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Abstract

Multi-label classification (MLC) has wide practical importance, but the theoretical
understanding of its statistical properties is still limited. As an attempt to fill this
gap, we thoroughly study upper and lower regret bounds for two canonical MLC
performance measures, Hamming loss and Precision@κ. We consider two different
statistical and algorithmic settings, a non-parametric setting tackled by plug-in
classifiers à la k-nearest neighbors, and a parametric one tackled by empirical
risk minimization operating on surrogate loss functions. For both, we analyze
the interplay between a natural MLC variant of the low noise assumption, widely
studied in binary classification, and the label sparsity, the latter being a natural
property of large-scale MLC problems. We show that those conditions are crucial
in improving the bounds, but the way they are tangled is not obvious, and also
different across the two settings.

1 Introduction

Multi-label classification (MLC) is a natural generalization of binary classification and multi-class
classification. It can be seen as a composition of several binary problems for the same instances, or
as a multi-class problem where more than one label can be assigned to a given instance. Several
applications can be naturally modeled as a multi-label problem, including image and video annotation
for multimedia search [13], tagging text documents for categorization of Wikipedia articles [9],
recommendation of bid words for online ads [27], and beyond. MLC is a well-established sub-field
of supervised learning, that has generated a tremendous interest, mainly of experimental nature,
introducing a lot of interesting and diverse approaches (for example, [10, 26, 17, 34, 33, 19] ). They
have also been described in multiple survey papers across years, e.g., [30, 4]. The main concerns in
MLC research are label dependencies (marginal and conditional, see the discussion in [12]), label
sparsity [18, 34], and minimization of a wide spectrum of performance metrics.

Interestingly, the theoretical understanding of MLC learning problems is still limited. This might
be due to the daunting presence of multiple and diverse loss functions that can be defined over
subsets of labels. Popular loss functions include Hamming loss, Precision@κ, or subset 0/1 loss.
Each such MLC loss function has its pros and cons, and there is no consensus among researchers
what is the right performance metric to be used [12, 20], as the choice is certainly domain specific.
The theoretical results obtained so far mainly deal with the analysis of Bayes optimal classifiers for
the wide variety of MLC loss functions [12, 31, 24, 25], Fisher-like consistency results [11, 16], or
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surrogate regret bounds [22, 33]. Results concerning generalization bounds have also been published
in [6, 34, 32].

We fill the gap in the landscape of theoretical results by providing upper and lower finite-sample regret
bounds in MLC with a focus on computational efficiency. We consider two learning setups, a non-
parametric and a parametric one. Within the former, we focus specifically on a k-nearest neighbor
(k-NN) classifier, because of its attractive properties in MLC settings. Beyond computational
efficiency, a main reason why k-NN is a convenient approach is that it works “out of the box",
operating only in the feature space, independent of the number of labels, hence making it a very
versatile tool for MLC tasks. It has also been studied in MLC, mainly empirically, for example
in [35]. In the parametric setting, we introduce a MLC counterpart to the surrogate loss regret
reductions introduced in [3], thereby considering empirical risk minimization solutions applied to
convex surrogate loss functions. We restrict our attention to Hamming loss and Precision@κ, and
thoroughly investigate the interplay between two natural assumptions, the low noise condition and
the label sparsity, in determining rates of convergence.

Our results build on a number of former contributions. The analysis of k-NN classifiers has been
motivated by the results in [29, 28]. The proof techniques we rely upon in deriving regret bounds
are related to those adopted for high probability regret bounds in binary classification [5]. To obtain
lower bounds we follow to some extent results of [2], as the proof uses reduction of a sparse MLC
problem to binary classification. The most similar results to ours have been published in [8, 7]. In
[8], the authors analyze a modified version of Hamming loss which assigns different weights to
relevant and irrelevant labels. The paper also assumes sparsity, but that assumption is stronger than
ours. The guarantees obtained are in terms of generalization and regret bounds. [7] does not directly
use Precision@κ, but the setting analyzed there is similar to the one for Precision@κ. That paper
also formulates a margin condition similar to ours. Yet, the regret bounds contained there are not
of a high probability type, but only bounds in expectation, similar to [2]. Moreover, [7] does not
contain (matching) lower bounds. Our results for the parametric case build on [3], which contains
a regret analysis, also under low noise condition, for surrogate losses in binary classification. Our
generalization takes additionally multi-label sparsity into account.

