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Abstract

Understanding the consequences of mutation for molecular fitness and function
is a fundamental problem in biology. Recently, generative probabilistic models
have emerged as a powerful tool for estimating fitness from evolutionary sequence
data, with accuracy sufficient to predict both laboratory measurements of function
and disease risk in humans, and to design novel functional proteins. Existing
techniques rest on an assumed relationship between density estimation and fitness
estimation, a relationship that we interrogate in this article. We prove that fitness is
not identifiable from observational sequence data alone, placing fundamental limits
on our ability to disentangle fitness landscapes from phylogenetic history. We show
on real datasets that perfect density estimation in the limit of infinite data would,
with high confidence, result in poor fitness estimation; current models perform
accurate fitness estimation because of, not despite, misspecification. Our results
challenge the conventional wisdom that bigger models trained on bigger datasets
will inevitably lead to better fitness estimation, and suggest novel estimation
strategies going forward.

1 Introduction

The past decades have witnessed a tremendous increase in the scale of genome sequence data available
from across life. Recently, methods for estimating molecular fitness using generative sequence models
have seen widespread success at translating this evolutionary data into predictions of the functional
consequences of mutation. Such models have been shown to accurately predict the outcomes of
experimental assays of protein function [23, 44, 36], and have been applied to infer 3D structures
of RNA and protein [35, 56] and to design novel proteins [50, 47, 33]. The models have also been
used to predict whether human mutations are pathogenic, directly informing the diagnosis of genetic
disease [19]. In this paper, we investigate how and why generative sequence models fit to evolutionary
sequence data are successful at estimating molecular fitness, and how they might be improved and
generalized going forward.

Existing approaches to fitness estimation with generative sequence models rest on an assumed rela-
tionship between density estimation and fitness estimation. Given a dataset of sequences X1, . . . , XN ,
assumed to be drawn i.i.d. from some underlying distribution p0, fitness models proceed by (1)
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X1
<latexit sha1_base64="GMcOKVmvwmvqmGDsczkgBHPdu4Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh07f65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHcL42E</latexit>

X2
<latexit sha1_base64="30vwItq6FO2Eh+k1NentqlVA3SE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh06/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPds42F</latexit>

X3
<latexit sha1_base64="gDVFusNSVCdVPb+V0cF1j7bED74=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3Xf69X654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF75mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6Rdq3r1au3uotK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w/fN42G</latexit>

T = 0
<latexit sha1_base64="K26ZPX88FWRBcNSVwgngYfJXu2U=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXis0LSFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb2dtfWNza7uwU9zd2z84LB0dN3WSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWO7md+6wmV5olsmHGKQUwHkkecUWMlv0Fuidsrld2KOwdZJV5OypCj3it9dfsJy2KUhgmqdcdzUxNMqDKcCZwWu5nGlLIRHWDHUklj1MFkfuyUnFulT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCa6CSZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/RhuAtv7xKmtWKd1mpPl6Va3d5HAU4hTO4AA+uoQYPUAcfGHB4hld4c6Tz4rw7H4vWNSefOYE/cD5/AE0vjbE=</latexit>

T (4)
<latexit sha1_base64="iWFNyXWq/Buw6JDhwLpoTtHx8Hg=">AAAB63icbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJHokevGICSAJbEi3dKGh7W7argnZ8Be8eNAYr/4hb/4bu7AHBV8yyct7M5mZF8ScaeO6305hY3Nre6e4W9rbPzg8Kh+fdHWUKEI7JOKR6gVYU84k7RhmOO3FimIRcPoYTO8y//GJKs0i2TazmPoCjyULGcEmk9rVxuWwXHFr7gJonXg5qUCO1rD8NRhFJBFUGsKx1n3PjY2fYmUY4XReGiSaxphM8Zj2LZVYUO2ni1vn6MIqIxRGypY0aKH+nkix0HomAtspsJnoVS8T//P6iQlv/JTJODFUkuWiMOHIRCh7HI2YosTwmSWYKGZvRWSCFSbGxlOyIXirL6+Tbr3mXdXqD41K8zaPowhncA5V8OAamnAPLegAgQk8wyu8OcJ5cd6dj2VrwclnTuEPnM8f6syNfw==</latexit>

T (5)
<latexit sha1_base64="NX5j7sy7/fu4ruxoCSbUg/jTK9k=">AAAB63icbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLGj0SvXjEBIQENqRbutDQdjdt14Rs+AtePGiMV/+QN/+NXdiDgi+Z5OW9mczMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+PHnWUKELbJOKR6gZYU84kbRtmOO3GimIRcNoJJneZ33miSrNItsw0pr7AI8lCRrDJpFb16nxQrrg1dw60SrycVCBHc1D+6g8jkggqDeFY657nxsZPsTKMcDor9RNNY0wmeER7lkosqPbT+a0zdGaVIQojZUsaNFd/T6RYaD0Vge0U2Iz1speJ/3m9xIQ3fspknBgqyWJRmHBkIpQ9joZMUWL41BJMFLO3IjLGChNj4ynZELzll1fJY73mXdTqD5eVxm0eRxFO4BSq4ME1NOAemtAGAmN4hld4c4Tz4rw7H4vWgpPPHMMfOJ8/7FGNgA==</latexit>

