
A Approximate Target Maximum Welfare Minimum Relative Entropy
Equilbiria

We use a Minimum Relative Entropy (RME) (also known as minimum KL divergence)
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jective is similar to Maximum Entropy Correlated Equilibrium (MECE) [48], and the proofs here are
similar to the framework set out there. A drawback of MECE is that it is not easy to determine the
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, to have a global minimum at ✏p = ✏̂p, where

0 < ⇢ < 1 is a hyper-parameter used to control the balance between the distance to the target
distribution and the distance to the target approximation parameter. And µ is for balancing the linear
objective.

A.1 CEs

Theorem 1 (✏-MWMRE CE). The ✏̂-MWMRE CE solution is equivalent to minimizing the loss:
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maximized and the dual variables are being minimized.
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Taking the derivatives with respect to the joint distribution �(a), and setting to zero.
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Noting that the term is minimized when �(a) = 0, and that we can lift the �̂(a) term into the
exponential, we have:
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Taking the derivatives with respect to the approximation parameter ✏p, and setting to zero.
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A.2 CCEs

Theorem 2 (CCE). The ✏̂-MWMRE CCE solution is equivalent to minimizing the loss:

CCE

L = ln

 
X

a2A
�̂(a) exp

✓
CCE

l(a)

◆!
+
X

p

✏
+
p

X

a0
p

CCE

↵p(a
0
p
)� ⇢

X

p

CCE

✏p

With logits defined as:

CCE

l (a) = µ

X

a

W (a)�
X

p,a0
p

CCE

↵p(a
0
p
)
CCE

Ap(a
0
p
, a)

And primal variables defined:

CCE

�(a) =
�̂(a) exp

⇣CCE

l(a)
⌘

P
a2A

�̂(a) exp
⇣CCE

l(a)
⌘

CCE

✏p = (✏̂p � ✏
+
p
) exp

0

@�1

⇢

X

a0
p

CCE

↵p(a
0
p
)

1

A+ ✏
+
p

Proof. Similar proof to Theorem 1.

B Unit Variance Scaling

The inputs are preprocessed so that the network does not need to learn to be invariant to the offset or
scale. This is achieved by using a zero-mean offset, and normalizing by an m-norm, scaled with a
constant Zm. This constant is chosen such that the variance of the elements is one.
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Some scale factors are:

Z� = |A|

s
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p
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The constant, Z� , of the joint is derived from the variance of elements of a flat Dirichlet distribution.
The constant, Z2, of the the L2 ring is derived from the mean of the Chi-Squared distribution.

C Equivariant Pooling Functions

Functions which maintain equivariance over player and strategy permutations are useful building
blocks for neural network architectures. These comprise of two components; (i) an equivariant
pooling function �, such as mean sum, min, or max, and (ii) the reduction dimensions.

An equivairant pooling function has three properties: (i) it collapses one or more of the dimensions
of a tensor, (ii) the operation is invariant to the order of the elements in the collapsed dimensions, and
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Figure 5: Equivariant Pooling Functions, mapping an input I(a1, a2) to an output O(a1, a2). Swap-
ping the second and third row (for example) of the input results in the same swap in the outputs.

(iii) the operation is equivariant to the order of the elements in the non-collapsed dimensions. For
example, the reduction

P
a2

G1(a1, a2) = R1(a1) (i) reduces the dimensionality from |A1|⇥ |A2|
to |A1|, (ii) reordering the columns of G1(a1, a2) does not change the calculation, but (iii) reordering
the rows of G1(a1, a2) results in an equivariant output, where R1(a1) is reordered in the same way.

Such combinations of pooling functions and reduction dimensions can be combined to construct
a network that is equivariant to strategy and player permutation. Consider several such pooling
functions composed together (Figure 5).

C.1 Payoffs to Payoffs

Some equivariant functions which map payoff structures to payoff structures are:
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If all players have an equal number of strategies, for some primitives (Equations (18e)-(18l)), weights
can be shared over all q 2 [1, N ] because of symmetry.

