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We greatly appreciate the reviewers’ positive feedback and valuable comments. In the revision, we have
carefully addressed all the points the reviewers have raised and improved the paper accordingly, as detailed in
the point-by-point response below. We first reply to the reviewers’ concerns of our weakness that are itemized
with W#, and then respond to their questions one by one that are itemized with Q#.

Response to Reviewer hbGq

W1. Using observational data and historical controls, we can directly and accurately estimate potential control
outcomes Ŷ (0) with a large amount of historical control data. The conditional average treatment effect on
the treated group can be easily obtained: CATT = E(Y | D = 1, X)− E(Ŷ (0) | D = 1, X).

Thanks for your insightful comment. In the presence of unmeasured confounding, we in fact cannot
accurately estimate potential control outcomes Ŷ (0) with observed covariates and historical outcomes. We
provide a detailed explanation of why we cannot in the response to your first question, which we hope will
dispel your doubts.

W2. In Lines 98-102, proper stratification [26] can help mitigate confounding effects from observed confounders
but can’t reduce the bias from unmeasured confounders that are independent with observed confounders.

Thank you for pointing out this issue that may cause confusion, and we add the sentence “by exploiting
historical controls that contain information of unmeasured confounding” in the revised version to avoid
misleading. We agree with what you said, but it does not conflict with our method. Different from
classical matching methods that only adjust for X, our method finds a partition of the covariate space
(stratification) in which unmeasured confounders U can also be partially adjusted for because (1) control
outcomes for treated units can be “observed” historically and thus historical confounding effects can be
identified, and (2) confounding effects are assumed to change mildly with respect to time (Assumption 2
in our revised article) such that confounding information can be transferred from historical data to current
data. In other words, the stratification depends not only on observed covariates X but also unmeasured
confounders U through historical controls.

W3. In practical, time-invariant covariates and unmeasured confounders assumption is hardly satisfied in a
causal scenario.

Thanks for your valuable comment. We make some revision and now we allow unmeasured confounders
to be time-varying. The time-invariant assumption of covariates is standard in the literature of causal
inference, and serves to simplify our formal definition and theoretical analysis of partial identification of
CATT. In fact, this assumption is not as restrictive as it seems to be. In spite of measured confounders
being time-invariant, their effects on outcomes can be time-varying; see Assumption 2 in our revised
article. Besides, measured confounders that are time-invariant, or at least varying mildly with respect
to time, are very common, e.g., sex, age, BMI, etc. When samples are collected over a small time span,
i.e., tm − t1 being small, the time-invariant assumption of confounders can be viewed to hold. Relaxation
of this assumption is possible by considering functional regressions (e.g., Ju and Salibián-Barrera 2021,
arXiv:2109.02989).

W4. In Lines 104-107, without any prior knowledge, neither constant function nor polynomial function guar-
antees robust results.

Thanks for your comment. Piece-wise constant functions, or step functions, enjoy point-wise universal
approximation ability to the space of measurable functions. In fact, trees, as an example of step functions,
have shown a great success in various practical applications. Indeed, our partial identification bound
takes the issue you raised into consideration; see Theorem 1. The second term of the upper bound,
max1≤j≤q supx∈Q∗∗

j

∣∣η∗(x) − η∗(Q∗∗
j )

∣∣, measures the distance between our target function η∗(x) and its

step function approximator η∗(Q∗∗
j ), which would be large if step functions are not suitable.
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Surely, to obtain reasonable theoretical guarantees, certain smoothness condition, e.g., bounded variation
or high-order differentiability, should be imposed on the target function η∗(x), but this is not the key issue
we aim to solve in this paper.

W5. Checklist in Lines 492-493: The Assumption 1 is not the full set of assumptions. SUTVA, positive/overlap
assumption are missing in this paper. The authors should reframe the assumptions required.

Thanks for your helpful comment. As you suggest, we impose the SUTVA and consistency assumption
to formalize the Rubin causal model; see Lines 90–91. We also impose the condition that for d ∈ {0, 1},
P (D = d | X) > 0, and Y

(d)
tm ⊥⊥ D | (X,U).

Notice that our positivity condition is weaker than the conventionally assumed version P (D = d | X,U) >
0 for d = 0, 1. This is indeed not surprising because we also require the transportability condition that
there exists a partition of observable covariate space, and in each local region, confounding effects change
mildly across time; thus, P (D = d | X) > 0 is enough for partial identification.

W6. Figure 1 and Figure 2 in Appendix, what data was used to draw this picture? the authors did not give a
clear explanation.

Thanks for your valuable comments. The data used to draw the pictures in Appendix are generated in the
same way as the simulation. We have added more detailed descriptions of figures in the revised version.