X4
<latexit sha1_base64="0XFXSsQ1j8S/4Lxmh88nkEDjFaA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSQ6df65fKbsWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGupohE3fjY/dUrOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tO0YbgLb+8SlrVindZqd7XyvWbPI4CnMIZXIAHV1CHO2hAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AHgu42H</latexit>

X5
<latexit sha1_base64="ljXs6//uhupgy9k15LZ37jDRsp8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9tHuXvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindeqd5flGs3eRwFOIYTOAMPrqAGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QPiP42I</latexit>

A
X5 ⇠ p

1
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Figure 1: JFPM illustration. (A) Example JFPM for N = 3 observed sequences. (B) Generative
process for sequences at each node of the phylogeny H. (C) Above: Stationary distribution p

1 and
kernel density estimates of the distribution of samples p0 from an OUT model for increasing N .
Below: A subset of the phylogeny. (D) Same as (C) for an independent sample of H.

fitting a probabilistic model q✓ to X1:N and (2) using the inferred density log q✓̂(x) ⇡ log p0(x)
as an estimate of the fitness f(x) of a sequence x; this estimate in turn is used to predict other
covariates such as whether the mutated sequence is pathogenic [23, 44, 19]. Innovation in fitness
models has come out of a trend of building increasingly flexible models fit to increasing amounts of
data: simple models that treat each column of a sequence alignment independently were improved
by energy-based models that accounted for epistasis [23], which in turn were improved by deep
variational autoencoders [44], which in turn were improved by deep autoregressive alignment-free
models [50, 33, 36]. Naively, one might assume that these improvements have come from obtaining
better and better estimates of the data distribution p0, and improvements will continue with bigger
models and bigger datasets. In this article, we argue that this presumption is incorrect.

Technical summary First, we show that that the true data distribution p0 may not reflect fitness,
and argue instead that we should be focused on estimating another distribution that does, p

1 (the
“stationary distribution”, to be defined below). In particular, we demonstrate that phylogenetic effects
– i.e. the history of how current sequences evolved over time – can “distort” the observed data,
leading to a situation where p0 6= p

1 (Sec. 2). Second, we show in this situation that p
1 and

fitness f are non-identifiable: even with infinite data, there always exists some alternative fitness
function f̃ that explains the same data just as well as f . This sets fundamental limits on what we
can learn about fitness from evolutionary data (Sec. 3). Third, although exact estimation of p

1

is impossible, we show that it is still possible to get closer to p
1 than p0, that is, to find a better

estimator of fitness than the true data density p0. This can be done by fitting to data a parametric
generative sequence model M = {q✓ : ✓ 2 ⇥} that is (approximately) well-specified with respect
to p

1 (i.e. p
1

2 M) but misspecified with respect to the data distribution p0 (i.e. p0 /2 M), thus
illustrating how misspecification can be a blessing rather than a curse (Sec. 4). Fourth, we construct a
hypothesis test to determine whether the blessings of misspecification occur on real data, for existing
fitness estimation models; our test uses a recently developed Bayesian nonparametric sequence model
to construct a credible set for p0 (Sec. 6). Fifth, we apply our test to over 100 separate sequence
datasets and fitness estimation tasks, to conclude that existing fitness estimation models systematically
outperform the true data distribution p0 at estimating fitness (Sec. 7). The takeaway is that better
fitness estimation (i.e. better p

1 estimation) will not come from better density estimation (i.e. better
p0 estimation); bigger models and bigger datasets are not enough. Instead, better fitness estimation
can come from developing models that describe p

1 better but the data density p0 worse.

2 Models of Fitness and Phylogeny

In this section we illustrate how p0 may not accurately reflect the true fitness landscape, by analyzing
a generative model of sequence evolution that takes into account not only fitness but also phylogeny.
Our model is general: it allows for arbitrarily complex epistatic fitness landscapes, and recovers
standard phylogenetic and fitness models as special cases. Our concerns about the effects of phylogeny
on fitness estimation are motivated by the widespread use – and trust – of phylogenetic models for
evolutionary sequence data (phylogenetic models are far more widely applied than fitness models) [21,
12, 17, 18]. Note, however, that phylogeny is only one reason why p0 may not not reflect the true
fitness landscape, and that our later results on the benefits of misspecification in fitness models
(Sec. 4) do not depend on the specific cause of mismatches between p0 and the fitness landscape.
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Joint fitness and phylogeny models We define “joint fitness and phylogeny models (JFPMs)” using
two elements: a description of how individual species (or populations or individuals) change over
time, which depends on fitness f , and a description of the species’ relationship to one another, a
phylogeny H. To describe the dynamics of individual species, let P

⌧ (x, x0) denote the probability
of sequence x0 evolving into sequence x after time ⌧ ; in particular, P

⌧ (x, x0) is assumed to be the
transition probability of an irreducible continuous-time Markov chain defined over sequence space X .
For example, under neutral evolution (i.e. without selection based on fitness), P

⌧ (x, x0) may follow
a Jukes-Cantor model [18]. With selection, for simple population genetics models (e.g. Moran or
Wright processes), Sella and Hirsh [49] demonstrate under general conditions that for any x0,

P
⌧ (x, x0)

⌧!1
����! p

1(x) =
1

Z
exp(�f(x)) (1)

where f(x) is the log fitness of the sequence x and � > 0 is a constant (Appx. B). The implication
of Eqn. 1 is that the stationary distribution of the evolutionary dynamics follows a Boltzmann
distribution, with energy proportional to the log fitness of the sequence. Estimating p

1 is of
interest because it provides a direct estimate of log fitness, up to a linear transform, since f(x) =
�

�1(log p
1(x) + log Z). (N.b. in the remainder of the paper, when we say “estimate fitness” we

mean, implicitly, “estimate log fitness up to a linear transform”.)