Main results. We consider novel label-wise margin (low-noise) conditions that are sufficient to get
fast rates. In addition, we assume that at most s out of all m labels can have conditional probability
arbitrarily close to 1, whereas for the rest of the labels this probability is upper bounded by a small
constant. Such label sparsity assumption is essentially motivated by real-world multi-label problems
with a large number of potential labels, where only a few such labels are assigned to single instances,
a paradigmatic example being image or text annotation.

In the non-parametric setting, we consider a MLC variant of k-NN as our method of choice, since
this method is well-understood in the binary case, and can be shown to achieve fast rates for 0/1-loss
(which is in fact the binary counterpart to Hamming loss). Under multi-label margin and sparsity
assumptions, we present a high probability bound for the Hamming loss regret of k-NN which is
of the form O

(
s/m · (log(s/δ)/n)(λ(1+α))/(2λ+1)

)
+ δ, where s is the sparsity parameter, λ is the

smoothness of the regression function with respect to the infinity norm ‖.‖∞, α is the exponent in
the margin condition, and δ is the desired confidence level. In the special case where no sparsity
is assumed we have s = m, hence the bound boils down to a more "standard" upper bound for the
Hamming loss regret. We would like to emphasize that applying a binary regret analysis, such as
the one in [5], to each of the m labels independently cannot leverage global properties like label
sparsity. Thus, in order to take advantage of label sparsity, a more involved regret analysis is needed.
Also observe that, by making the margin condition more favorable (that is, by increasing α), the
dependence on the sparsity ratio s/m remains unaffected. In case of Precision@κ, we do not need
label sparsity: a margin condition, that controls the gap between the κ-th and the (κ+ 1)-th largest
conditional distribution, is by itself enough to obtain regret bounds that scale gracefully with the
number of labels. Under this assumption, we obtain a regret bound for the multi-label k-NN classifier
of the form (log(m/δ)/n)(λ(1+β))/(2λ+1) + δ, where β is the margin exponent for the κ-th and
(κ+ 1)-th largest conditional distribution.

In the parametric setting, we consider regret bounds for function classes with finite VC dimension.
Under the margin and sparsity assumptions, we relate the Hamming loss regret Reg`H of an arbitrary
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MLC classifier to its MLC surrogate loss regret Reg` via bounds of the form

Reg`H = O
(

(s/m)
ν−1
α+1 Reg

α+1
α+ν

`

)
,

where ν is a parameter related to the curvature of the surrogate loss ` (e.g., ν = 2 for both truncated
square and exponential losses). In turn, these bounds can be used in combination with standard
uniform convergence results to control Reg`, e.g.,

Reg` = O

(
d+ log(m/δ)√

n
+ a

)
,

where d is the pseudo-dimension of the VC class under consideration, and a is its approximation
error. Regret bounds for Precision@κ are reduced to those for Hamming loss.

As a last contribution, we derive MLC regret lower bounds for our MLC setups revealing that, at least
in the non-parametric case, our upper bound for Hamming loss is optimal up to a log s factor, and
that our regret upper bound for Precision@κ is optimal up to a logm factor.

2 Preliminaries and notation

We assume to have a feature space X endowed with a metric ρX , and a set of m labels. We denote by
Y := {0, 1}m the set of binary vectors encoding the set of all 2m possible label combinations. We
shall assume the existence of a pair of random variables X ∈ X and Y ∈ Y with joint distribution P .
LetM(X ,Y) denote the set of all classifiers, which are measurable mappings φ : X → Y . The goal
of the learner is to obtain a classifier φ ∈M(X ,Y) such that φ(x) ≈ y for typical pairs (x,y) ∼ P .
The precise sense in which “φ(x) ≈ y” is provided by a loss function ` : Y × Y → [0,∞), with
the interpretation that `(ỹ,y) measures the cost incurred when the learner predicts ỹ while the true
(multi-)label is y.