C.2 CCE Duals to CCE Duals

All equivariant CCE dual pooling functions are given below. Equations (19c) and (19d) may only be
used for cube shaped games.
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Table 3: Possible Neural Equilibrium Solver solution parameterizations.
Gp(a) �̂(a) ✏̂p ✏̂+ W (a) ⇢ µ

ME ⇠ Lm
1

|A| 0 Zm 0 � 1 0
MT ⇠ Lm �̂(a) 0 Zm 0 � 1 0
MU ⇠ Lm

1
|A| 0 Zm

P
p Gp(a) � 1 � 1

MWME ⇠ Lm
1

|A| 0 Zm ⇠ Lm � 1 � 1

MRE ⇠ Lm ⇠ Dir(1) 0 Zm 0 � 1 0
MS ⇠ Lm

1
|A| �Zm Zm 0 � 1 0

✏̂p-ME ⇠ Lm
1

|A| ⇠ U(�Zm, Zm) Zm 0 � 1 0

✏̂p-MWME ⇠ Lm
1

|A| ⇠ U(�Zm, Zm) Zm ⇠ Lm � 1 � 1
✏̂p-MRE ⇠ Lm ⇠ Dir(1) ⇠ U(�Zm, Zm) Zm 0 � 1 0

D Experiment Architecture and Hyper-Parameters

The architecture and hyper-parameters were chosen from a coarse sweep. The performance of
architecture was not very sensitive to parameterization: similar settings will work well, or even better.
Nevertheless we provide the details of the exact architecture used in the experiments.

D.1 Architecture

All experiments use the same network architecture, with either CCE or CE dual parameterization,
implemented in JAX [5] and Haiku [25]. We used pooling functions (Equations (18a)-(18d) and
(18k)-(18l)) for the payoffs to payoffs layers, and used all the pooling functions for dual layers. For
� we used both mean and max pooling together. The we used 5 payoffs to payoffs layers, each
with 32 channels, a payoffs to duals layer with 64 channels and 2 duals to duals layers with 32
channels, which we denote [(32, 32, 32, 32, 32), 64, (32, 32)]. The network has 79,905 parameters.
All nonlinearities are ReLUs apart from the final layer where we use a Softplus. Between every layer
we use BatchNorm [29] with learned scale and variance correction. The network was initialized such
that the variance of activations at every layer is unity. This was done empirically by passing a dummy
batch of data through the network and calculating the variance.

D.2 Hyper-Parameters

We used a training batch size of 4096, the Optax [26] implementation of Adam [34] (learning
rate 4 ⇥ 10�4) optimizer with adaptive gradient clipping [6] (clipping 10�3). We used a learning
rate schedule with (iteration, factor) pairs of [(1 ⇥ 105, 1.0), (1 ⇥ 106, 0.6), (4 ⇥ 106, 0.3), (7 ⇥
106, 0.1), (1⇥ 107, 0.06), (1⇥ 108, 0.03)]. We included a weight decay loss (learning rate 1⇥ 10�7).

D.3 Network Parameterizations

Different possible network parameterizations can be found in Table 3.

D.4 Game Distributions

A list of different game distributions can be found in Table 4. The geometric interpretation of the
invariant subspace of games is shown in Figure 6.

D.5 Hardware

We trained our network on a 32 core TPU v3 [33], and evaluated on an 8 core TPU v2 [33]. For
intuition, the 8⇥ 8 network trains at around 400 batches per second (1,638,400 examples per second).
Evaluation is even faster. Bigger games take longer, and scales approximately linearly with the
number of joint actions in the game.
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Table 4: Classes of random games. We consider the three scale and offset invariant classes introduced
in this paper (Section 4.1), and on a subset [50] of GAMUT [47] games using the functions in
parenthesis and parameterized with the -random_params flag.

Name Game Description
L1 L1 Invariant
L2 L2 Invariant

L1 L1 Invariant
D1 Bertrand Oligopoly (BertrandOligopoly)
D2 Bidirectional LEG, Complete Graph (BidirectionalLEG-CG)
D3 Bidirectional LEG, Random Graph (BidirectionalLEG-RG)
D4 Bidirectional LEG, Star Graph (BidirectionalLEG-SG)
D5 Covariance Game, ⇢ = 0.9 (CovariantGame-Pos)
D6 Covariance Game, ⇢ 2 [�1/(N � 1), 1] (CovariantGame)
D7 Covariance Game, ⇢ = 0 (CovariantGame-Zero)
D8 Dispersion Game (DispersionGame)
D9 Graphical Game, Random Graph (GraphicalGame-RG)

D10 Graphical Game, Road Graph (GraphicalGame-Road)
D11 Graphical Game, Star Graph (GraphicalGame-SG)
D12 Graphical Game, Small-World (GraphicalGame-SW)
D13 Minimum Effort Game (MinimumEffortGame)
D14 Polymatrix Game, Complete Graph (PolymatrixGame-CG)
D15 Polymatrix Game, Random Graph (PolymatrixGame-RG)
D16 Polymatrix Game, Road Graph (PolymatrixGame-Road)
D17 Polymatrix Game, Small-World (PolymatrixGame-SW)
D18 Uniformly Random Game (RandomGame)
D19 Travelers Dilemma (TravelersDilemma)
D20 Uniform LEG, Complete Graph (UniformLEG-CG)
D21 Uniform LEG, Random Graph (UniformLEG-RG)
D22 Uniform LEG, Star Graph (UniformLEG-SG)