The sequences we observe, however, do not necessarily come from the stationary distribution. Instead,
they are correlated with one another according to their evolutionary history. This is described by
a phylogeny H = (V, E, T ) consisting of a directed and rooted full binary tree with edges E and
nodes V , along with time labels for the nodes, T : V ! R+ (Fig. 1A). Each node v is associated
with a sequence Xv , drawn as Xv ⇠ P

�t(x, Xv0), where Xv0 is the sequence of the parent node, v

is the child node, and �t = T (v0) � T (v) is the length of the edge between them (Fig. 1B). The root
sequence is drawn from p

1. The observed datapoints X1, . . . , XN correspond to the leaf nodes. In
general we will assume all leaves are observed at effectively the same time, the present day T = 0.

Special cases Standard probabilistic phylogenetic models ignore fitness and assume
Assumption 2.1 (Pure phylogeny models (PMs)). Constant fitness: f(x) = C.
Example models that fit this form include most of those used in BEAST [14], MrBayes [25],
RaxML [51], etc. Standard probabilistic fitness models, on the other hand, ignore phylogenetic
history and assume that the stationary distribution has been reached,
Assumption 2.2 (Pure fitness models (FMs)). Let ⌧i be the distance in time between observed
sequence Xi and its parent node. Take ⌧i ! 1 for all i, which implies that

Xi
iid
⇠

1

Z
exp(�f(x)) for i 2 {1, 2, . . .}. (2)

The key implication of this assumption is that density estimation and fitness estimation are linked:
the data follows X1, . . . , XN ⇠iid p0 = p

1, and so if we can estimate p0 we can estimate the fitness.
Example models include EVMutation [23], DeepSequence [44], EVE [19], etc. Note although
Assumptions 2.1 and 2.2 do not conflict directly, conclusions made based on them conflict in practice:
PMs typically infer finite and different lengths for branches (i.e. ⌧i < 1), while FMs typically infer
differences in fitness (i.e. f(x) 6= C), even when applied to the same dataset.

1D Example If Asm. 2.2 does not hold, then there is no reason for the distribution of observed
sequences X1, X2, . . . to follow p

1. We illustrate this with an example, the most widely used JFPM
that does not use Assumptions 2.1 or 2.2: the Ornstein-Uhlenbeck tree (OUT) model [18, 8]. In
this model, X is continuous, i.e. X 2 R, and evolves on a quadratic fitness landscape of the form
f(x) / (x�µ)2+C according to the dynamics P

⌧ (x, x0) = Normal
⇣
x0e

� 1
2 ⌧ + µ, �

2(1 � e
�⌧ )

⌘
.

The stationary distribution p
1 is Normal(µ, �

2). One can show (Appx. C.1) that for any H,
Proposition 2.3 (OUT observations). The distribution of observed genotypes X1:N is drawn from a
multivariate normal distribution with mean µ~1N and covariance ⌃ where

⌃ij := �
2 exp(�

1

2
tij(H))) for i, j 2 {1, . . . , N}, (3)

and tij(H) is the total time of the shortest path between leaves i and j along the phylogeny H.
We drew samples from the OUT with a Kingman coalescent prior on H ([3] Def. 2.1) and plotted
their density (Fig. 1C). Even as N ! 1, the distribution of samples does not follow p

1. Moreover,
rerunning the process with a new sample from the prior yields a very different distribution (Fig. 1D).
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3 Non-identifiability

In this section we investigate whether, given infinite sequence data, it is possible to infer fitness f

without Asm. 2.2, and conversely, whether it is possible to infer phylogeny H without Asm. 2.1. That
is, we are interested in whether fitness and phylogeny are identifiable in general JFPMs. We conclude
they are not: given infinite data generated with any f and H, there exists some alternative f̃ and H̃,
where H̃ satisfies Asm. 2.2, that explains the data equally well.

Naively, this result may be surprising: in FMs, each sequence is drawn independently, i.e.
Xi ?? Xj |H, f , while in JFPMs and PMs there is (in general) correlation between sequences, i.e.
Xi 6?? Xj |H, f . One might then hope that examining correlations between sequences would enable
us to infer whether Asm. 2.2 holds. However, we can show that these correlations are uninformative
due to a symmetry in JFPMs, exchangeability.
Assumption 3.1 (Exchangeability). Let m(X1, X2, . . .) denote the marginal probability of an
infinite set of sequences X1, X2, . . . integrating over all phylogenies, i.e. m(X1, X2, . . .) =R

p(X1, X2, . . . |H)p(H)dH. Then, for any permutation ⇡ of the integers,

m(X1, X2, . . .) = m(X⇡(1), X⇡(2), . . .). (4)
Exchangeability says that if we had observed the sequences in a different order, it would not change
their probability. Exchangeability is a ubiquitous assumption in machine learning and statistics
models, and its application depends primarily on the information available in a dataset: it is a sensible
assumption whenever the ordering of the datapoints provides no useful information. In typical
datasets used for fitness estimation, sequences are separated by millions of years of evolution, and
are thus all effectively observed at the same time: the present day, T = 0. In other words, there is
no a priori way of ordering the sequences in the dataset, and so we must assume exchangeability.
Standard priors on phylogenetic trees, such as the Kingman coalescent, are explicitly constructed to
enforce exchangeability [3, 14].