The problem of multi-label classification can be defined as finding a (vector-valued) classifier
φ(x) = (φj(x))j∈[m], that minimizes the expected loss (or risk):

R`(φ) = E [`(φ(X),Y )] ,

the expectation being over X × Y ∼ P . For a given loss function `, the optimal classifier, often
called the Bayes (optimal) classifier is defined as φ∗` = argminφ∈M(X ,Y)R`(φ) . When ` is clear
from the surrounding context, we shall omit the subscript and simply write φ∗. We can measure the
statistical performance of a given classifier φ in terms of its regret, henceforth denoted by Reg`(φ),
quantifying the sub-optimality of φ. Specifically, Reg`(φ) measures the extent to which the expected
loss of φ exceeds the expected loss of the Bayes classifier:

Reg`(φ) :=R`(φ)−R`(φ∗` ) . (1)

From a purely statistical standpoint, the goal of learning is then finding a classifier φ with regret as
small as possible, ideally equal to zero.

Computing φ∗ requires prior knowledge of the data distribution P . Yet, P is assumed to be unknown
and accessible only through a dataset (or statistical sample) D = {(Xi,Y i)}i∈[n], where the pairs
(Xi,Y i) are drawn i.i.d. from P . In what follows, we denote by µ the marginal distribution of
P over X , so that µ(A) = P (X ∈ A). Moreover, we define the multi-label regression function
η : X → [0, 1]m by η(x) = (ηj(x))j∈[m], whose j-th component ηj(x) is the conditional probability
of the j-th label being one: ηj(x) = P(Yj = 1|X = x).

3 Losses for multi-label classification

We focus on two widely used loss functions for MLC, namely Hamming loss and Precision@κ, which
we now define. The Hamming loss `H : Y × Y → [0, 1] is defined for pairs y = (yj)j∈[m] ∈ Y and
ŷ = (ŷj)j∈[m] ∈ Y by

`H(ŷ,y) :=
1

m

∑
j∈[m]

I{ŷj 6= yj} .
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Hence, `H(ŷ,y) simply counts the fraction of mispredicted labels. We observe that for all φ ∈
M(X ,Y) we have

R`H (φ) =
1

m

∑
j∈[m]

∫ (
φj(x) (1− ηj(x)) + (1− φj(x)) ηj(x)

)
dµ(x) ,

implying that φ∗`H : X → Y , defined by

φ∗`H (x) = (I{ηj(x) ≥ 1/2})j∈[m]

is the Bayes optimal classifier for `H . Moreover, it is not hard to see that for all φ ∈M(X ,Y) we
have

Reg`H (φ) =
1

m

∑
j∈[m]

∫
I{φj(x) 6= (φ∗`H (x))j} × |2ηj(x)− 1| dµ(x) .

To define the Precision@κ loss, we need to restrict the predicted vectors ŷ to lie in Yκ = {y ∈ Y :
‖y‖1 = κ}. Then we have1

`@κ(ŷ,y) = 1− 1

κ

∑
j∈T (ŷ)

I {yj = 1} , (2)

where T (ŷ) = {j ∈ [m] : ŷj = 1} is the set of labels output by the predictor (corresponding to the
labels of value one). Let φκ(f) : Rm → Yκ be a mapping from a vector of real-valued scores to a
binary vector with κ ones. Then, the corresponding risk is:

R`@κ(φκ(f)) = 1− 1

κ

∫ ∑
j∈T (φκ(f(x)))

ηj(x)dµ(x) .

Based on this, one can obtain the Bayes optimal classifier φ∗`@κ for `@κ as one that predicts on the
given x in input the κ classes with the highest conditional probabilities ηj(x) as positives, i.e

φ∗`@κ(x) :=
(
I{i ∈ Tκ(η(x))}

)
i∈[m]

,

where Tκ : Rm → [m]κ returns the set of κ indices that are largest for a real-valued input vector.
The regret of any classifier φ can be written as

Reg`@κ(φ) =
1

κ

∫ ( ∑
i∈Tκ(η(x))

ηi(x)−
∑

j∈Tκ(φ(x))

ηj(x)

)
dµ(x) .

4 Sparsity and margin condition

We introduce two assumptions which are fairly natural for MLC scenarios. The first one encodes
the intuition that in typical MLC settings, when the total number of classes/labels m is large, only
very few labels are active for any given region in the feature space, that is, each item x comes with a
sparse label vector y.
Assumption 4.1 (Sparsity assumption). Define A(s, t) as the set of t-approximately s-sparse vectors
as follows:

A(s, t) := {u + v : u,v ∈ Rm, ‖u‖0 ≤ s, ‖v‖∞ ≤ t} .
Take t ∈ [0, 1/2) and s ∈ N. We shall say that the t-approximate s-sparsity assumption holds if the
multi-label regression function η(x) ∈ A(s, t) for all x ∈ X .

