
A Additional Preliminaries

Definition A.1 (Fourier Series). Given a T -periodic function f(x), its Fourier series representation
is a decomposition into a sum of Fourier basis functions.

f(x) =
1X

k=0

ck exp(2⇡ikx/T ). (2)

The {ck}1k=0 are referred to as the Fourier coefficients of x. For a (T1, T2)-periodic 2D function
f(x, y), its Fourier decomposition is analogously defined as

f(x1, x2) =
1X

k,l=0

ck,l exp(2⇡ikx1/T1) exp(2⇡ilx2/T2). (3)

Definition A.2 (Discrete Fourier Transform). The discrete Fourier transform transforms a sequence
of N complex numbers {xn}

N
n=1 into another sequence {x̃k}

N

k=1 defined by

x̃k =
NX

n=1

xn exp

✓
�
i2⇡kn

N

◆

Given a function f : [0, 1]2 ! [0, 1] we can define a 1-periodic extension of f to R2 as follows
fperiodic(x1, x2) = f(x1 � bx1c, x2 � bx2c). In our work, when we need to consider a Fourier
series representation for an image I , we use the Fourier series of Iperiodic.

Definition A.3 (Rademacher Complexity). The Rademacher complexity of a function class F is a
useful quantity to understand how fast function averages for any f 2 F converge to their mean value.
Formally, the empirical Rademacher complexity of F on a sample set S = (x1, . . . ,xn) where each
sample xi ⇠ D, is defined as

Rn(F) =
1

n
E
⇠

"
sup
f2F

nX

i=1

⇠if(xi)

#
,

where ⇠ = (⇠1, . . . , ⇠n) is a vector of n i.i.d. Rademacher random variables (each is +1 w.p. 1/2
and �1 w.p. 1/2). The expected Rademacher complexity is then defined as

E[Rn(F)] =
1

n
E

⇠,{xi}
n
i=1⇠Dn

"
sup
f2F

nX

i=1

⇠if(xi)

#

Given the above definition of Rademacher complexity, we have the following lemma to bound the
worst deviation of the population average from the corresponding sample average over all f 2 F

(also known as uniform convergence).
Lemma A.4 (Theorem 26.5 from [15]). Given a function class F of functions on inputs x, if for all

f 2 F , and for all x, |f(x)|  c, we have with probability � 1� �,

E
x⇠D

[f(x)]  E
n
[f(x)] + 2E[Rn(F)] + c

r
2 log(2/�)

n
.

Definition A.5 (Locality Sensitive Hashing (LSH)). A locality sensitive hash function is one which
maps similar inputs into the same hash bucket. Given a metric space M = (M,d), an LSH family
F = {f : M ! Z} mapping points of M to the integers is defined as follows. For any p, q 2 M and
for any f chosen randomly from F

1. if d(p, q)  R, then Pr[f(p) = f(q)] � p1,

2. if d(p, q) > cR, then Pr[f(p) = f(q)]  p2.

We say the family F is an (R, c, p1, p2)-LSH family.
Definition A.6 (Axis-Aligned Hyperplane LSH for Images). The axis-aligned hyperplane LSH family
for 2D images H?(w1, w2) is a special case of Hkk2

(k, w) where k = 2 and the two hyperplanes are
chosen to be the x1 and x2 axes respectively. The width parameters for each hyperplane are chosen
to be w1, w2 respectively. Note that we allow for w1 to be different from w2 here.
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B Full Details on Sketching Low-Complexity Polynomials (Appendix)

Polynomial images are simpler to sketch. For instance, a random projection of the image of a
degree-s polynomial to O(s2) dimensions gives all 4 desiderata, (i) reconstruction, (ii) small sketch,
(iii) recoverability of parameters, (iv) smoothness in the polynomial’s coefficients. However, it will
be beneficial to see how we can use LSH to sketch polynomial images as the analysis will help us
extend to more complex images in later sections. In fact, we will show that LSH works not only
for sketching degree-bounded polynomials but for polynomials of arbitrary degree as long as their
Fourier spectra are appropriately bounded as described in Assumption B.1.
Assumption B.1. We assume that the polynomial p(x1, x2) generating the image satisfies two
properties:

1. Suppose p(x1, x2) =
P

1

k,l=0 ck,l exp(2⇡ikx1) exp(2⇡ilx2) is the Fourier series of p. We
assume that

P
1

k,l=0 c
2
k,l
(k2 + 1)(l2 + 1)  �2 for some constant �.

2. In the region [0, 1]2, the Lipschitz constant of p(x1, x2) is bounded by ⇤.
Lemma B.2 (The Image Norm is Bounded). We have that

Z

[0,1]2
I(x1, x2)

2dx1dx2  �2.