Figure 1 shows the effectiveness of a single tree of GBCT on reducing confounding bias. Let {Q̂GBCT
j }q1j=1

be the partition of a single tree of GBCT, and let {Q̂GRF
j }q2j=1 be that of GRF. Given our generated data,

the y-axis denotes
∑q1

j=1

∣∣b̂tm(Q̂GBCT
j )

∣∣ and ∑q2
j=1

∣∣b̂tm(Q̂GRF
j )

∣∣, respectively, where
b̂tm(Qj) =

n∑
i=1

I{Xi ∈ Qj , Di = 1}Y (0)
i,tm

|{i : Xi ∈ Qj , Di = 1}|
−

I{Xi ∈ Qj , Di = 0}Y (0)
i,tm

|{i : Xi ∈ Qj , Di = 0}|
,

and Y
(0)
i,tm

is available for Di = 1 since it is a simulation. Here, we use an ℓ1-type loss because it is the
largest norm for vectors such that small confounding bias can be highlighted.

Figure 2 shows the ablation experiments to demonstrate the gain of the confounding entropy regular-
ization (defined in Equation 10) and the trick of subtracting the empirical pre-treatment confounding

bias. “GBCT-ND” means without confounding entropy regularization Ĥ(Q), “GBCT-NR” means that
the pre-treatment confounding bias is not subtracted when predicting the effect, and “GBCT-NR-ND”
means neither confounding entropy loss nor subtraction of the pre-treatment confounding bias. The y-axis
means MAECATE = 1

n

∑n
i=1 |η̂(Xi)−ηi| defined in Line 293. In addition, the performance of “GBCT-ND”

has been updated in Table 1 in our revised version.

W7. Not Reproducible. The data generation mechanism, and estimators α(·), β(·), f(·), g(·) are not detailed in
this paper.

Thanks for pointing our missing details. We have provided the code of generating simulated data in
supplementary material to facilitate replication, and the complete code for implementing our proposed
method is in the process of approval and will be released as soon as possible. Estimators α(·), β(·), f(·), g(·)
are specified in responding to your fourth question.

Q1. Using observational data and historical controls, can we directly and accurately estimate potential control
outcomes with a large amount of historical control data? Is the estimation of conditional average treatment
effect on the treated group still a challenge?

Thanks for your question. We cannot estimate CATT or potential control outcomes Y
(0)
t2 by simply

adjusting for X and historical controls Y
(0)
t1 (t1 < t2) when unmeasured confounders directly affect both

current potential outcomes and treatment assignment. As an illustrative example, consider the following
directed acyclic graph (DAG) in Fig. R.1 that encodes causal relationships of (Yt2 , Yt1 , D,X,U), where
U denotes some unmeasured confounders, X denotes observed covariates, D denotes the treatment, and

Yt1 , Yt2 denotes historical and current outcomes, respectively. For the ideal case where Y
(0)
t2 can be

accurately estimated, without doubt, CATT can be estimated directly by plugging the estimated Y
(0)
t2 in

the definition (Line 97 in our revised article). However, since (X,Yt1) cannot block the backdoor of (D,Yt2),

directly using (X,Yt1) to estimate or predict Y
(0)
t2 cannot fully adjusted for unmeasured confounders U ,

which would lead to a biased estimate of Y
(0)
t2 and further an erroneous CATT estimator; e.g., Simpson

paradox would occur even when the sample size is large.

In deep contrast, our method can give partial identifiability of CATT; specifically, we quantify the distance
between CATT and an estimable function η(x) (defined in Equation 3) in Theorem 1, and the distance can
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Figure R.1: A DAG for (Yt2 , Yt1 , D,X,U). Dashed line --- denotes unspecified
causal relationships.

be asymptotically negligible under some conditions. Different from classical matching methods that only
adjust for X, our method finds a partition of the covariate space (stratification) in which unmeasured
confounders U can also be partially adjusted for because (1) control outcomes for treated units can
be ‘observed’ historically and thus historical confounding effects can be identified, and (2) confounding
effects are assumed to change mildly with respect to time (Assumption 2 in our revised article) such that
confounding information can be transferred from historical data to current data. These chronologically
sampled data do facilitate our identification and estimation of CATT. Moreover, empirically, we compared
several methods such as meta learners and causal forests which exploit historical controls as covariates
to estimate CATT with our proposed method GBCT. GBCT yields smaller mean absolute errors than
these methods, and the gap becomes more pronounced as impact of unmeasured confounding increases;
see details at Lines 298–302 in our revised article.

Q2. Lines 126-127, what is the relationship between Theorem 1 and the identification of instrumental variables?

Thanks for pointing out the unclarity in our presentation. We meant to highlight that CATT is partially
identifiable (identifiable up to a band) in our case (Theorem 1), and we mentioned instrumental variables
as an example that ATE can be partially identified using IV-based methods.

Q3. Why not use observed outcomes on the treated group when estimating CATT?

We did use observed outcomes on the treated group to estimate CATT; see Lines 179–180 and Equation
12 in our revised article.