Table 5: Payoffs for two games that show that maximum welfare cannot be discovered via a MW
objective to the distribution given by a softmax of welfare. Both games are symmetric, payoffs are
given for the row player

(a) CE MW Counterexample

1 2 3 4
1 -4 2, -2 -999 -999
2 -2, 2 1 -999 -999
3 -999 -999 -3 2, -2
4 -999 -999 -2, 2 1.1

(b) CCE MW Counterexample

1 2 3 4
1 2 0 0 0, 2
2 0 3 0, 3 -10, 7
3 0 3, 0 -10 -10, -6
4 2, 0 7, -10 -6, -10 0

E Relative Entropy and Welfare Objectives

Any solution can be realised by some relative entropy objective, since if a joint distribution �(a) is
a (C)CE, then the solution with a relative entropy objective to �̂(a) = �(a) itself is optimised by
�(a). One might imagine therefore that a relative entropy objective could be chosen to induce a
maximum welfare solution, based on the payoffs. If possible, this would allow the MWMRE to be
simplified. However, it is not straightforward to determine a priori which relative entropy objective(s)
will lead to the maximum welfare. This means that relative entropy objectives are insufficient for
finding Maximum Welfare solutions.

For example, consider a welfare W (a) =
P

p
Gp(a). We might try to induce a welfare maximising

solution by choosing a target joint �̂(a) = limT!1 SoftMax(TW (a)), where T is the temperature
parameter. Finding a CE that minimizes relative entropy to �̂ would place high mass on the highest
welfare joint action, but is not equivalent to maximizing the linear objective

P
a
�(a)W (a), for either

CCEs or CEs.

21



Figure 6: Shows 128 samples of payoffs for player 1 in 3 ⇥ 1 shaped games, under four different
distributions. A 3 ⇥ 1 game is not theoretically interesting, but is used here because visualizing
above 3 dimensions is difficult. Normalizing by an offset to result in zero-mean payoffs, and by a
positive scale to result in unit norm payoffs, is geometrically the surface of an (|A|� 1)-ball. It is
straightforward to uniformly sample over such a space. Furthermore, no interesting game structure is
lost by only considering this subspace, because offset and positive scale transformations are invariant
transformations. It is easy to map any payoff to this invariant subspace, so the neural network can
handle any game of appropriate shape at test time. Meanwhile, a naive sample method, such as
uniformly sampling payoffs is an unwieldy input for a neural network to decode.

Consider game (a) in Table 5. This game consists of two games of chicken side-by-side, which are
mutually incompatible (i.e. the players must co-ordinate to play the same game of chicken to avoid a
very large negative payoff for both). The softmax relative entropy objective will prefer the action pair
(4, 4) over all others, as it gives slightly higher payoffs than (2, 2). Notice that a CE that recommends
(4, 4) must also recommend the action pair (4, 3) some of the time in order to disincentivise the row
player from deviating from action 4 to action 3. Similarly, a CE that recommends (2, 2) must also
recommend (2, 1) some of the time to disincentivise the row player from deviating from action 2 to
action 1.

Crucially, because (1, 1) has a lower payoff for the row player than (3, 3), in CEs consisting (2, 2) the
mediator doesn’t have to recommend (2, 1) as often as it has to recommend (4, 3) to form an effective
disincentive. The result is that a CE that plays exclusively the joint actions (1, 2), (2, 1) and (2, 2)
can achieve higher welfare than any that plays (4, 4), despite never playing the welfare maximising
joint action.

Game (b) in Table 5 provides a counterexample for the CCE case. It works in a similar way to the CE
counterexample: there are two high welfare joint strategies, (1, 1) and (2, 2). The latter has higher
welfare, but if played too much a deviation to strategy 4 is incentivised. In the limit of T , the relative
entropy objective selects whichever equilibrium has the highest probability of the max-welfare joint.
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To disincentivse the row player’s deviation to strategy 4, the column player must either: play only
strategies 1 and 4, because the strategies 1 and 4 have the same payoff for the row player, or play
strategy 3 sufficiently frequently that the benefit of deviating from strategy 2 to strategy 4 is nullified.

The first option gives rise to the max-welfare CCE, which plays (1, 1) with probability 1. The second
gives rise to the CCE that plays (2, 2) with the highest possible probability: 0.2. It plays (2, 3) and (3,
2) with probability 0.4 each. This is chosen by the relative entropy objective, but gives each player an
average payoff of 1.8, which is equal to the payoff for deviating to action 4 in this equilibrium, but
lower than the payoff of (1, 1).
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