Assumption 4.1 always holds with s = m and t = 0, but for many distributions encountered in
practice we expect it to hold with a much smaller value of s, possibly coupled with t > 0. In fact, this
assumption generalizes the standard sparsity assumption of “at most s relevant labels per instance"
by adding a term for a long tail. Yet, it does not introduce a hard constraint, since it applies to

1In the relevant literature on the subject, Precision@κ is often regarded as a utility function defined as
Precision@κ = 1 − `@κ. To be consistent with our discussion, we instead define Precision@κ as a loss
function.
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η(x). According to this sparsity assumption, the expected number of labels per instance x is at most
E[
∑m
j=1 Yj |X = x] ≤ s+ (m− s) · t. On real world multi-label datasets with large label spaces,

the expected number of labels is usually less than 100, while the number of possible labels m can be
three or four orders of magnitude bigger [1, 21, 27].

The next assumption is a MLC variant of Tsybakov’s margin (or low noise) assumption (e.g., [2]). It
ties up "noise" present on different labels to occur simultaneously on those labels.

Assumption 4.2 (Margin assumption). Let α ≥ 0 and Cα ≥ 1 be constants. We shall say that the
margin assumption holds with exponent α and constant Cα if the following holds for all ε ∈ (0, 1]:

µ
( ⋃
j∈[m]

{x ∈ X : 0 < |2ηj(x)− 1| ≤ ε}
)
≤ Cα · εα .

5 Non-parametric setting

5.1 The k-NN regression estimator

Given x ∈ X , we let {τn,q(x)}q∈[n] be an enumeration of [n] such that for each q ∈ [n− 1],

ρX

(
x,Xτn,q(x)

)
≤ ρX

(
x,Xτn,q+1(x)

)
.

In words, for given x ∈ X , {τn,i(x)}i∈[n] sorts {X1, . . . ,Xn} in increasing order of ρX -distance
to x.

The k-nearest neighbor regression estimator η̂n,k : X → [0, 1]m is given by η̂n,k(x) :=

(η̂n,kj (x))j∈[m] where

η̂n,kj (x) :=
1

k
·
∑
i∈[k]

Y
τn,i(x)
j . (3)

The plug-in multi-label classifier for Hamming loss that is based on the k-NN regression function
η̂n,k is denoted by φn,k`H , and defined as

φn,k`H (x) =
(
I{η̂n,kj (x) ≥ 1/2}

)
j∈[m]

.

Similarly, the plug-in multi-label classifier for Precision@κ loss that is based on the k-NN regression
function is denoted by φn,k`@κ and defined as

φn,k`@κ(x) :=
(
I{j ∈ Tκ(η̂n,kj (x))}

)
j∈[m]

.

In this paper, we shall scrutinize the performance of these k-NN classifiers in terms of regret under
some assumptions on the classification problem at hand.

Given x ∈ X and r > 0, let Br(x) denote the open metric ball of radius r, centered at x.

Assumption 5.1 (Smoothness assumption). Suppose we have an exponent λ ∈ (0, 1], a constant
Cλ > 0 and a semi-norm ‖ · ‖ on Rm. We shall say that the measure-smoothness assumption holds
with parameters λ, Cλ, ‖ · ‖ if the following holds for all x0,x1 ∈ X :

‖η(x0)− η(x1)‖ ≤ Cλ · µ
(
BρX (x0,x1)(x0)

)λ
.

This kind of assumption is typical for k-NN. It says that the regression function η(x) does not
change much in the neighborhood of every input x. This is essentially needed for k-NN convergence.
The specific version adopted here is from [5], and was further employed, e.g., in [29]. Note that,
more generally, a universal rate of convergence cannot be established without assuming regularity
properties of the data distribution, such as smoothness via absolute continuity. Results of that kind
are beyond the scope of this study. We refer the reader to [14] for details on L1 consistency and its
connection to the rate of convergence. In this paper, we end up using Assumption 5.1 with || · || being
the infinity norm, not an arbitrary semi-norm.
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5.2 Regret upper bound for Hamming loss

This multi-label margin assumption is a sufficient condition for fast rate O(1/n). Its binary classifica-
tion counterpart is well-understood in the binary classification literature.