We are concerned that our presentation cannot adequately convey the rationale of our method which
leads to your misunderstanding. Our regularized empirical risk minimization, i.e., Equation 12, consists
of two parts. The first term measures the distance between our model and observed current outcomes,
and the second term is estimated confounding entropy. The second term encourages to find a partition
in which η(x) ≈ CATT as illustrated in replying your first question. For the first term, we use a tree

T (x;Q, µ̂(1)(Q)) to learn
∑q

j=1 E(Y
(1)
tm | D = 1, X ∈ Q∗

j )I{x ∈ Q∗
j}, where we use observed outcomes on

the treated group, and another tree T (x;Q, µ̂(0)(Q)) to learn
∑q

j=1 E(Y
(1)
tm | D = 1, X ∈ Q∗

j )I{x ∈ Q∗
j}.

Thus, informally η̂(x) ≡ T (x; Q̂, µ̂(1)(Q̂)) − T (x; Q̂, µ̂(0)(Q̂)) ≈ η(x) ≈ CATT, where Q̂ denotes the
solution of Equation 12.

Q4. The data generation mechanism, and estimators α(·), β(·), f(·), g(·) are not detailed in this paper.

Thanks for pointing our missing details due to limited length of paper. We provide codes of generating
data in supplementary materials. Estimators α(·), β(·), f(·), g(·) are specified as follows.

The interception function α(·) is

α(X,W ) =
α1(X ⊕W ) + α2(X ⊕W )− µα

σα
σ̃α + µ̃α,

where

α1(Z) =
1

pz − 4

pz−4∑
i=0

10 sin(πZiZi+1) + 20(Zi+2 − 0.5)2 + 10Zi+3 + 5Zi+4,

α2(Z) =
1

pz − 4

pz−4∑
i=0

√
Z2
i +

[
Zi+1Zi+2 − 1/(Zi+1Zi+3)

]2
, Z ∈ Rpz ,
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µα = E
[
α1(X ⊕ W ) + α2(X ⊕ W )

]
and σ2

α = var
[
α1(X ⊕ W ) + α2(X ⊕ W )

]
, X ⊕ W = (XT ,WT )T

represents concatenating two vectors, and µ̃α = 2 and σ̃α = 2 are the pre-defined mean and standard
deviation.

The function β(·) is

β(X,W ) = θTβ (X ⊕W )− E
[
θTβ (X ⊕W )

]
+ µ̃β , θβ ∼ N2p(0, I2p),

where µ̃β = 2.

The time-varying related function f(·) is

f(W,λt) = (ΘT
f W )

T
λt,

where Θf is a p × 3 matrix and λt ∈ R3 denotes a time-varying factor. In addition, entries of Θf are
independently sampled from a normal distribution N (0, 1).

The effect function g(·) is

g(X) =
α1(X)/10

log(|α2(X)|+ 1)
.

Response to Reviewer J9bc

W1. It would be great if the context can be connected with former works closely. Readers may be very familiar
with Athey’s works on regression trees and causal forests, but the content in Section 2 is too dense.

Thanks for your valuable suggestions. We agree that the comparisons between our method and former
works on causal forests are important, and we compare our work with causal forests in detail in responding
your first question. We emphasize these points in Lines 189–190 and 194–201 of our revised version.
However, due to limited paper length, we cannot add all the comparisons in the main text. We decide to
include our response into supplementary materials for interesting readers.

W2. I don’t think the improvement is as fair and significant as the paper states. I think the improvement should
lie in comparing with the tree-based or forest-based causal ML methods.

Thanks for your valuable suggestions. As you suggest, we add more simulation experiments to evaluate
gains of regularizing with confounding entropy; see revised Table 1 in our article and our response to
your fourth and sixth question. Also, conceptual differences between our method and forest-based causal
models are illustrated in responding to your first question.

Q1. What are the differences between your work and “Recursive partitioning for heterogeneous causal effects”
“Estimation and inference of heterogeneous treatment effects using random forests” “Generalized random
forests”?

Thanks for your question. In the following, we use AI16, WA18, and ATW19 to denote papers you
mentioned in the same order (Authors’ initials + year of publication), and firstly give a brief review.
Notably, the tree methods are built on the condition that there is no unmeasured confounding. From a
methodological perspective, AI16, WA18, and ATW19 are closely related. WA18 developed causal forests
which generates an ensemble of causal trees proposed in AI16; generalized random forests proposed in
ATW19 fit any quantity of interest identified as the solution to a set of local moment equations, which
is almost equivalent to causal forests in the case of estimating CATE. In addition to unconfoundedness
condition, all of the three methods hinge on the so-called “honest splitting technique” that when we grow
a specific tree, one data point is exclusively used either for splitting or estimation. Thus, they can only
eliminate spurious correlations caused by using the same set of samples to simultaneously select model
structure (partition of the covariate space) and estimate parameters based on this selected model structure.

