorem Proof in Sec. 3

Theorem 1. Assuming each pixel follows ∥x∥2 ≤ B, the upper bound of the approximate gradients
can be described as ∥∂Q(x)

∂x ∥2 ≤ 2B2. Meanwhile, given m pixels and C channels, the upper bound
of real gradients is described as C

m ≤ ∥gx∥2 ≤ C. Therefore, the approximate gradients calculated
by GC follows ∥∂Q(x)

∂x ∥2 ≤ 2B2m
C ∥gx∥2.

Proof. Considering the fact that cluster centroid uj holds the same upper bound as pixel x, we can
obtain the upper bound of uj as:

∥uj∥2 = ∥
∑m

i=1 ri,jxi∑m
i=1 ri,j

∥2

≤
m∑
i=1

∥ ri,jxi∑m
i=1 ri,j

∥2,

≤
m∑
i=1

ri,jB∑m
i=1 ri,j

= B. (25)

15

Then, we present the bound of the real gradient gx generated by the SGQ method. The pixel encoding
function Q(·) partitions the entire feature maps into several clusters with unique labels and replaces
each pixel x by the corresponding clustering centroid. Therefore, the gist of SGQ is to map the
original pixel x to the clustering centroid uj and the updating process of cluster centroid uj is
controlled by the following function:

uj =

∑m
i=1 ri,jxi∑m
i=1 ri,j

, (26)

where 1 ≤
∑m

i=1 ri,j ≤ m. Thus we can figure out the bound as:

C

m
≤ ∥gx∥2 ≤ C. (27)

Based on the the gradients of quantized feature maps in Eq. (20), we can deduce the gradient bound
of Q(x) as:

∥∂Q(x)

∂x
∥2 = ∥

2
∑k

j=1

∑k
l=1 u

⊤
j (uj − ul)pjpl∑k

j=1

∑k
l=1 pjpl

∥2,

≤ 2

k∑
j=1

k∑
l=1

∥
u⊤
j (uj − ul)pjpl∑k
j=1

∑k
l=1 pjpl

∥2,

≤ 2

k∑
j=1

k∑
l=1

∥u⊤
j ∥2∥uj − ul∥2pjpl∑k

j=1

∑k
l=1 pjpl

,

≤ 2

k∑
j=1

k∑
l=1

B2pjpl∑k
j=1

∑k
l=1 pjpl

,

= 2B2. (28)

Therefore, the upper bound of approximate and real gradients can be described as follows, respec-
tively:

∥∂Q(x)

∂x
∥2 ≤ 2B2, (29)

C

m
≤ ∥gx∥2 ≤ C. (30)

Solving ∥∂Q(x)
∂x ∥2 ≤ a∥gx∥2 yields 0 < a ≤ 2B2m

C , which is easy to hold by the feature maps of
common models.

Given the loss function f(·) and corresponding gradients ∇f(wt), the parameter updating rule under
SGD optimizer can be formulated as:

wt+1 = wt − γ
1

N

N∑
i=1

Q[gi(wt)], (31)

where γ = ηa and η represents the learning rate, N is the number of devices, and Q[gi(wt)] is the
local gradient computed by node i under feature quantization.

16

Based on the assumption of Lipschitz-continuous objective gradients such that ∥∇F (ω1) −
∇F (ω2)∥2 ≤ L∥ω1 − ω2∥2 for all ω1, ω2, where L is the Lipschitz constant, we have:

Ef(wt+1)− Ef(wt)

≤ E⟨wt+1 −wt,∇f(wt)⟩+
L

2
E∥wt+1 −wt∥22

= −γE⟨ 1
N

N∑
i=1

Q[gi(wt)],∇f(wt)⟩+
Lγ2

2
E∥ 1

N

N∑
i=1

Q[gi(wt)]∥22

= −γ

2
∥∇f(wt)∥22 −−γ

2
∥ 1

N

N∑
i=1

Q[gi(wt)]∥22 +
γ

2
∥∇f(wt)−

1

N

N∑
i=1

Q[gi(wt)]∥22

+
Lγ2

2N2
E∥

N∑
i=1

Q[gi(wt)]−
N∑
i=1

gi(wt) +

N∑
i=1

gi(wt)−N∇f(wt) +N∇f(wt)∥22

≤ (
3Lγ2

2
− γ)E∥∇f(wt)∥22 +

3Lγ2δ2B2m

NC
, (32)

where the second equality comes from < a, b >= 1
2∥a∥

2+ 1
2∥b∥

2− 1
2∥a− b∥2, and the last inquality

holds according the the widely used variance assumption in SGD such that ∥gi(wt)−∇F (wt)∥ ≤ δ2

(δ is a constant).

By accumulating both sides of Eq. (32) from t = 0 to t = T − 1 and dividing the both side by γT ,
we obtain:

(1− Lγ

2
)
1

T

T−1∑
t=0

E∥∇f(wt)∥22 ≤ Ef(w0)− Ef(w∗)

γT
+

3Lγδ2B2m

NCT
(33)

where f(w∗) is the optimal solution of parameter updating. Let η = O(
√
N

aL
√
T
), then for sufficiently

large T , we have:
1

T

T−1∑
t=0

E∥∇f(wt)∥22 ⪯ O(
1√
NT

), (34)

where ⪯ denotes order inequality, which means less than or equal to up to a constant factor. Conse-
quently, the proposed SGQ holds the same order of convergence rate as the non-quantized distributed
SGD algorithm and exhibits the linear speedup property with respect to the number of devices. The
theoretical results demonstrate that the proposed algorithm is communication-efficient and scalable.

