
A Appendix

In this section, we include related proofs, additional simulation plots that demonstrate the necessity
of our proposed debiased causal tree, and a brief introduction to our Supplementary materials.

A.1 Related Proofs

Proof of Theorem 1. By the triangular inequality, we obtain
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By the Cauchy–Schwarz inequality, we further obtain
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Next, we bound
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Choosing CL ⌘ eL(tm�t1), and combining (15)–(17) give
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Proof of Proposition 1. By (10), under the Gaussian specification of working densities,
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Under the unconfoundedness condition, if Yi,t ⇠ Yt with mean µt and variance �2
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We then conclude that
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A.2 Additional Simulation Plots
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Figure 1: The confounding bias on the validation data under different depths of a single causal tree
in the unmeasured confounding scenario. The y-axis represents the empirical confounding biasPq1

j=1

��bbtm( bQj)
��, where { bQj}j denotes the partition of a single tree in GRF or GBCT and bbtm is

defined in Eq. 7. The x-axis represents the depth of the causal tree. The data are generated in the
same way as described in Section 4. The results show that GBCT performs better than GRF at the
single-tree scale in reducing confounding bias.

A.3 Introduction to Supplementary Materials

Supplementary materials contain a more formal version of our response to official reviews from three
anonymous referees and implementation details (including codes) of the data generating process in
this paper.
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