The differences between our work and the three you mentioned are three-fold. The most fundamental
and significant difference is that our method can deal with unmeasured confounding but they cannot.
In the presence of unmeasured confounding, their methods would lead to an erroneous CATT/CATE
estimator even when the sample size is large, e.g., Simpson paradox. In contrast, our method gives
partial identifiability of CATT; specifically, we quantify the distance between CATT and an identifiable
function η(x) (defined in Equation 3) in Theorem 1, and the distance can be asymptotically negligible
under some conditions. Moreover, even in the absence of unmeasured confounding where assumptions of
AI16, WA18 and ATW19 are satisfied, our method is more robust to imbalance of treatments; see Section
3 for details. This property enables our method to exploit historical controls under a weaker positivity
condition on treatment assignment. As pointed by Reviewer hbGq, one can use historical controls and X
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to estimate current potential controls Y
(0)
tm , which, in the context of responding to your question, can be

done using causal forests. Notably, however, for identifiability of E
(
Y

(0)
tm | D = 1, X, Ytk , 1 ≤ k ≤ m− 1

)
,

a typical condition is P (D = d | X,Ytk , 1 ≤ k ≤ m − 1) > 0, which is stronger than our assumption
P (D = d | X) > 0, especially when the number of historical timestamps, i.e., m − 1, is large. Lastly,
WA18 and ATW19 combine multiple causal trees to generate a random forest, aiming at variance reduction,
but we choose the boosting framework to improve performance of a single tree. This different preference
for ensemble techniques results from a deep methodological distinction. Methods proposed in WA18 and
ATW19 need to reduce variances of trees because trees they construct are very deep, i.e., each leaf contains
a very small amount of samples. However, our proposed debiased causal trees cannot be very deep to
assure confounding entropy to be accurately estimated, and extra bias would be introduced owing to
regularization; therefore, we exploit gradient boosting to further reduce bias. See detailed discussion at
Lines 195–203 in our revised paper.

In fact, we compared our method GBCT and generalized random forests (GRF) empirically; see Table
1 in our paper. In both cases (absence/presence of unmeasured confounding), GBCT outperforms GRF
with 95% confidence level, which supports our analysis.

Q2. Why is confounding entropy valid? Is it like the individual version of the integral probability metric? Is
there any connection?

Thanks for your insightful question. The rationale behind our method is that (1) control outcomes for
treated units are observable historically and thus historical confounding effects can be identified, and
(2) confounding effects are assumed to change mildly with respect to time (Assumption 2 in our revised
article) such that confounding information can be transferred from historical data to current data.

Conventionally, effects introduced by unmeasured confounding at time t are characterized by bt = E(Y
(0)
t |

D = 1, X)− E(Y
(0)
t | D = 0, X); see Equation 1 for details. Noting that bt only accounts for differences

at the first moment, in our work, we exploit symmetric cross entropy Ht to model differences between

P (Y
(0)
t | D = 1, X) and P (Y

(0)
t | D = 0, X), and we expect that Ht can adjust for high-order variations

introduced by unmeasured confounders that bt cannot. To adapt this idea to tree-based models, we obtain
averaged Ĥt(Q) across t ∈ {t1, . . . , tm−1} as a function of partition Q = {Qj}qj=1 in Equation 10, which
is used as a regularization term in Equation 12. It adjusts for unmeasured confounding by encouraging

to find a partition Q̂ = {Q̂j)}qj=1 such that P (Y
(0)
t | D = 1, X ∈ Q̂j) ≈ P (Y

(0)
t | D = 0, X ∈ Q̂j).

We remark that symmetric cross-entropy is not statistically necessary and in principle we can use other al-
ternatives such as integral probability metric (IPM) and Csiszár’s f -divergence to measure the discrepancy
between distributions. IPM with respect to a function class F is defined as dF (P,Q) = supf∈F

∣∣EP [f(X)]−
EQ[f(X)]

∣∣, and Csiszár’s f -divergence is defined as divf (P,Q) = EQ[f((dP/dQ)(X))]. By definition,
symmetric cross entropy is known to be closely related to Kullback–Leibler (KL) divergence that is
an f -divergence with f(t) = t log t; more specifically, the symmetric cross entropy of P,Q with den-
sity function being p, q is H(P,Q) = EP [log p(X)] + EQ[log q(X)] + EP [(q(X)/p(X)) log(q(X)/p(X))] +
EQ[(p(X)/q(X)) log(p(X)/q(X))] = Entropy(P ) + Entropy(Q) + KL(Q,P ) + KL(P,Q). Therefore, our
proposed confounding entropy can be viewed as a symmetric version of KL-divergence between localized

distributions, i.e., Y
(0)
t | D = d,X ∈ Qj , d = 0, 1. Moreover, this reformulation of symmetric cross entropy

raises an intriguing interpretation of our proposed confounding entropy: regularizing with confounding
entropy can not only find a partition that reduce differences between the conditional outcome distribution
of the treated and control groups, but also control their model complexity and thus avoid overfitting.