Proof. The statement follows from Assumption B.1 and an application of Parseval’s theorem. From
Parseval’s theorem, we have that,

Z

[0,1]2
I(x1, x2)

2dx1dx2 =
1X

k,l=0

c2
k,l

 �2. (4)

We start by studying the limiting behavior of the axis-aligned LSH-Sketch as the number of hash
functions m ! 1.
Definition B.3 (Infinite LSH-Sketch). Given an image I , we sample m hash functions from
H?(m,w1, w2) for w1, w2 ⇠ U [1/4, 1/2] and we analyze the properties of the resulting sketch
as m ! 1.

We will use Fourier analysis for our argument. Since we only have access to a set of finite samples
from I , we will need the following lemma which says that with a large enough number of samples,
the discrete Fourier transform of the sequence of samples is a good approximation to the coefficients
of the Fourier series of the continuous function we sampled from.
Lemma B.4 (Approximation Error of Discrete Fourier Transform (Folklore, for e.g. see [5])). Given

an image I : [0, 1]2 ! [0, 1] and n randomly sampled pixels from I , let v represent the sequence of

pixel values sampled. If I has continuous derivatives and is ⇤-Lipschitz,

|Ĩn(k)� Ĩ(k)|  O

✓
⇤

n2

◆
.

In this scenario, the metric we focus on for reconstruction is the mean squared error (MSE). Given
the LSH Sketch S(I;m,w1, w2), let K = d1/w1e ⇥ d1/w2e denote the total number of buckets per
hash function. Let A 2 RmK⇥n denote the mapping from the n sampled pixel positions {(xi

1, x
i
2} to

buckets. The regularized reconstruction loss we minimize is

kA>z � vk22 + �kzk22. (5)

Since the above loss resembles the standard ridge regression objective, we can obtain a closed form
expression for the ẑ which minimizes the above objective.
Lemma B.5. The sketch which minimizes the reconstruction MSE on train samples is given by

ẑ = A(A>A+ �In)
�1v.
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Proof. Note that since A>A is positive semi-definite, for any � > 0, A>A+ �In is invertible. The
resulting closed form is well-known as the solution for the ridge regression loss.

Next few Lemmas state some useful properties of the A matrix.
Lemma B.6. limm!1 A>A is a shift-invariant (convolution) matrix which acts also as a smoothen-

ing matrix.

Proof. We begin by observing that the (i, j)th entry of limm!1 A>A is proportional the probability
that pixels i, j map to same bucket for a random hash function from H?(w1, w2). That is,

lim
m!1

(A>A)[i, j] =
1

m2
Pr

h⇠H?(w1,w2)
[h(xi

1, x
i

2) = h(xj

1, x
j

2)] (6)

=
1

m2
Pr[E1] Pr[E2], (7)

where E1 (r. E2) is the event that xi
1, x

i
2 (r. xi

2, x
j

2) map to same bucket under the first (r. second)
hyperplane. Hence we have established that the entries of limm!1 A>A only depend on the distance
between the corresponding pixels and hence limm!1 A>A is a shift-invariant (convolution) matrix.
In particular the effect of applying limm!1 A>A is similar to that of Gaussian smoothening which
leads to attenuation of high frequency components in the input image I . To understand the amount of
this attenuation we first focus on E1. We observe that Pr[E1] = max(0, 1� |xi

1 � xj

1|/w1). Define
the rectangle function

rect(x) =

⇢
1 if |x|  0.5
0 if otherwise .

If xi
1 � xj

1 = t, then Pr[E1] is exactly the convolution of rect(t/w1) with itself. Therefore the
Fourier transform of Pr[E1] is the Fourier transform of rect(t/w1)) ⇤ rect(t/w1) which is given
by f̃(k) = sinc2(⇡w1k) = sin2(⇡w1k)/((k2 + 1)(l2 + 1)). Therefore, if we were dealing with
1D inputs, m2 limm!1 A>A is essentially a convolution of our input function with the triangle
function max(0, 1� |t|/w1). In 2D, we get a convolution of our input with the separable function
max(0, 1 � |t1|/w1)max(0, |t2|/w2) where t1 = xi

1 � xj

1 and t2 = xi
2 � xj

2. Due to separability,
this can be viewed as convolving the image with max(0, 1 � |t1|/w1) first and then convolving
with max(0, |t2|/w2). Suppose the Fourier transform of the image is denoted by Ĩ(u, v). Af-
ter the application of limm!1 A>A, the resulting output’s Fourier transform would be given by
1

m2 Ĩ(u, v) sinc
2(⇡w1u) sinc

2(⇡w2v).

