
A Broader Impact

This paper aims to provide a fair federated learning algorithm to guarantee that the utilities of the
trained agents are core-stable fair. We do not expect the work to have any ethics issues or negative
social impact if it is correctly used. On the other hand, if our evaluation and theory is misused, there
could be potential negative social impact. For instance, our fairness metrics cannot indicate other
accuracy or loss utilities and people need to evaluate federated learning algorithms with different
utility metrics, rather than only using our metrics. We expect that our work will provide a way to
measure and achieve fairness for different federated learning paradigms.

B Missing proofs from Section 4.1

B.1 Proof of Lemma 4.1

Proof. We prove by contradiction. Assume that there exists a θ′ ∈ P , and a S ⊆ [n], such that
(|S|/n) ·ui(θ

′) ≥ ui(θ) for all i ∈ S with at least one strict inequality. Then, we have ui(θ
′)

ui(θ)
≥ n/|S|

for all i ∈ S with at least one strict inequality, implying
∑

i∈[n]
ui(θ

′)
ui(θ)

≥
∑

i∈S
ui(θ

′)
ui(θ)

> n. However,

since θ ∈ ϕ(θ), we have
∑

i∈[n]
ui(θ

′)
ui(θ)

≤
∑

i∈[n]
ui(θ)
ui(θ)

= n, which is a contradiction.

B.2 Proof of Lemma 4.2

Proof. We need to show that for every sequence (θ)i converging to θ, and (γ)i converging to γ, such
that γi ∈ ϕ(θi) for all i, we have γ ∈ ϕ(θ). We prove this by contradiction. Let us assume otherwise,

γ /∈ ϕ(θ). Let γ′ ∈ ϕ(θ) and let δ =
∑

i∈[n] ui(γ
′)/ui(θ)∑

i∈[n] ui(γ)/ui(θ)
> 1. We now make a technical claim about

the utility functions of the agents.

Claim B.1. For all i ∈ [n], and x, y such that ||x− y||2 ≤ β, we have

1. |ui(x) − ui(y)| ≤ h(β) where h : R≥0 → R≥0 is continuous increasing function with
h(0) = 0, and

2. for each i ∈ [n], we have ui(y)·h′(β)−1 ≤ ui(x) ≤ ui(y)·h′(β), where h′(β) = (1+ h(β)
Mε)

and M = mini∈[n]Mi.

Proof. Claim (1) follows immediately from the continuity of the utility functions.

For claim (2), we have

ui(x) ≤ ui(y) + h(β)

≤ ui(y) · (1 +
h(β)

ui(y)
)

≤ ui(y) · (1 +
h(β)

Miε
) (ui(y) ≥Miε)

≤ ui(y) · (1 +
h(β)

Mε
) (Mi ≥M)

≤ ui(y) · h′(β).

In a similar way, we can prove that ui(y) ≤ ui(x) · h′(β), which would then imply that ui(x) ≥
ui(y) · (h′(β))−1.

We choose a δ′ such that h′(δ′)3 = (1 + h(δ′)
Mε)3 ≪ δ. Such a δ′ exists as h() is a continuous

increasing function with h(0) = 0, and δ > 1. Since the sequences (θ)i and (γ)i converges to θ
and γ respectively, there exists a n′ ∈ N such that for all ℓ ≥ n′, we have ||γℓ − γ||2 < δ′ and

14

||θℓ − θ||2 < δ′. Now observe that∑
i∈[n]

ui(γ
′)

ui(θℓ)
≥ h′(δ′)−1 ·

∑
i∈[n]

ui(γ
′)

ui(θ)
(by Claim B.1)

= h′(δ′)−1 · δ ·
∑
i∈[n]

ui(γ)

ui(θ)
(by definition of δ)

≥ h′(δ)−2 · δ ·
∑
i∈[n]

ui(γℓ)

ui(θ)
(by Claim B.1)

≥ h′(δ)−3 · δ ·
∑
i∈[n]

ui(γℓ)

ui(θℓ)
(by Claim B.1)

>
∑
i∈[n]

ui(γℓ)

ui(θℓ)
(as δ ≫ h′(δ′)3).

This shows that γℓ /∈ ϕ(θℓ), which is a contradiction.