Confounding entropy does not belong to a family of IPMs. In fact, IPMs and f -divergences are intrinsically
different; the family of f -divergences and the family of IPMs intersect only at the total variation distance
(see, Sriperumbudur et al., Electron. J. Statist. 6: 1550-1599 (2012)). Surely, extension of confounding
entropy to a more general f -divergences and IPMs is possible; however, several issues exist in choosing
function class when using IPMs, and in choosing f(·) when using Csiszár’s f -divergence, e.g., overfitting
due to too complex function class which may take noises as signals, misspecification raised by an unsuitable
f(·), and potentially expensive time cost for computing these alternatives. These issues can be left for
future work.

Q3. Why do you need to compare GBCT with meta learners? They are just ways to estimate treatment effects,
but the base models can be chosen as linear/tree/neural nets. Similarly, why DML-RF? DML is a doubly
robust estimator, and the base models for nuisance parameters can be chosen as linear/tree/neural nets,
and you choose RF. In my view, you only need to compare all the regression trees and random forests models
that are related to causal inference and analyze the source of gain produced by confounding entropy.

Thank you for this insightful comment and suggestion. We agree that it is essential to assess the gain of
our proposed confounding entropy and we have added a detailed discussion on this issue, see the answer
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for question 6 below.

When implementing the conventional methods, we include historical outcomes as covariates, just as sug-
gested by the first reviewer for comparison. Therefore, our comparison with the conventional methods
is intended to evaluate the performances of two different strategies for utilizing historical controls, one
through our proposed confounding entropy and the other by directly including historical outcomes as
covariates. The results confirm that our proposed strategy for integrating the information of historical
controls can give a much better performance. We have made this point more clear in our new version, see
Lines 258–260, and thank you for pointing out this issue that may cause confusion.

Q4. In Section 4.2, I don’t find any source of data. Where is the real-world dataset and code to reproduce your
experiments? I hope code/datasets can be released in the rebuttal stage.

The real-world dataset involves users’ personal and transactions information, and is not publicly available.
We have provided the code of generating simulated data in supplementary material to facilitate replication,
and the complete code for implementing our proposed method is in the process of approval and will be
released as soon as possible.

Q5. I am confused about the Biased dataset in Table 3. Is the control group increasing the credit line by 0?
Why increasing the credit line for the low-risk group can bring bias into both low-risk and medium-risk
groups? How does the RCT experiments conduct? Is it randomly assigning 0/2k/3k/6k to some people,
where 0 is control and 2k/3k/6k is treat?

Thank you for pointing out these issues that may cause confusion. The reall-world dataset contains 3
million observations from an RCT, which randomly assigns four treatment arms (increasing credit line
by 0, 2000, 3000 or 6000) to users within the low-risk and medium-risk strata, respectively. We take the
units with a credit line increase of 0 as the control group, and a credit line increase of 2000, 3000 or 6000
as three different treated groups.

In real-world financial scenarios, however, the financial companies always favor low-risk users, and are
unwilling to increase credit line for those with relatively high risks. Therefore, we artificially constructed
a biased observational dataset by retaining only the control group of the medium-risk stratum and the
treated groups of the low-risk stratum. In this case, the risk status affects both the treatment assignment
and the outcome, and thus serves as a substantial confounding. In data analysis, the risk status of each
individual is blinded for investigators, and we implement our proposed method by including the observed
87-dimensional covariates as well as outcome values over the last eight months.

Q6. In my view, the most important part is to analyze the gain of confounding entropy, which is missing in
other tree/forest-based causal ML models. You are not developing a new triply robust estimator or a novel
meta learner, so I think there is no need to compare with doubly robust estimators or other meta-learners.
So, I think 4-5 well-known tree models for causalML are enough as baselines.

We very much appreciate your helpful comments and suggestions. We agree that it is essential to assess
the impact of our proposed confounding entropy more in-depth. In the new version, we made a concerted
effort to demonstrate the the gain of confounding entropy by adding discussions and simulations, see Lines
298–302, Lines 316–317 and Table 1. For convenience, we also present the numerical results in Table R.1.
The results confirm that our proposed confounding entropy leads to more substantially accurate and stable
estimates across different scenarios.

Response to Reviewer ZPaK

W1. I am somewhat concerned about the transition from Equation 8 to Equation 9. As written, the assertion in

line 159 about the log density of Pt,1,j being −(yt−θ
∗(d)
j )2 is true only when yt is normally distributed with

unit variance. You seem to implicitly assume that no matter the partition Qj or value of D, the outcomes
are normally distributed with known and fixed variance. I find the fixed & known variance assumption
somewhat unrealistic.