If w1, w2 ⇠ U [1/3, 2/3], then due to linearity of the Fourier transform, the resulting output’s Fourier
transform would be

1

m2
E

w1,w2

[Ĩ(u, v) sinc2(⇡w1u) sinc
2(⇡w2v)],

which is (i) non-zero for all frequencies and crucially (ii) is ⇥(1/m2(k2l2 + 1)) for all frequencies
large than k.

Remark B.7 (Polar co-ordinates). In 2D (or higher dimensions) it is also possible to carry out the
Fourier analysis in polar coordinates in a radially symmetric manner via the Hankel transform. This
can also be done inside a unit circle instead of [0, 1]2 using spherical harmonics. The analysis
becomes more complicated but should produce essentially the same properties.
Lemma B.8 (Train Reconstruction Error of the Optimal Sketch). Given n samples, the train recon-

struction error of a sketch using m hash functions with � = O
�
n

m

�1/3
is

kA>ẑ � vk22  O
⇣ n

m

⌘2/3
�2,

and the regularization term

kẑk22  O
⇣ n

m

⌘1/3
�2.
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Proof. We have that the train reconstruction error is

= kA>ẑ � vk22| {z }
(1)

+�kẑk22| {z }
(2)

. (8)

Recall that ẑ = A(A>A+ �In)�1v. Let limm!1 A>A = QDQ�1 be the eigendecomposition of
limm!1 A>A. Since A is a convolution matrix, its eigenvectors (columns of Q) are the Fourier basis
vectors for the DFT over sequences of length n. D is a diagonal matrix containing the eigenvalues.
We have,

(1) = k(A>A(A>A+ �In)
�1

� In)vk22 (9)

= k(QDQ�1(Q(D + �In)Q
�1)�1

� In)vk22 (10)

= kQ(D(D + �In)
�1

� In)Q
�1vk22. (11)

Now we express v = Qṽ in the Fourier representation. Then we have,
(1) = kQ(D(D + �In)

�1
� In)Q

�1Qṽk22 (12)

= k(D(D + �In)
�1

� In)ṽk22 (13)

Now D(D+�In)�1
�In is a diagonal matrix whose (i, i)th entry is �

�+�i
where �i is the eigenvalue

corresponding to the ith eigenvector of limm!1 A>A. From Lemm B.6, the set of {�i}
n

i=1 will
correspond to the set {�k,l}(k+1)(l+1)O(n) of the 2D Fourier coefficients of limm!1 A>A. We
have also shown in Lemma B.6 that �k,l = ⇥(1/(kl)2). This implies that the diagonal entries of
D(D + �In)�1

� In are of the form
�

�+O(1/(k + 1)2(l + 1)2)
.

In addition, we have from Lemma B.4, that the entries of v correspond approximately to the Fourier
coefficients of p(x1, x2) up to ±O(⇤/n2). This implies that

k(D(D + �In)
�1

� In)ṽk22 =
X

k,l:(k+1)(l+1)O(n)

✓
�

�+O(1/(k + 1)2(l + 1)2)

◆2 ✓
ck,l +

⇤

n2

◆2

(14)

 �2O(�2). (15)

Next, we bound (2). Let A = USV > be the SVD of A.
(2) = �kA(A>A+ �In)

�1vk22 (16)

= �kUSV >(V S>SV > + �In)
�1vk22 (17)

= �kUSV >(V (S>S + �In)V
>)�1vk22 (18)

= �kUS(S>S + �In)
�1V >vk22 (19)

 ��2
max(S(S

>S + �In)
�1)kvk22. (20)

Now let �1, . . . ,�n be the n largest singular values of A (the rest will all be 0). From Lemma B.10,
we have that �i 

p
n/m for all i.

�2
max(S(S

>S + �In)
�1) = max

i

✓
�i

�2
i
+ �

◆2


n

m�2

The combined train error is then bounded by

�2O(�2) +
n

m�
O(�2), (21)

which is minimized at � =
�
n

m

�1/3. Plugging in this value of � we get total train error is bounded by



⇣ n

m

⌘2/3
O(�2). (22)
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Lemma B.9. The expected test reconstruction error of the optimal sketch is O
⇣

�
p
n

⌘
.

Proof. Since we have a linear problem we can apply we can apply Rademacher complexity based
generalization bounds for linear hypothesis classes in our setting.

Lemma B.10. kAk2 
p

n

m
.

Proof. We have kAk2  kAkF =
p

n

m
.

Lemma B.11 (A>A+ �In is well-conditioned). limm!1 (A>A+ �In) = 1.

Proof. Let the SVD of A = USV >. Then,

A>A+ �In = V S>SV > + �I (23)

= V S>SV > + �V InV
> (24)

= V (S>S + �In)V
>. (25)

Therefore,

(A>A+ �In) = (S>S + �In) 
�2
max(A) + �

�
(26)

 1 +
n

m
·
m1/3

n1/3
= 1 +

⇣ n

m

⌘2/3
(27)

Claim B.12. A has linearly independent columns as m ! 1.