C Missing Proofs from Section 4.2

C.1 Proof of Theorem 2

Proof. We first show that for any other predictor θ′ ∈ P , we have
∑

i∈[n]
ui(θ

′)
ui(θ∗) ≤ n. Consider any

other predictor θ′ ∈ P . Since P is convex, we have (∇θL(θ∗))T (θ′ − θ∗) < 0. Now, observe that∑
i∈[n]

ui(θ
′)

ui(θ∗)
− n =

∑
i∈[n]

ui(θ
′)− ui(θ

∗)

ui(θ)

≤
∑
i∈[n]

(∇ui(θ
∗))T(θ′ − θ∗)

ui(θ∗)
(from concavity of ui())

=
∑
i∈[n]

∑
j∈[d]

(∂ui(θ
∗)

∂θj
· (θ′j − θ∗j) ·

1

ui(θ∗)

)
=

∑
i∈[n]

1

ui(θ∗)
·
∑
j∈[d]

(∂ui(θ
∗)

∂θj
· (θ′j − θ∗j)

)
=

∑
j∈[d]

(θ′j − θ∗j) ·
∑
i∈[n]

(1

ui(θ∗)
· ∂ui(θ

∗)

∂θj

)
= (∇θL(θ∗))T(θ′ − θ∗) < 0.

Now if θ∗ is not core-stable, then there exists an S ⊆ [n] and θ′ ∈ P , such that ui(θ
′) ≥ n/|S|ui(θ

∗)

for all i ∈ S with at least one strict inequality, then we have
∑

i∈[n]
ui(θ)
ui(θ′) ≥

∑
i∈S

ui(θ)
ui(θ′) >

n/|S| · |S| = n, which is a contradiction.

D Algorithm CoreFed

Here we present the full description of CoreFed in Algorithm 1.

E Missing Proofs from Section 4.4

E.1 Proof of Theorem 3

Proof. For any θ′ such that ||θ − θ′||2 ≤ d, according to the definition of β-smooth, we have

ui(θ
′) ≤ ui(θ) +∇θui(θ)

T(θ′ − θ) +
β

2
||θ′ − θ||22.

15

Algorithm 1: CoreFed Distributed Training Protocol.
Input: Number of clients K, number of rounds T , epochs E, learning rate η
Output: Model weights θT

1 for t = 0, 1, · · · , T − 1 do
2 Server selects a subset of K devices St;
3 Server sends weights θt to all selected devices;
4 Each select device s ∈ St updates θt for E epochs of SGD with learning rate η to obtain new

weights θ̄ts;
5 Each select device s ∈ St computes

∆θts = θ̄ts − θt,

Lt
s =

1

|Ds|

|Ds|∑
i=1

ℓ(fθt(x(i)
s), y(i)s)

where Ds = {(x(i)
s , y

(i)
s) : 1 ≤ i ≤ |Ds|} is the training dataset on device s;

6 Each selected device s ∈ St sends ∆θs and Ls back to the server;
7 Server updates θt+1 following

θt+1 ← θt +
1

|St|
∑
s∈St

∆θts
Ms − Lt

s

.

8 end

Then we observe that ∑
i∈[n]

ui(θ
′)

ui(θ)
− kn

=
∑
i∈[n]

ui(θ
′)− ui(θ)

ui(θ)
− (k − 1)n

≤
∑
i∈[n]

∇θui(θ)
T(θ′ − θ) + β

2 ||θ
′ − θ||22

ui(θ)
− (k − 1)n

=(∇L(θ))T(θ′ − θ) +
∑
i∈[n]

β

2ui(θ)
||θ′ − θ||22 − (k − 1)n

≤ϵ||θ′ − θ||2 +
∑
i∈[n]

β

2ui(θ)
||θ′ − θ||22 − (k − 1)n.

By plugging in the RHS of Equation (4), we observe that when ||θ′−θ||2 < d,
∑

i∈[n]
ui(θ

′)
ui(θ)

−kn < 0.

On the other hand, suppose for any S ⊆ [n], if for all i ∈ S we have
|S|
kn

ui(θ
′) ≥ ui(θ), then

∑
i∈[n]

ui(θ
′)

ui(θ)
=

∑
i∈S

ui(θ
′)

ui(θ)
+

∑
i∈[n]\S

ui(θ
′)

ui(θ)
≥

∑
i∈S

ui(θ
′)

ui(θ)
≥

∑
i∈S

kn

|S|
≥ kn (5)

which contradicts the above result and concludes the proof.

16

	Introduction
	Related Work
	Core-Stability in Federated Learning
	Advantages of Core-Stability

	Core-Stability in Federated Learning
	Existence of Core-Stability in Federated Learning
	Computation of a Core-Stable Predictor When Utility Functions are Concave
	Core-Stability in Linear Regression and Classification with Logistic Regression
	Approximate Core-Stability in Deep Neural Networks
	Weighted Core-Stability

	Empirical Evaluation
	Experiment Setup
	Evaluation Results

	Conclusion
	Broader Impact
	Missing proofs from Section 4.1
	Proof of Lemma 4.1
	Proof of Lemma 4.2

	Missing Proofs from Section 4.2
	Proof of Theorem 2

	Algorithm CoreFed
	Missing Proofs from Section 4.4
	Proof of Theorem 3