Thanks for pointing out issues in our paper that may cause misunderstanding. We do not require that

log-density of Y
(0)
t | D = 1, X ∈ Qj and Y

(0)
t | D = 0, X ∈ Qj are exactly normally distributed, but use

Gaussian distribution to approximate them. Specifying Pt,d,j as a normal distribution N (θ
∗(d)
t,j , σ

∗(d)
t,j ) is

to only consider the first and second moment of Y
(0)
t | D = d,X ∈ Qj . In this case, the symmetric cross
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entropy Ĥj,t between N (θ
∗(0)
t,j , σ

∗(0)
t,j ) and N (θ

∗(1)
t,j , σ

∗(1)
t,j ) can be estimated by

Ĥj,t = −
∑

i:Xi∈Qj

{
Di log(p(Yi,t; θ̂

(0)
t,j , σ̂0))

|{i : Xi ∈ Qj , Di = 1}|
+

(1−Di) log(p(Yi,t; θ̂
(1)
t,j , σ̂1))

|{i : Xi ∈ Qj , Di = 0}|

}

= − log(2π) + log(σ̂1) + log(σ̂0) +
∑

i:Xi∈Qj

{
Di(Yi,t − θ̂

(0)
t,j )

2σ̂−2
0

|{i : Xi ∈ Qj , Di = 1}|
+

(1−Di)(Yi,t − θ̂
(1)
t,j )

2σ̂−2
1

|{i : Xi ∈ Qj , Di = 0}|

}

= − log(2π) + log(σ̂1) + log(σ̂0)︸ ︷︷ ︸
entropy

+
σ̂2
1 + (θ̂

(0)
t,j − θ̂

(1)
t,j )

2

σ̂2
0

+
σ̂2
0 + (θ̂

(0)
t,j − θ̂

(1)
t,j )

2

σ̂2
1︸ ︷︷ ︸

KL-divergence

,

where σ̂1, σ̂0 denote sample variances and θ̂
(1)
t,j , θ̂

(0)
t,j denote sample mean of Y

(0)
t | D = 1, X ∈ Qj and

Y
(0)
t | D = 0, X ∈ Qj , respectively. Noting that variances σ̂1, σ̂0 are denominators, Ĥj,t is very sensitive

to magnitude of σ̂1 and σ̂0. More specifically, θ̂
(0)
t,j − θ̂

(1)
t,j is unlikely to be penalized towards zero when σ̂1

and σ̂0 are large, which may give rise to a Qj where Y
(0)
t | D = d,X ∈ Qj (d = 0, 1) are very noisy (likely

to happen when sample size in Qj is small) and θ̂
(0)
t,j − θ̂

(1)
t,j is relatively large. In order to emphasize the

role played by θ̂
(0)
t,j − θ̂

(1)
t,j in finding the partition, we simply set the denominators as a constant, which

coincidentally equals to the empirical symmetric cross entropy between N (θ
∗(0)
t,j , 1) and N (θ

∗(1)
t,j , 1).

Therefore, a fixed and known variance assumption is not imposed but serves as an approximation of true

distributions of Y
(0)
t | D = d,X ∈ Qj d = 0, 1. Empirically, this approximation works well; see Table 1 in

our revised article for detailed simulation results.

W2. Additionally, since θ
∗(d)
t,j is typically unknown, you plug in the sample mean in Equation 8. This may be

reasonable when Qj contains a large number of treated and control observations. However, it seems much
less reasonable when there are not many of either. As such the expression in Equation 9 may not be a
particularly accurate estimate of the true symmetric cross-entropy between Pt,1,j and Pt,0,j. I’d go further
and say that the expression in Equation 9 represents the symmetric cross-entropy between Pt,1,j and Pt,0,j

under extremely restrictive conditions, namely that the yt,j’s are centered around the corresponding sample
mean with variance 1 for all choices of Qj.

Thanks for your comments. Our explanation for the issue that “yt,j ’s are centered around the corre-
sponding sample mean with variance 1 for all choices of Qj” can be found in the response to your first
concern. We agree with you that when sample size in Qj is small, plug-in estimation of the symmetric
cross entropy between Pt,1,j and Pt,0,j can be problematic. However, applying some techniques such as
pruning, our single debiased causal tree is not very deep such that sample size in each Qj is not very small,
and thus accuracy of estimating confounding entropy is acceptable. The price to pay of maintaining a
large sample size in Qj is the risk of underfitting which can introduce a non-vanishing bias. To eliminate
the underfitting bias, we further combine multiple debiased causal trees through gradient boosting.

W3. I found the motivation for regularizing based on historical cross-entropy loss somewhat lacking. The
identification result suggests that one should strive to make

∑m−1
k=1

∑q
j=1 b

2
tk
(Q∗∗

j ) as small as possible.
You write in lines 150-151 that minimizing this expression can “give rise to partitions that yield estimators
with large variance.” It is not at all clear that your suggested regularizer avoids this pathology.

Thanks for your comments. This comment is closely related to your first question, and responses can be
found therein.