Proof. For any pixel position and a random hash function, the probability that it maps to a bucket
where none of the other pixels map to is > 0. Hence as m ! 1 the probability of this event
happening with at least one hash function goes to 1. This is enough to get linear independence. The
only case to take care of is if we get degenerate samples which happens with vanishingly small
probability in the first place.

Lemma B.13 (Smoothness of the Sketch). The derivatives of the sketch with respect to the polynomial

coefficients which generate our image are continuous and bounded.

Proof. Since p is ⇤-Lipschitz, we have for a specific sample i,

kr✓vik2  ⇤. (28)

As a function of v, our sketch is given by ẑ = A(A>A + �In)�1Av. Since A>A + �In is well-
conditioned (Lemma B.11), and kAk2 

p
n/m (Lemma B.10), this will imply that the derivatives

of our sketch with respect to v are also bounded. By chain rule, we get that the derivatives of our
sketch with respect to the polynomial coefficients are also bounded.

Lemma B.14 (Recovering the Polynomial’s Coefficients from its Sketch). Given the sketch z, there

exists a linear transformation R such that Rz = ✓.

Proof. Recall that z = A(A>A+ �In)�1v. Here we note that rank((A>A+ �In)�1) = rank(A)
because (A>A+ �In)�1 is a full-rank square matrix and limm!1 rank(A) = n. With probability
1, we have that the map v = G✓ also satisfies rank(G) = p. This is because G is a Vandermonde
matrix which is known to be of full rank as long as none of the points in the sample set coincide. Two
points in the sample set coinciding is a measure zero event. This implies that the linear transform
from ✓ to z is full-rank with probability 1 implying that it can be inverted to recover ✓.
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B.0.1 Going to a Finite Sized Sketch

So far we have been assuming infinite sized sketch due to infinitely many LSH functions. However
we will show how this can be reduced by picking bucket boundaries at a O(✏)-grid; that is, the
hyperplane shifts are multiples of ✏ along each axis. For simplicity let us look at the 1-D case and
argue that a smooth function can still be approximated using these buckets. In 1-D there are at most
O(1/✏) possible distinct buckets. We will only consider the pixels from this O(✏)-grid. In this case
the Fourier Transform becomes a DFT with n0 = O(1/✏) pixels. We already know based on the
weighted norm of the image that it can be approximated within error O(✏) using the first O(1/✏)
Fourier basis functions which are exactly the DFT basis functions. The above Fourier analysis easily
extends to DFT giving a smooth solution with O(✏) error on the n0 pixels: the A matrix will be
probability of mapping each of these discrete pixels to a bucket with the discrete boundaries; the DFT
of the rectangle function also drops in magnitude as O(1/k) for the kth frequency.

For constant �, this solution can be extended to the entire domain [0, 1] by predicting the same value
for the entire interval between two successive grid points. We will argue that this will introduce at
most O(✏) additional error: to see this, note that in the original image the discretization error within
an interval depends on the derivative at that grid point. From the �-smoothness, We already know the
image has a bounded weighted sum of Fourier coefficients which means that the mean squared value
of the derivative at these grid-points is also bounded. Thus the discretization error in the original
image is at most O(✏). Since the predicted values are within O(✏) average error of the original values
at the discretized pixel positions, extending those to the grid intervals will also introduce at most O(✏)
error. In general we will need grid length of ✏/�.
Claim B.15. By discretizing the set of pixels to O(✏/�)-grid we can get the same guarantees as
before by using sketches of size O(�2/✏2) in 1-D and O(�4/✏4) in 2-D.

C Full Details about Sketching Thresholded Polynomial Images

Similar to the polynomials setting, we assume that the Fourier spectrum of the underlying polynomial
p which we threshold is well-behaved. In addition the previous assumptions we had in Section 4 we
also assume an additional condition about the boundary of the PTF. First we present a definition.
Definition C.1 (✏-Boundary of a PTF). The region where the absolute value of the underlying
polynomial is  ✏.

The assumptions we make about our PTF image are given next.
Assumption C.2. 1. Suppose p(x1, x2) =

P
1

k,l=0 ck,l exp(2⇡ikx1) exp(2⇡ilx2) is the
Fourier series of p. We assume that

P
1

k,l=0 c
2
k,l
(k2 + 1)(l2 + 1)  �2 for some con-

stant �.

2. In the region [0, 1]2, the Lipschitz constant of p(x1, x2) is bounded by ⇤.

3. The total probability mass of the ✏-boundary of p is at most O(✏). For example, this holds
for an ellipse represented by ax2 + by2 � 1 when

p
a2 + b2 > c for a constant c.