Exchangeability implies that fitness and phylogeny are not identifiable. Even if X1, X2, . . . are
generated from a JFPM with a finite branch length phylogeny H, we can describe the same data just
as well using an FM model with an infinite branch phylogeny H̃:
Theorem 3.2 (Non-identifiability). Assume X1, X2, . . . satisfy Assumption 3.1. Then with probability
1 there exists some function f̃ such that

Xi
iid
⇠ p0(x) =

1

Z̃
exp(� log f̃(x)) for i 2 {1, 2, . . .}.

Proof. Applying de Finetti’s Theorem ([29], Thm. 11.10), a.s. there exists a random measure G

such that for i 2 {1, 2, ...}, Xi
iid
⇠ G. Let pG(x) be the pmf of G. (We assume x is a finite discrete

sequence; we can also use continuous x assuming the pdf pG(x) exists.) Set f̃(x) = [pG(x)]1/� .
This result says that the observed sequences from an exchangeable JFPM, X1, X2, . . ., are precisely
i.i.d. samples from some p0. Although in the standard tree representation Xi 6?? Xj |H, f , there must
be some alternative description of the same process where Xi ?? Xj |H̃, f̃ . Fitness and phylogeny are
thus non-identifiable: data generated from a JFPM with fitness f and phylogeny H can be described
just as well using f̃ and H̃, and vice versa. We emphasize that this non-identifiability result is
highly general, and does not depend on the specific choice of evolutionary dynamics P

⌧ , only on the
assumption of exchangeability.

The biological intuition behind Thm. 3.2 is that if two sequences are similar to each other and distant
from a third, they may be similar either because they are closely related (i.e. the distance ⌧ to the most
recent common ancestor is small) or because they are in a local maximum of the fitness landscape.
Without further assumptions, we cannot tell the difference between these two explanations. The
machine learning intuition is that evolution, as described by a JFPM, is in effect a Markov chain
Monte Carlo process whose stationary distribution gives the fitness. However, the samples we observe
may not be fully independent: each pair of samples was initialized from the same point (the most
recent common ancestor), and the burn-in since that point may not be sufficiently long. Without
independent samples, our estimate of the stationary distribution will be biased.

Fitness inference as hyperparameter inference While general, Thm. 3.2 is not constructive, and
does not tell us what the distribution p0 actually is, or how exactly it differs from p

1. Thm. 3.2 also
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Figure 2: Alternative explanations for the success of fitness estimation methods. (A) Setup in
which Hypothesis 1 would hold true. (B) Setup in which Hypothesis 2 would hold true. (C) Biological
intuition for the benefits of misspecification (Hypothesis 2).

leaves unclear how much we need to know to learn the fitness landscape: could we infer fitness f if
we knew the parametric form of p

1, i.e. if we had some model M and knew that p
1

2 M? What if
we also knew the underlying phylogeny H? In the long branch limit (Asm. 2.2), fitness is identifiable
if H is known; if M is also known, learning fitness is a matter of inferring model parameters. In
the limit where all the branch lengths in the phylogeny are zero, the distribution of observations
from a JFPM reduces to X1 ⇠ p1 and X1 = X2 = X3 = . . .. Here fitness is non-identifiable
even if H and M are known; learning fitness is a matter of learning from a single sample. In the
realistic intermediate branch length case, if H and M are known, we will show that learning fitness
is essentially a matter of hyperparameter rather than parameter inference.

We demonstrate this last claim in the context of the OUT example, by approximating the OUT
model as a Gaussian process latent variable model (GPLVM). We find that fitness only appears as a
hyperparameter of the derived GP, not as a parameter. The GPLVM has latent variables Z1, Z2, . . .

that lie on the hyperbolic plane H, and uses the Gaussian process kernel k(·, ·) = exp(�d(·, ·)),
where d(·, ·) is a distance metric over H. Let W1(·, ·) be the Wasserstein metric for distributions over
infinite matrices, i.e. over R1⇥1, using the sup norm on matrices.
Theorem 3.3 (GPLVM approximation of OUT). Assume a prior over phylogenies H that is ex-
changeable in its leaves and where the minimum time between any pair of nodes is greater than
⌘ > 0 with probability 1. Define the leaf distance matrix ⌫ij = log( 1

2 tij(H)). For any ✏ > 0, there
exists a.s. a GPLVM of the form,

G ⇠ G, s ⇠ GaussianProcess(µ, �
2
k(·, ·)),

Zi
iid
⇠ G for i 2 {1, 2, . . .},

Xi = s(Zi),

(5)

where G is a random measure over H, such that W1(p(⌫), p(⌫̃)) < ✏, where ⌫̃ij = log(d(Zi, Zj)).