Q1. Can you prove hat regularizing with Ĥ instead of the sum of squared biases actually results in estimators
with smaller variance? If not, you should provide, at a minimum, more justification for not using the sum
of squared biases (i.e. the right-hand side of Equation 4) as the regularizer in Equation 12. Better would

be an empirical demonstration that Ĥ yielded better point estimates or better uncertainty quantification
than using the sum of squared biases.

Thank you for your insightful comment and suggestion. Equation 9 of our article says that Ĥt(Qj) can be
decomposed into a sum of squared biases and sample variances of local estimators, which suggests that,
compared to only squared biases, regularizing with Ĥt(Qj) leads to estimators with smaller variances.
In general, as we reply to your second question, symmetric cross entropy of P,Q with density function
being p, q can be reformulated as H(P,Q) = Entropy(P )+Entropy(Q)+KL(Q,P )+KL(P,Q); therefore,
regularizing with confounding entropy does have the ability to control model complexity.
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As you suggest, we demonstrate empirically the gain of regularizing with Ĥ against the sum of squared
biases in Table 1 of the new vision; we also present the results here, see Table R.1. Our experimental results
confirm the superiority of regularizing with confounding entropy over squared biases in terms of estimation
error, and the superiority is more significant as the level of unmeasured confounding and imbalance of
treatments (in the absence of unmeasured confounding) increases, which supports our analysis.

Table R.1: MAE (mean±s.d.) of the ablation experiments. The variant GBCT-ND

does not use the confounding entropy Ĥ(Q), and the other variant GBCT-B employs

solely the first term b̂2
t (Qj) as Ĥt(Qj) to construct the de-bias loss. Scenario I rep-

resents the absence of unmeasured confounding, whereas II represents the presence
of unmeasured confounding. In addition, •/◦ indicates whether GBCT is statistically
superior/inferior to its variants (pairwise t-test at 0.05 significance level).

ϕ GBCT GBCT-ND GBCT-B

0.2 1.05± 0.01 1.10± 0.01• 1.06± 0.01
0.5 1.25± 0.03 1.30± 0.02• 1.34± 0.04•

I 0.8 1.31± 0.02 1.41± 0.04• 1.45± 0.04•
0.9 1.28± 0.03 1.44± 0.06• 1.43± 0.10•
1 1.71± 0.06 3.89± 0.57• 2.85± 0.34•
0.2 1.07± 0.01 1.11± 0.01• 1.08± 0.02
0.5 1.25± 0.02 1.29± 0.02• 1.33± 0.04•

II 0.8 1.29± 0.04 1.34± 0.04• 1.52± 0.06•
0.9 1.38± 0.09 1.92± 0.04• 1.45± 0.08•
1 1.81± 0.10 3.19± 0.75• 2.65± 0.76•

Q2. Relatedly, why did you try to minimize the symmetric cross-entropy between Pt,1,j and Pt,0,j? There are
several other choices of distributional differences/distances/divergences. Does closeness in this distance
imply closeness in moments?

Thanks for your question. Conventionally, effects introduced by unmeasured confounding at time t are

characterized by bt = E(Y
(0)
t | D = 1, X) − E(Y

(0)
t | D = 0, X), but it only accounts for differences at

the first moment. We propose a general framework to model differences between the conditional outcome
distribution of the treated and control groups, aiming to adjust for high-order variations introduced by
unmeasured confounders that bt cannot. Based on this motivation, symmetric cross entropy serves as a
well-tested choice, but is not statistically necessary.

As pointed by you and reviewer J9bc, in principle we can use other alternatives such as integral probability
metric (IPM) and Csiszár’s f -divergence to measure the discrepancy between distributions. We highlight
that symmetric cross entropy enjoys several advantages. In fact, symmetric cross entropy is closely related
to Kullback–Leibler (KL) divergence that is an f -divergence with f(t) = t log t; more specifically, the
symmetric cross entropy of P,Q with density function being p, q is

H(P,Q) = −EP [log q(X)]− EQ[log p(X)]

= −EP [log p(X)]− EQ[log q(X)] + EP [{q(X)/p(X)} log{q(X)/p(X)}]
+ EQ[{p(X)/q(X)} log{p(X)/q(X)}]

= Entropy(P ) + Entropy(Q) + KL(Q,P ) + KL(P,Q).

Noting that Shannon’s entropy measures variability of random variables, this reformulation of sym-
metric cross entropy raises an intriguing interpretation of our proposed confounding entropy: regular-
izing with confounding entropy can not only reduce differences between the conditional outcome dis-
tribution of the treated and control groups, but also control their model complexity and thus avoid
overfitting. Also, this observation suggests that closeness in symmetric cross entropy does not im-
ply closeness in moments. Indeed, the maximum mean discrepancy (MMD) dK(·, ·) with kernel func-
tion being K(y1, y2) = ϕ(y1)

Tϕ(y2) ϕ(y) = (y, y2)T , y ∈ R measures the closeness in moments since
d2K(P,Q) = (EP [X]− EQ[X])2 + (EP [X

2]− EQ[X
2])2 for any P and Q.