We will see how the sketch we construct can accurately reconstruct a PTF image. Due to the binary
nature of the true pixel values, an objective such as cross-entropy or the hinge loss is found to
be more appropriate for computing the optimal bucket values. In particular, we use the following
parameterization of hinge loss. For y 2 {0, 1}, and for ŷ 2 R,

`✏(ŷ, y) = max

✓
0, 1�

ŷy

✏

◆
. (29)

Similar to Section 4, we show that the sketch we get here has a low reconstruction error. In particular,
we will only make errors near the boundary of the PTF and we can trade off this error by increasing
the number of buckets per each hash function. In addition, we show that the manifold containing the
sketches is Lipschitz and has bounded derivatives with respect to the coefficients of p.

C.0.1 Properties of Infinite Sketch

Lemma C.3 (Reconstruction using an Infinite Sketch can generate any Smooth Function over a Finite
number of Pixels).
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Proof. This is mainly because A> is going to be full rank with high probability. Firstly, the number
of buckets far outnumber the number of pixels in this setting. Next, every Fourier coefficient will be
allowed to be non-zero by this transformation. Suppose a sinusoid of a particular frequency ✓ maps to
0 when convolved with an LSH of a particular width w(✓). Then it will necessarily not map to 0 for
at least some widths in a small interval around w(✓). Since we are considering an expected value over
randomly drawn widths, this means that at no frequency is the expectation going to be 0. Therefore,
we get that reconstruction using an infinite sketch is full rank (equivalent to saying that all Fourier
coefficients are free to be set to values we like). Moreover, by bounding the norm of the buckets
vector (through regularization), we control the smoothness of the resulting reconstruction.

Lemma C.4. Constructing an infinite sketch such that each hash function uses constant number of

buckets will yield a solution with train reconstruction hinge loss at most O(✏).

Proof. Recall that the hinge loss we optimize is max(0, 1� uv/✏). Note that this is 0 when uv � ✏.
Given infinitely many hash functions, we can realize a reconstruction such that the reconstructed
value at a pixel u is equal to the underlying polynomial value at v. This reconstruction will set
|uv⇤| > ✏ for v outside the ✏-boundary and hence incur 0 hinge loss. Therefore, this solution incurs a
total loss of O(✏) implying that the optimal solution also incurs a total loss of O(✏).

Lemma C.5. Given O(1/✏2) training samples drawn from uniform distribution, we can achieve an

average test hinge loss and consequently test 0/1 error of reconstruction ✏ via the infinite sketch.

Proof. This is a generalization bound which can be shown by bounding the norm of the values stored
in the buckets. This is achieved due to the regularization term. This regularization will imply thatP

k
c2
k
O(k2) is bounded where ck is the kth Fourier coefficient of the reconstruction (before the

sign).

The above two lemmas give us the following theorem about learning PTF images.
Theorem C.6 (Learning PTFs using Infinite Sketch). Given O(1/✏2) uniformly drawn samples from

a PTF image, infinite sketch with O(1) buckets per hash function.

C.0.2 Smoothness of Sketches

We next prove 5.5.

Proof of Lemma 5.5. Let v be the true pixel values as generated by parameters ✓. We will study the
case where the sketch is chosen to be the minimizer of the population (aka continuous) loss function.
That is, instead of considering a set of n pixels let us look at the setting where we view as the image
as a continuous function: v : [0, 1] ⇥ [0, 1] ! R with v✓(x) = sign(p✓(x)) where p✓ denotes the
polynomial with parameters ✓. Thus, the sketch is the minimizer of the cost function

L(✓, z) =
Z

x
`(v✓(x), uz(x))dx + �kzk22,

where uz(x) denotes the predicted image with sketch z and ` is the hinge-loss `(a, b) = max(0, 1�
ab/✏). The basic idea is that as the sketch is the argmin of the above cost function, we can compute
its derivatives with respect to the parameters ✓ by the implicit function theorem. See appendix C.0.2
for the details of the proof.

Abusing notation a little, let
z⇤(✓) = argmin

z
L(✓, z).

As L is a strongly-convex function, the minimizer z⇤(✓) is also implicitly defined by the equation
rzL✓(z) = 0. By using the implicit function theorem, the derivative of z⇤(✓) can be written (cf. [14]
for instance) as

r✓z
⇤(✓) = (r2

z
L(✓, z⇤))�1@z⇤@✓L(✓, z

⇤). (30)

Note that by the regularizer in L, r
2
z
L(✓, z) ⌫ 2�I so that k(r2

z
L(✓, z⇤))�1

k  1/2� =
O(poly(1/✏)). It remains to bound the norm of the second term.
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It follows from elementary calculus that

r✓L(✓, z
⇤) =

Z

x

uz⇤(x)

✏
�(p✓(x))r✓p✓(x)dx =

Z

x:p✓(x)=0

uz⇤(x)

✏
r✓p✓(x)dx, (31)

where �( ) denotes the Dirac delta function.