If W1(p(⌫), p(⌫̃)) = 0, the OUT and GPLVM produce identical distributions over X1, X2, . . . a.e..
The proof is in Appx. C.2, and uses the embedding of Sarkar [48]. This result says that, by embedding
phylogenies H in a metric space, we can approximate an OUT arbitrarily well with a GPLVM; as the
Wasserstein bound gets smaller, the distribution of covariance matrices of the two models get closer.
In the GPLVM, the observations are conditionally independent, Xi ?? Xj |s, G, in line with Thm. 3.2.
The phylogeny H enters the GPLVM only through the latent space embedding Z1, Z2, . . .. Learning
phylogeny, given the fitness landscape, is thus essentially a matter of inferring latent variables [44, 13].
The fitness landscape enters the GPLVM only through the prior on the Gaussian process (i.e. through
µ and �). Inferring fitness given phylogeny is thus essentially a matter of inferring hyperparameters.
This is both good and bad news for fitness inference. On the one hand, hyperparameters are often
learned in practice, and doing so can yield substantially better predictions, so we should be able
learn something about µ and � given data ([58], Chap. 5). On the other hand, hyperparameters are
in general (though not always) non-identifiable, and therefore so is fitness [34]. Ho and Ané [22]
describe non-identifiability conditions for the OUT in particular. We conclude that even when H and
M are known, fitness inference in JFPMs is fundamentally challenging.

4 Benefits of misspecification

We have demonstrated that a plausible biological mechanism – namely, phylogenetic effects – can
produce a data distribution p0 that does not reflect fitness, and can make exact inference of fitness
impossible even given infinite data. Nonetheless, the practical success of fitness estimation methods
suggest it is possible to at least approximate fitness landscapes from observational sequence data.
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Recall that existing methods proceed by fitting a probabilistic model q✓ 2 M = {q✓ : ✓ 2 ⇥} to data
X1:N , typically via maximum likelihood estimation or approximate Bayesian inference, and then
using the predicted log density log q✓̂(x) as an estimate of the fitness of a sequence x. Why is this
approach empirically successful? In this section we consider two hypotheses, either of which may
hold true in theory. In Secs. 6-7 we develop and apply tests to evaluate them on real data.

Note that our results in this and the following sections are independent of the specific evolutionary
mechanisms that generate a mismatch between p0 and p

1, i.e. they are not specific to phylogenetic
effects or JFPMs, nor do they even depend on the existence of a stable reproductive fitness function
f over evolutionary time. We can, in fact, redefine p

1 to be an arbitrary “target distribution”, with
log p

1 proportional to any chosen measure of molecular fitness or function (such as enzyme activity,
fluorescence, etc.). For the sake of concrete illustration, however, we will continue to focus on JFPMs
as our primary example of why the data distribution, p0, may not equal the target distribution we
want to estimate, p

1.

We consider two hypotheses for the empirical success of existing fitness estimation methods.
Hypothesis #1 (informal). Fitness estimation methods succeed by finding q✓̂ ⇡ p0, since for all
practical purposes on real data, p0 = p

1.

This hypothesis would make sense, in JFPMs, if Asm. 2.2 held, i.e. branch lengths were long enough
in real datasets for P

⌧i(x, x0) to be close to its stationary distribution. Under this hypothesis, better
density estimators have been, and will continue to be, better fitness estimators. We should focus on
developing models M that are well-specified with respect to the data, i.e. p0 2 M (Fig. 2A).

Hypothesis #2 (informal). Fitness estimation methods succeed by using models M that are
misspecified with respect to p0, i.e. p0 /2 M. The inferred model q✓̂ is then closer to p

1 than p0 is.

To show this second hypothesis is plausible, we prove that it is guaranteed to hold under general
conditions. We study the projection of p0 onto M via the Kullback-Leibler (KL) divergence, q✓⇤ =
argminq✓2M KL(p0kq✓). The KL projection is relevant because maximum likelihood estimation
minimizes the approximate KL divergence between the data and the model, and the posterior in
Bayesian inference asymptotically concentrates around the maximum likelihood estimator [38].
We thus expect the fit model q✓̂ to be close to q✓⇤ , and get closer with N . Assume that M is
“log-convex”, meaning that for any ✓, ✓

0
2 ⇥ and 0 < r < 1, there exists some ✓

00 such that
q✓00(x) = q✓(x)r

q✓0(x)1�r
/
P

x q✓(x)r
q✓0(x)1�r; examples of log-convex models include the Potts

model, as well as all other exponential family models. Let TV(pkq) be the total variation distance
between p and q, and let kgk1 = supx |g(x)| be the uniform (sup) norm of g.
Theorem 4.1 (Benefits of misspecification). Assume that the model M is log-convex and that q✓⇤

exists and is unique. If the model is “less misspecified” with respect to the stationary distribution p
1

than with respect to the data distribution p0, in the sense that

min
q✓2M

k log q✓ � log p
1

k1 < TV(q✓⇤kp0), (6)

then,
KL(q✓⇤kp

1) < KL(p0kp
1). (7)

However, if the model is well-specified with respect to the data distribution, i.e. p0 2 M, we have,

KL(q✓⇤kp
1) = KL(p0kp

1). (8)

Sec. C.3 contains the proof, and explains how Thm. 4.1 can be extended with more general conditions
(we also emphasize again that the proof does not make any assumption that p0 and p

1 follow a
JFPM). Thm. 4.1 says that if the model is less misspecified with respect to the target distribution
than with respect to the data distribution, then projecting the data distribution onto the model will
yield a distribution q✓⇤ closer to the target distribution. In other words, the best models for fitness
estimation are those at a “sweet spot” of complexity, flexible enough to capture p

1 but not so flexible
as to capture p0.