Another reason why we choose symmetric cross-entropy, is that we want to accommodate more types
of data in a unified notion. For example, when observed outcomes are continuous random variables,
we can approximate Pt,d,j with Gaussian distributions, and for binary outcomes, we can approximate
Pt,d,j with Bernoulli distributions. Surely, extension of confounding entropy to a more general class of
metrics is possible; however, several issues exist in choosing function class when using IPM and f(·) when
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using Csiszár’s f -divergence, e.g., overfitting due to too complex function class which may take noises as
signals, misspecification raised by an unsuitable f(·), and potentially expensive time cost for computing
these alternatives. These issues can be left for future work.

Q3. To what extent does your framework allow treatment assignment to depend on the potential outcomes
in the pre-treatment period? One can readily imagine scenarios where the decision to treat is based on
past history. It would be useful to clarify explicitly whether you need to assume treatment is assigned
independently of past outcomes.

Thanks for you insightful question. In principle, our method allows dependency between historical out-
comes and treatment assignment, but to highlight our main idea, we implicitly exclude this situation and
assume that treatment assignment is independent of historical outcomes given covariates and unmeasured
confounders (allowed to be time-variant); see Assumption 1 in our revised paper.

Consider the directed acyclic graph in Figure R.2 where past outcomes at t = t1 < t2 can directly affect
treatment assignment D. Imagine the situation where we do not know the fact that Yt1 → D, and

Yt1 Yt2

X

D

U

Figure R.2: A DAG for (Yt1 , Yt2 , D,X,U). Here, U denotes some unmeasured
confounders, X denotes observed covariates, D denotes the treatment, and Yt1 , Yt2

denotes historical and current outcomes, respectively.

naturally we do not include historical controls as our observed covariates. Accordingly, both historical
outcomes Yt1 and U serve as unmeasured confounders in effect. Our method is still applicable but unable
to use information of Yt1 , leading to efficiency and power loss. To highlight our main contribution, we

decide to rule this situation out by imposing the condition that Y
(d)
tm ⊥⊥ D | (X,U) for d ∈ {0, 1}.

Q4. Relatedly, what specific causal assumptions do you need to make in order to establish Theorem 1? Presum-
ably you are assuming some sort of positivity assumption and SUTVA. You likely do not assume strong
ignorability (i.e. (Y (1), Y (0))and D are conditionally independent given X ) and it may be helpful to point
this out.

We very much appreciate your helpful comments and suggestions. As you suggest, we impose the SUTVA
and consistency assumption to formalize the Rubin causal model; see Lines 88–90. In addition to Assump-
tion 1 of our paper at the first version, we impose the condition that for d ∈ {0, 1}, P (D = d | X) > 0,

and Y
(d)
tm ⊥⊥ D | (X,U).

Notice that our positivity condition is weaker than the conventionally assumed version P (D = d | X,U) >
0 for d = 0, 1. This is indeed not surprising because we also require the transportability condition that
there exists a partition of observable covariate space, and in each local region, confounding effects change
mildly across time; thus, P (D = d | X) > 0 is enough for partial identification.

Q5. How does one set λ in practice (generally) and how did you set it in your experiments? Is it just through
cross-validation?

Thanks for your question. In our experiments, we directly set λ = 1, based on the consideration that
the two terms in Equation 12 are comparable as both of them can be viewed as an empirical risk. We
perform sensitivity analysis of tuning λ in simulation studies, and the results demonstrate that λ = 1 is
an acceptable choice in practice, see the following Table R.2.

How to tune hyperparameters in the causal inference literature remains an important open problem. Cross-
validation is commonly used to select hyperparameters in prediction tasks, but often faces difficulties in
causal tasks; the reason is that the ground truth of treatment effect for each unit (no matter belongs to
the training data or testing data) can never be known, since for each unit only one potential outcome can
be observed.
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Table R.2: MAE (mean±s.d.) of GBCT on the simulated data (ϕ = 1). Scenario I
represents the absence of unmeasured confounding (MAECATT) , whereas II repre-
sents the presence of unmeasured confounding (MAECATE).

λ 0 0.5 1 2 3

I 2.06± 0.34 1.80± 0.17 1.81± 0.10 1.76± 0.08 1.88± 0.18
II 3.89± 0.57 2.32± 0.39 1.71± 0.06 1.78± 0.14 1.82± 0.12

Q6. Does your method provide any uncertainty quantification? As presented, I don’t think it can easily. It
may be useful to compare the proposed method to Bayesian Causal Forests, which does provide a type of
uncertainty quantification while still flexibly targeting the CATE.

Thanks for your question. As you point out, our method cannot provide uncertainty quantification directly,
whereas the confidence interval can be constructed by the Bootstrap procedure. We add this point as one
of the limitations of our method in the discussion, and leave it to the future work.
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