Now, recall that uz(x) =
P

m

j=1 zjAj(x) where Aj(x) = 1 if x is hashed to bucket j and 0 else.
Therefore,

@zjr✓L(✓, z
⇤) =

Z

x:p✓(x)=0

Aj(x)

✏
dx.

Therefore, the norm of the vector @z⇤@✓L(✓, z⇤) is bounded.

A similar argument with more detailed calculations shows that even higher order derivatives of
z⇤(✓) with respect to ✓ exist and are bounded (we start with identities in Equations 30, 31, and use
convenient identities such as

R
x
�0(x)�(x)dx = �

R
x
�(x)�0(x)dx = �0(0)).

In contrast, we next argue that the mapping ✓ ! v✓ while continuous is not necessarily differentiable
in ✓. To see this, consider a simple one-dimensional scenario where the PTF itself is of degree 1 and
corresponds to the simple step function with one underlying parameter t 2 R the step threshold. We
are interested in the mapping that maps t to the corresponding step function ft(x) = 1 if x � t and 0
otherwise. Viewing this as a mapping from R to the Banach space of square-norm bounded functions
on R, we have limh!0(ft+h � ft)/h is the Dirac delta function centered at t which technically is not
bounded in 2-norm. Note that this argument essentially implies that if we take images of rectangles
and slide one of the boundaries, random projections of these images is a Brownian motion. Since the
space covered by a Brownian motion is highly non-smooth we can conclude that the region formed
by such images is also non-smooth

D Stable sketches

Our Fourier analysis shows that LSH sketch acts like a Fourier basis kernel where the jth frequency
gets scaled by 1/j. Further a somewhat different A matrix can be used to tune the level of smoothness
scale down higher frequencies at different levels and can even be used to essentially restrict the
reconstructed image to the first d Fourier frequencies. Instead of using the Fourier basis functions
We could also use the polynomial kernel corresponding to the first O(d) monomials then we can
exactly get the polynomial coefficients representing the function. Note that we only need to know
some upper bound on the degree of the polynomial.
Claim D.1. By using a polynomial kernel one can learn a degree d polynomial using an O(d) sized
sketch. Further the sketch can be obtained from any patch of constant size. This gives us a stable
sketch; that is, the same sketch is obtained regardless of which patch it is computed on: precisely,
given a d polynomial of degree at most d and its evaluations at pixels in an interval of constant length
[a, b] within error ✏ = exp(�⌦(d log d)) we can determine its coefficients within error ✏.

Proof. The main point is even if we pick d points at gaps of 1/d then the vandermonde matrix has
condition number at most exp(d log d).

Instead of using a polynomial kernel one can also a more natural hash matrix A that is inspired from
the normal distribution. The main point is that the Fourier transform of a normal distribution of a
high width is also a normal distribution of low width which becomes like a low pass filter. We can use
a discretized version such a matrix to exactly have non-zero weights only on the first few frequencies.
Claim D.2. In 1-dimension with 2n0 + 1 equispaced pixels denoted by x in the range [�n0..n0] the
DFT of the function cos2l(⇡x/(2n0)) is a low pass filter with non-zero values only for frequencies in
the range [�3l, 3l]. We can set n0 = O(1/✏) to get an A matrix A(x, y) = cos2l(⇡(x � y)/(2n0))
that maps the pixels to O(1/✏) buckets so that A>A functions precisely as a low pass filter that zeros
out frequencies higher than O(l).

Proof. Since the DFT and its inverse are symmetric, look at the discrete function f(t) on 2n0 + 1
pixels in the range [�n0..n0] where f(0) = 1/2, f(�1) = f(+1) = 1/4 and f is 0 at all other
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points. In the frequency domain it can be written as F (k) = ejk⇡/n
0
/4 + e�jk⇡/n

0
/4 + 1/2 =

(cos(k⇡/n0) + 1)/2 = cos2(k⇡/(2n0))

Now if we take the self convolution of f l times its DFT will be F l = cos2l(k⇡/(2n0)). Further
since f is non-zero only in the range [�1, 1] by a simple inductive argument, f convoluted l times is
non-zero only in the range [�3l, 3l]. And all its values in that range are at least 1/4l

The argument for learning stable sketches can also be applied to Taylor series. If the curve can be
written as y = f(x) where f is an analytic function, then one can learn the initial few coefficients of
the Taylor series expansion of f that approximate f within a tiny error (if the curve takes multiple
values at a given x we can break it into regions and use random rotations so that this is not the case
in at least one rotation). Again these set of coefficients form a sketch that is independent of which
patch it has been computed from as long as the patch has a significant part of the curve. If there are n
pixels one can approximate the first ⌦(log n) coefficients. Thus the above result can be extended to
analytic functions with bounded derivatives.
Claim D.3. Given an analytic function that converges in [0, 1] with all derivatives bounded in
magnitude by some constant in the range [0, 1] and its evaluations at points in the range [a, b] within
error ✏ we can determine its value in the entire range within error ✏O(1). A sketch of this extrapolation
can serve as a stable sketch of the function.