To understand the biological intuition behind this result, consider a situation where two neutral
mutations with no effect on fitness occur successively at different sites (Fig. 2C). Due to phylogenetic
correlation, there is no observed sequence x

⇤ in which the second mutation is present but not the first,
so an accurate density estimator will find p0(x⇤) ⇡ 0. However, if we can guess correctly that the
fitness landscape is independent across sites, then fitting a site-wise independent model M will imply
the mutation is allowed, q✓⇤(x⇤) > 0, correctly inferring p

1(x⇤) > 0.
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Under Hypothesis 2, progress in the field of fitness estimation has not come from building better
density estimators (Hypothesis 1), but rather from an iterative process of (1) hypothesizing, based
partly on biophysical knowledge, models that are approximately well-specified with respect to p

1

but poorly specified with respect to the data distribution p0, and then (2) comparing their density
estimates against experimental fitness measurements. We will show that on real data, Hypothesis 1
can often be rejected in favor of Hypothesis 2.

5 Related Work

Efforts to account for the effects of phylogeny in fitness estimation have a long history [32]. Practical
generative sequence models that explicitly account for both epistatic fitness landscapes and phylogeny
have long been sought, but stymied primarily by computational challenges [28, 46]. In their place,
a variety of non-generative (and often heuristic) methods for correcting for phylogeny have been
proposed, including data reweighting schemes [35, 46], data segmentation schemes [10], post-
inference parameter adjustments [16], covariance matrix denoising methods [42], simulation based
statistical testing [45], and more. In this article, we show that deconvolving fitness and phylogeny
is not just computationally hard, but also in general statistically impossible: fitness and phylogeny
are non-identifiable. We further show that use of a misspecified parametric model can on its own
(without further corrections) partially adjust for phylogenetic effects.

Our results also intersect with the literature on robust statistics: we can think of the observed data
distribution p0 as a “distorted” version of the true distribution of interest p

1. However, in typical
robust inference frameworks (e.g. Huber’s epsilon contamination model), the observed distribution
differs from the true distribution by the addition of outliers [24, 52]. Our setup is, in some sense, the
opposite: inliers are deleted, as phylogenetic correlations can result in an effective support of p0 that
is smaller than that of p

1 (Fig. 1CD).

6 Diagnostic Method

In this section, we develop diagnostic methods to discriminate between Hypothesis 1 and Hypothesis
2 (Sec. 4) based on observational sequence data and experimental fitness measurements, and validate
these diagnostics in simulation. Recall that under Hypothesis 2, the estimate q✓̂ from a parametric
fitness model is a better estimate of fitness than the true data density p0, while under Hypothesis 1,
p0 is better. Discriminating these two hypotheses on real data is nontrivial because we do not have
access to p0. Ideally, then, a diagnostic test would evaluate the probability that the true density p0

outperforms q✓̂ at predicting fitness, taking into account uncertainty in what p0 could actually be,
given the data. To accomplish this, we compute a posterior over p0 using a Bayesian nonparametric
sequence model. In particular, we apply the Bayesian embedded autoregressive (BEAR) model,
which can be scaled to terabytes of data and satisfies posterior consistency ([2], Thm. 35):
Theorem 6.1 (Summary of BEAR posterior consistency). Assume p0 is subexponential, i.e. for some
t > 0, EX⇠p0 [exp(t|X|)] < 1, where |X| is the length of sequence X . Assume the conditions on
the prior detailed in Amin, Weinstein and Marks [2]. If X1, X2, . . . ⇠ p0 i.i.d., then for M > 0
sufficiently large and ✏ 2 (0, 1/2) sufficiently small,

⇧BEAR(B(p0, MN
�✏)|X1:N )

N!1
����! 1

in probability, where B(p, r) is a Hellinger ball of radius r centered at p, and ⇧BEAR(·|X1:N ) is the
BEAR posterior.

Crucially, this result implies that the BEAR posterior will converge to effectively any value of p0, no
matter what p0 is (unlike a parametric model’s posterior). Moreover, BEAR quantifies uncertainty in
its estimates, giving the range of possible values of p0 that are consistent with the evidence.

We construct our diagnostic test by comparing the fitness estimation performance of q✓̂ to the range
of possible performances of p0 estimated by BEAR. Let Sf (p) be a scalar score evaluating how
accurately a density p predicts fitness f . In practice, Sf will be based on experimental and clinical
measurements of quantities directly related to fitness.
Diagnostic test (Test Hypothesis 1 vs. Hypothesis 2.) Hypothesis 1 H1 : Sf (q✓̂) < Sf (p0).
Hypothesis 2 H2 : Sf (q✓̂) > Sf (p0). Accept Hypothesis 2 at significance level ↵ > 0 if

⇧BEAR(Sf (q✓̂) > Sf (p)|X1:N ) > 1 � ↵. (9)
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Figure 3: BEAR diagnostic applied to simulated data. (A) Scenario 1. Spearman correlation
between the maximum likelihood SWI model and the true fitness Sf (q✓̂), compared to the BEAR
posterior distribution over Sf (p). Quantiles and 95% credible interval shown with green box and
whisker. Points above (below) the whiskers correspond to SWI models that significantly outperform
(underperform) the true data distribution. (B) Same as A, for Scenario 2. (C) Perplexity on heldout
data of the BEAR and the SWI models in Scenario 2. Thick line corresponds to the average over 10
individual simulations (thin lines). (D) Same as C, comparing the KL divergence to p

1.