D Details of Convergence Efficiency using Different Bits in Sec. 4.4

As shown in Figure 8, we present the detailed training convergence curves by using SGQ under
different quantization bits and benchmarks. SGQ achieves acceptable accuracy in most cases, even
for the 3-bit training (e.g., ResNet34 and ShuffleNet-1.0x on mini-ImageNet). These results verify
that the proposed SGQ method can effectively compress feature size without sacrificing much model
accuracy as FP32 training. In realistic deployment, as our SGQ method under 4 bits is sufficient to
fundamentally reduce communication traffic while maintaining good model accuracy, we recommend
to use the 4-bit SGQ as the default training configuration.

E Further Analysis of Large-scale Performance

Considering the objective of establishing communication-efficient collaborative learning on edge
devices, the evaluations follow the typical experimental setting adopted by previous works [39, 12],
including the configurations of comparison baselines, datasets, neural network models, deployment
devices, and bandwidth environment.

Note that the edge devices usually hold much lower computational and storage capacity over the
conventional GPU-based machines in the cloud. Such a resource-constrained environment limits

17

0 20 40 60 80
Epochs

0

20

40

60

80

100

Ac
cu
ra
cy

 (%
)

AlexNet, FM

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

0 25 50 75 100
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

VGG11, FM

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

0 20 40
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MobileNet-V1, CF

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

0 20 40 60
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MobileNet-V1, FM

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

0 50 100 150 200
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ResNet18, mini-ImageNet

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

0 50 100 150 200
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ResNet34, mini-ImageNet

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

0 50 100 150 200
Epochs

0

20

40

60

80

100

Ac
cu
ra
cy

 (%
)

ShuffleNet-0.5x, mini-ImageNet

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

0 50 100 150 200
Epochs

0

20

40

60

80

100

Ac
cu
ra
cy

 (%
)

ShuffleNet-1.0x, mini-ImageNet

2 Bits
3 Bits
4 Bits

5 Bits
6 Bits

Figure 8: Details of training convergence curves under different quantization bits.

Table 4: Comparison of average model accuracy (%) using 8-bit compression.
Method ResNet50 ResNeXt101 MobileNet-V3 EfficientNet

FP32 (Acc. Upper Bound) 75.56 77.17 72.13 81.47
UQ 69.34 70.68 54.93 61.86
PQ 72.25 72.99 60.84 67.59
Top-k CLIO 11.89 12.46 10.18 13.23
SGQ 74.67 75.43 70.39 80.15

Table 5: Comparison of traffic size (MB).
Method ResNet50 ResNeXt101 MobileNet-V3 EfficientNet

FP32 143.11 169.63 108.61 85.22
UP 36.60 43.38 27.78 21.80
PQ 26.35 33.32 18.37 17.85
Top-k CLIO 55.50 66.24 33.33 37.03
SGQ 10.54 13.33 8.82 7.25

Table 6: Comparison of inference speed (ms).
Method ResNet50 ResNeXt101 MobileNet-V3 EfficientNet

FP32 124.10 147.10 94.19 73.90
UP 40.89 48.47 31.04 24.35
PQ 32.89 40.61 23.69 21.27
Top-k CLIO 55.66 66.33 35.37 36.25
SGQ 20.54 24.99 16.22 12.99

Table 7: Comparison of processing throughput (images/sec).
Method ResNet50 ResNeXt101 MobileNet-V3 EfficientNet

FP32 8 7 11 14
UP 24 21 32 41
PQ 30 25 42 47
Top-k CLIO 18 15 28 28
SGQ 49 40 62 77

18

the choice of evaluation datasets. It is impractical if we directly deploy the original ImageNet-1K
(1.2 million images with more than 140 GB storage demands) dataset on the commodity edge device
(e.g., the typical NVIDIA Jetson Nano with 4GB RAM and 64 GB micro SD storage). Actually, the
mini-ImageNet is a 100-class subset of ImageNet for one-shot learning and is more suitable for the
evaluation based on the tiny edge devices. In real-world scenarios, edge devices often hold quite
limited labeled data but need to handle the edge intelligence applications.

Actually, our method can apply to large-scale tasks if we are equipped with powerful machines.
We verify this point by conducting the experiments on the ImageNet-1K datasets with ResNet50,
ResNeXt101, MobileNetV2 and EfficientNet. As to the hardware configuration, We use a machine
with NVIDIA 3090 GPU to replace the original edge device with the tiny Jetson Nano board, so as to
provide sufficient computational and storage capacity for handling ImageNet. Other experimental
configurations are the same as the main paper. Under the unified setting of using 8-bit compression
and mini-batch training, we observe that SGQ consistently outperforms all the baselines, on average,
in terms of model accuracy (%) in Table 4, traffic size (MB) in Table 5, inference speed (ms) in Table 6
and image processing throughput (images/sec) in Table 7. These four tables present a comprehensive
inspection on large-scale performance. We can observe that SGQ effectively outperforms the other
methods in different metrics and achieves a good quality-traffic trade-off.

19

	Introduction
	Methodology
	Stripe-wise Group Quantization
	Channel-attention Grouping Block
	Gradient Calibration

	Convergence Analysis
	Experiments
	Experiment Setting
	Convergence Efficiency
	Traffic Saving
	Ablation Study
	System Overhead

	Conclusion
	Acknowledgements
	Detailed Notations of SGQ in Sec. 2.1
	Details of Gradient Calibration in Sec. 2.3
	Details of Convergence Analysis and Theorem Proof in Sec. 3
	Details of Convergence Efficiency using Different Bits in Sec. 4.4
	Further Analysis of Large-scale Performance