Proof. If is well known that if we take say d points xi, ., xd for an analytic function f(x) taking
values y1, .., yd then the polynomial f(x) =

P
yi⇧j 6=i(x � xj)/⇧j 6=i(xi � xj) fitted on these d

points has error at most f (d+1)(⌘)/(d+ 1)!⇧(x� xi) in the entire interval [0, 1] for some ⌘ 2 [0, 1].
Since all derivatives are constant this is at most 1/d! = exp(�O(d log d)) = � (say). There
is also the contribution from error in the measurements yi in the extrapolation formula f(x) =P

yi⇧j 6=i(x�xj)/⇧j 6=i(xi�xj). For the error in this to be less than � we need that the measurements
yi need to be such that yi⇧j 6=i(x� xj)/⇧j 6=i(xi � xj) has error at most �/d. If we choose all xi in
some constant sized interval to be values at least O(1/d) apart then it means that the we want yi to
be accurate up to �O(1/d)d = exp(�O(d log d)) = �O(1). Thus if the error in the measurements is
at most ✏ then we can extrapolate within error ✏O(1) in the entire interval [0, 1]. This becomes the
stable sketch for f . The value of d = O(log(1/✏)/ log log(1/✏))

The Taylor series approach can be used even for PTFs by fitting the points on the boundary to a
polynomial.

E Intersection of PTFs

Figure 2: Plot of a thresholded ellipse (PTF) and an ellipse as a polynomial
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Figure 3: Rectangle tesselation based on Recursive Sketching Subroutine (Algorithm 1)

Remark E.1. [Tile sketches can be viewed as a smoother function]

The sketches can be viewed as a map from tile-positions to tile-sketches; this itself can be viewed as
an "image mapping pixels (tile positions) to d-dimensional sketch vector (instead of value in R its a
value in Rd). Note that this map can be viewed as a smoother than the original map from pixels to
color as for most tiles of size 1/c their sketch will be the same if the tile is shifted by O(1/c). The
values stored at such tiles is not affected by a smoothening of the function by O(1/c). Such tiles are
sufficient to reconstruct the contents of other tiles that are covered by such tiles. This smoothend
version of the map can be stored at a lower resolution to capture the image and hence methods
described earlier can be applied to get a sketch of the map. Thus If we use a few random shifts
of tilings and take a smoothened version of this map from tile-positions to tile-sketches, based on
remark 4.5 we get a representation that is invariant to the random shift choices.

If we use these the sketches of the edges as features, then on top of these we will get a simple classifier
for the rectangle. Note that a union of intersections over k features can be written as a degree k
polynomial over the features which can be easily learned for small k.
Claim E.2. By LSH hashing the stable sketches from the tiles and using the top k sketches as
features, we can build a simple classifier of size dk for a union of intersection of k PTFs of degree d.

LSH table of sketches as an inverse map: Note also that the LSH table of sketches can be viewed
as a map from a patch-sketch to its tile-coordinate. This can be easily used to identify shifted copies
of an image. For two shifted images the outputs of their maps will differ exactly by the shift value.
One point to note is that a single patch bucket may correspond to multiple tiles – for such patches one
would need to store a "set" of positions per bucket. It is possible to store a sketch of a set so that two
shifted sets will have just shifted sketches. This can be done by first shifting the sets to make them
mean zero and then sketching the sets; The set can again be viewed as a map from tile-positions to
0/1 depending on whether they are in set and then sketching this map based on Remark E.1.
Remark E.3 (Relation to Vision Transformers). Note that after merging tiles corresponding to similar
sketches, one can learn a single sketch for the entire merged set of tiles. This is reminiscent of image
transformer where related patches can attend to each other and merge into one token.
Remark E.4. [Shift resistant duplicate representation] Given two identical images that are shifts of
each other they can be made "shift free" by first centering the image by say shifting the centroid to
the origin. This will produce the same recursive sketch that can be stored once in the LSH table of
sketches – this would be despite getting different random samples of pixels in the two images as per
remark 4.5. This can even be applied to parts of an image. For example think about the same (say
top-left) corner in two different (axis-aligned) rectangles. After the first level of LSH bucketing is
done we get the tiles marked invalid that contain the corner. We can center the region covered by the
union of these invalid tiles and then recursively continue the sketching. If we used sufficiently many
shifts, the same corner from two different rectangles in different images will produce in expectation
the same region after centering. Thus all say "top-left" corners of axis aligned rectangles will get the
same recursive sketches in expectation.