Accept Hypothesis 1 at significance level ↵ if

⇧BEAR(Sf (q✓̂) < Sf (p)|X1:N ) > 1 � ↵. (10)

So long as Sf (p) is a well-behaved function of p (in particular, so long as Sf is continuous in a
neighborhood of p0 with respect to the topology of convergence in total variation), Thm. 6.1 implies
that this diagnostic test will be asymptotically consistent, in the sense that it converges to the correct
hypothesis in probability.

Simulations We next evaluate the performance of our diagnostic test on simulated data. We considered
two scenarios, the first in which Hypothesis 1 holds, and the second in which Hypothesis 2 holds.
In both, we let M be a site-wise independent (SWI) model, in which each position of the sequence
is drawn independently, i.e. Xl ⇠ Categorical(vl) for l 2 {1, . . . , |X|}. The parameter vl is in the
simplex �B , where B + 1 is the alphabet size. (Further details in Appx. D.) In Scenario 1, the true
data are generated according to a Potts model and p0 = p

1. In this scenario, the SWI model is
misspecified, and misspecification is bad: using a more flexible model will produce an asymptotically
more accurate estimate of p

1. We find that our diagnostic test asymptotically correctly accepts
Hypothesis 1, in line with Thm. 6.1 (Figs. 3A and 7A). In Scenario 2, the true data are generated
according to a JFPM with finite branch lengths, and p

1
2 M while p0 /2 M. The mutational

dynamics P
⌧ follow the Sella and Hirsh [49] process. The phylogeny H is drawn from a Kingman

coalescent. In this scenario, the SWI model is again misspecified, but misspecification is good: while
the nonparametric BEAR model can achieve better density estimates than the SWI model (Fig. 3C),
the SWI model outperforms BEAR at fitness estimation (Figs. 3D and 8). We find that our diagnostic
test correctly accepts Hypothesis 2 (Figs. 3B and 7B).

A possible point of concern is that the test is poorly calibrated from a frequentist perspective, and
in the low N regime accepts Hypothesis 2 in Scenario 1 more than 100↵% of the time when the
data is resampled from p0 (Fig. 9A). This behavior is common in nonparametric Bayesian tests, and
not necessarily a problem: the test is still valid from a purely Bayesian perspective. Nevertheless,
on real data we will check that we are close to the large N regime by (1) checking that the BEAR
posterior predictive is at least as close to p0 as q✓̂ is (as measured by perplexity on held out data;
Figs. 3C and 9B) and (2) examining the plot of the BEAR posterior over Sf (p) as a function of N

(as in Fig. 3AB), to check that it has converged.

7 Empirical Results

We now evaluate whether existing fitness estimation methods outperform the true data density p0, i.e.
whether we can reject Hypothesis 1 in favor of Hypothesis 2 on real data.

Tasks We consider two key prediction tasks where fitness models are applied in practice. The first
task is to predict whether variants of a protein are functional, according to an experimental assay of
protein function; the metric Sf (·) is the Spearman correlation between p(x) and the assay result [23].
There are typically ⇠1000s of measurements per assay. The second task is to predict whether a
variant of a protein observed in humans causes disease, according to clinical annotations; the metric
Sf (·) is the area under the ROC curve when p(x) is used to predict whether or not a variant is
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Figure 4: Fitness estimation models systematically outperform the data distribution. (A) Results
for the first prediction task, predicting functional measurements in experimental assays. Quantiles and
95% credible interval of the BEAR posterior are shown with the green box and whisker plot. Points
above (below) the whiskers correspond to fitness estimation models that significantly outperform
(underperform) the true data distribution. (B) Results for the second prediction task, predicting variant
pathogenicity in human genes. (C) Convergence of the BEAR posterior with datapoints N , for an
example assay (�-lactamase). (D) Same as C, for another example assay (TIM barrel). (E) BEAR
posterior Spearman (black and green) versus BEAR log likelihood (gray), interpolating between
parametric and nonparametric regimes (low and high h), for an example assay (another �-lactamase
assay). Peak Spearman indicated with vertical green line, peak log likelihood with gray. (F) Same as
E, for another example assay (GAL4 DNA-binding domain).

pathogenic [19]. There are typically only a handful of labels for each gene. For the first task, we
considered 37 different assays across 32 different protein families, and for the second task, 97 genes
across 87 protein families; for each protein family, we assembled datasets of evolutionarily related
sequences, following previous work. Note that across the 37 assays and 97 genes, the data used for
Sf comes from different experiments and different clinical evidence, often collected by different
laboratories or doctors. Thus, our overall conclusions should be robust to the choice of Sf .

Models We considered three existing fitness estimation models: a site-wise independent model (SWI),
a Bayesian variational autoencoder (EVE [19], which is similar to DeepSequence [44]), and a deep
autoregressive model (Wavenet) [50]. Note that SWI and EVE, unlike Wavenet, require aligned
sequences as training data. Details in Appx. E.