So far there are several different methods that we have described for computing sketches: LSH sketch,
polynomial kernel, Taylor series interpolation, the foward and the inverse maps from tile-positions
to tile-sketches, mean and moments for a set. Different methods provide different guarantees. By
keeping a "heterogenerous combination" of all these different sketches we get a single combined
sketches different parts of which can be used for reconstruction, locality-properties, indexing etc.

LSH table of sketches as an inverse map: Note that the LSH table of sketches can be viewed as a
map from a patch-sketch to its tile-coordinate. This can be easily used to identify shifted copies of an
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image. For two shifted images the outputs of their maps will differ exactly by the shift value. One
point to note is that a single patch bucket may correspond to multiple tiles – for such patches one
would need to store a "set" of positions per bucket. We can also store a sketch of a set so that two
shifted sets will have just shifted sketches. This can be done by first shifting the sets to make them
mean zero and then sketching the sets; the set can again be viewed as a map from tile-positions to 0/1.

Note that since are sketch is a recursive sketch of tiles, it has the local property in the main proposition
as the sketch of a part of an image easily be obtained form the full sketch.
Claim E.5 (Indexing). One can use an LSH table as an index of tile-sketches to find shifted copies
of the same shape (specified by an intersection of PTFs). Further for a PTF, only a patch containing a
part of the PTF is sufficient to index and lookup the shape.
Remark E.6. [Intersections of PTFs in higher dimensions] For the intersection of PTFs we assumed
so far 2-d images. There are some complexities that arise when we go to higher dimensions. For
example if we look at the intersection of two halfspaces, if we use a recursive LSH, the edge formed
from the intersection produces several small tiles (3-d tiles). If there are n grid points (pixels) total in
3-d then the edge will produce an O(n1/3) sketch due to the tiles along the edge at the leaf level of
the recursion; in k-dimensions there will be O(n1�1/k) tiles. This can be avoided by clustering all
such tiles at each depth of the recursion and learning a single smooth function for the entire union of
those tiles at the next level of granularity that approximates the edge. Note that there is low degree
polynomial (for example the equation of a cylinder along the edge) that is like a smoothened version
of the edge. By decreasing the radius of the cylinder in each depth of the recursion we get better
approximation to the edge each time. This gives an O(log n) sized sketch for each edge in a 3-d
shape.

Note that even though we are using stable sketches for the above claims, even we if did not use
such stable sketches and sketches of the same curve differ slightly across tiles we can look at similar
sketches in adjacent tiles and try to merge them by finding if there is a single sketch that explains the
union of adjacent tiles.

F Learning shapes as concepts

Claim F.1. Ellipses satisfy Assumption 7.2.

Proof. Look at the coefficients of the first six monomials in the expansion: x2, y2, xy, x, y, 1. Let the
coefficients of the first three terms be a, b, c respectively. The coefficients will in fact define an ellipse
if the corresponding 2⇥ 2 matrix [[ac/2][c/2b]] is positive semi-definite. This in turn is equaivalent
to three conditions: a > 0, b > 0 and 4ab > c2. Thus, in the coefficient space, ellipses correspond to
an intersection of three PTFs. Look at the coefficients of the first six monomials in the expansion:
x2, y2, xy, x, y, 1. Let the coefficients of the first three terms be a, b, c respectively. The coefficients
will in fact define an ellipse if the corresponding 2⇥ 2 matrix [[ac/2][c/2b]] is positive semi-definite.
This in turn is equaivalent to three conditions: a > 0, b > 0 and 4ab > c2. Thus, in the coefficient
space, ellipses correspond to an intersection of three PTFs.

Remark F.2. [Sketching with only positively labeled pixels] Our sketching methods work even if
do not have any negatively labeled pixels and only have pixels from inside the (union) of PTF. One
difference is that we only get positively labeled points, that is, points inside the shape-region. We
will show how negative labeled points can be generated by random sampling pixels from the space of
pixels (say in Rk). Although this will introduce noise within the positive region this can be corrected
by correcting each label to be positive if in some positive label in an ✏-neighborhood around it. If we
sample ⌦̃((

p
k/✏)k) points in an ✏/

p
k-grid as negative labels then after correction all points will be

correctly labeled except for points within ✏ of the boundary of a PTF.

We will assume that each shape type forms a disjoint region in coefficient space. And that union of
these regions can be specified as a union of intersection of PTFs. Thus we can apply the algorithm
from previous section (see remark E.6). A contiguous region of tiles can be identified as a separate
shape/concept.
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