Results Applied to the first prediction task, our diagnostic test accepts Hypothesis 2 at significance
level ↵ = 0.025 in 35/37 assays (95%) for SWI, 35/37 assays (95%) for EVE, and 36/37 assays (97%)
for Wavenet (Fig. 4A). Applied to the second prediction task, our diagnostic test accepts Hypothesis
2 at significance level ↵ = 0.025 in 31/97 genes (32%) for SWI and 46/97 genes (47%) for EVE
(Fig. 4B). Thus, fitness estimation models are capable of outperforming the true data distribution
p0. We found evidence for Hypothesis 1 in only a handful of examples: on the first task, Hypothesis
1 was accepted at significance level ↵ = 0.025 in 0/37 assays for SWI, 1/37 assays (3%) for EVE,
and 0/37 assays for Wavenet, while on the second task, Hypothesis 1 was accepted for 5/97 genes
(5%) for SWI and 4/97 genes (4%) for EVE. We confirmed that the diagnostic test was in the large N

regime: BEAR outperformed Wavenet at density estimation, providing better predictive performance
on 27/37 assays (73%) and similar performance on the remaining 10 assays (Fig. 10). (Note that we
cannot do this comparison for SWI or EVE since they are alignment-based [57].) Example plots of
the BEAR posterior’s convergence with N on the first prediction task showed convergence to values
of Sf well below that for parametric fitness estimation models (Figs. 4C and 11-12). Overall, we
conclude that there is strong evidence that existing fitness estimation methods reliably outperform the
true data distribution p0 across a range of datasets and tasks.

To study the tradeoffs between density estimation and fitness estimation in more depth, we smoothly
and nonparametrically relaxed a parametric autoregressive (AR) model (Appx. E.4). We embedded
the AR model (a convolutional neural network) into a BEAR model, and fit the BEAR model with
empirical Bayes. We found evidence that the AR model was misspecified on every dataset, following
the methodology of Amin, Weinstein and Marks [2]: the optimal h selected by empirical Bayes
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was on the order of 1 � 10 in each dataset. Now, in the limit as the hyperparameter h ! 0, the
BEAR model collapses to its embedded AR model; so by scanning h from low to high values we can
interpolate between the parametric and nonparametric regime. We find a smooth tradeoff between
Sf (p) and the likelihood of the data under the BEAR model, with higher h corresponding to better
density estimation but worse fitness estimation (Fig. 4EF and 13). This relationship held across many
datasets: the diagnostic test, evaluated against the AR model (the h ! 0 limit), accepts Hypothesis 2
in 28/37 assays (76%), but Hypothesis 1 in only 6/37 (16%) (Fig. 14). These results confirm that
making a model well-specified (relaxing from a parametric to a nonparametric model) can bring
improved density estimation at the cost of worse fitness estimation.

8 Discussion

In this article, we have argued that better density estimation does not necessarily lead to better
fitness estimation. Further, we estimate with high probability that existing fitness estimation methods
systematically outperform the true training data density. Although existing methods rely on flexible,
high-parameter deep neural network models, they can nonetheless be misspecified; but this misspeci-
fication acts as a blessing, rather than a curse for fitness estimation. Successful models are at a sweet
spot of complexity, flexible enough to capture the target fitness distribution well but not so flexible as
to match the data distribution itself.

We have focused on state-of-the-art fitness estimation methods which are trained on data from
individual protein families [44, 50, 19]. Recently, large-scale generative sequence models (“protein
language models”) trained on more diverse datasets (containing proteins from many different families)
have show fitness estimation performance comparable to, and in some settings surpassing, single
family models [36, 40, 41]. Although applying our diagnostic test to these datasets requires further
work, there is no reason to expect the same limitations of density estimation do not hold for such
models. Indeed, following a preprint of this paper, Nijkamp et al. [40] presented evidence of the
benefits of misspecification in a protein language model: past a certain number of parameters, density
estimation improved while fitness estimation deteriorated. See Appx. G for further discussion.

One future direction is to further explore models M that are less flexible than existing models and
worse at density estimation, since they can increase the gap between KL(q✓⇤kp

1) and KL(p0kp
1)

(Thm. 4.1). There may also be opportunity to improve model geometry: while exponential family
models are guaranteed to be log-convex (and thus can satisfy Thm. 4.1), we have no such guarantee for
variational autoencoders or other neural network methods. Meanwhile, uncertainty quantification is
crucial for applications such as those in clinical genetics, but challenging in misspecified models [53,
39, 26]. Alternatively, it might be useful to abandon the strategy of using misspecified models for
fitness estimation altogether, and instead construct JFPM models where the fitness landscape is
represented explicitly as a latent variable. Recent progress on amortized variational inference for
phylogenetic models is promising for building flexible and scalable JFPMs [55]. However, handling
non-identifiability is challenging, and may require new assumptions and/or new methods of sensitivity
analysis to infer the full set of fitness landscapes consistent with the data [9].

Although this article has focused on technological applications of fitness models in solving prediction
problems, fitness models also have implications for our fundamental understanding of evolution. Pure
phylogeny models and pure fitness models present very different pictures of the past history of life: in
PMs, similarities and differences among genetic sequences are determined primarily by history and
ancestry (Asm. 2.1), while in FMs they are primarily determined by functional constraints (Asm. 2.2).
PMs and FMs also present very different implications for the future of life: in PMs, the diversity of
sequences seen in nature will likely expand dramatically going forward, while in FMs, the landscape
of functional sequences has already been well-explored. Our results emphasize that where and to
what extent each model offers an accurate picture of reality remains an open question.
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