We have the following high probability upper bound for the regret in terms of Hamming loss for the
k-NN classifier φn,k`H , which is the main result of this section.2

Theorem 5.2. Let Assumption 5.1 hold with parameters λ, Cλ > 0, ‖ · ‖∞, Assumption 4.1 hold
with parameters s ∈ N, t ∈ [0, 1/2) and Assumption 4.2 hold with parameters α, Cα > 0. Assume
further that k in k-NN satisfies 16(1− 2t)−2 log(2m/δ) ≤ k ≤ ((1− 2t)/(8Cλ))

1/λ
(n/2) . Then,

with probability at least 1− δ over D, the regret of the k-NN plug-in classifier φn,k`H obtained from (3)
satisfies

Reg`H (φn,k`H ) ≤ 2s

m
· Cα (∆(n, k, s, δ))

1+α
+ δ ,

where

∆(n, k, s, δ) = Cλ ·
(

2k

n

)λ
+

√
log(s/δ)

k
.

In particular with k = Ω
(
log(8s/δ)λ/(2λ+1) · n2λ/(2λ+1)

)
and

n = Ω
(

(log(2m/δ)/(1− 2t)2)(2λ+1)/2λ
)

we have

Reg`H (φn,k`H ) = O
( s
m
·
(

log(4s/δ)

n

)λ(1+α)
2λ+1 )

+δ .

A few remarks are in order at this point.
Remark 5.3. (On the assumptions) The regret bound given in Theorem 5.2 requires three assumptions.
The smoothness assumption of the regression function (Assumption 5.1) is natural in the sense that a
universal rate of convergence cannot be established without assuming regularity properties of the
data distribution (e.g., [14, 15]). Analyzing the impact of different smoothness criteria is beyond the
scope of this study. Assumption 4.1 ensures label sparsity which allows k-NN learning to achieve
regret of order s/m. Again, this assumption is also well motivated by practice, since most of the
MLC task of practical relevance have sparse labels. Finally, Assumption 4.2 ensures fast rates, i.e.,
faster than 1/

√
n. This assumption is commonly used and well-understood in the binary case. Here,

we consider a natural extension to the multi-label setup which quantifies the probability of observing
instances whose conditional probabilities are close to 1/2.
Remark 5.4. (On MLC bounds based on binary classification) Theorem 5.2 with s = m results in
a high probability upper bound of the form O

(
(log(m/δ)/n)

λ(1+α)
2λ+1

)
+ δ. This bound coincides

with the fast rate upper bound which we would achieve had we applied the regret upper bound for
the binary case (e.g., Theorem 4 in [5]) to each conditional ηj(x) independently, after setting δ/m
and taking a union bound. Notice that the binary result can be applied to our setup to each ηj(x)
individually because our smoothness condition is based on ‖.‖∞, so that the smoothness definition
for the binary regression function in [5] readily applies to our MLC setting. Yet, we would like to
stress that this need not imply that the bound so obtained is optimal. Rather, this way of viewing MLC
as a set of independent binary problems sheds light on how to construct a set of problem instances on
which we can prove lower bounds based on the binary result (see Section 5.4 for details). On the
other hand, the sparsity condition s < m imposes global constraints on the MLC task that makes the
bounds contained in Theorem 5.2 not readily obtainable by simply reducing to m independent binary
problems.
Remark 5.5. (On fast and ultra fast rates) When λα > 1/2, the exponent of (1/n) log(4s/δ) in
the bound of Theorem 5.2 becomes larger than 1/2, giving a fast rate guarantee. Similarly, when
λ(α− 1) > 1, the exponent becomes larger than 1, and we obtain ultra fast rates.

2Due to space limitations, all proofs are in the appendices.
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5.3 Margin condition for Precision@κ

The margin condition for Hamming loss ensures a gap of conditional probabilities around 1/2 with
a certain probability, which is motivated by the fact that those are the hard-to-classify instances
when the target loss is the Hamming loss. Starting from this observation, one can come up with a
margin condition for Precision@κ of a similar flavor. Let us denote the ith largest margin given x by
η(i)(x). We assume there is a gap with some quantifiable probability between the κ-th and (κ+ 1)-th
conditional distribution, as specified next.
Assumption 5.6 (Margin condition for Precision@κ). There exist β ≥ 0 and Kβ ≥ 0 such that for
all ξ > 0 we have

P
(
η(κ)(X)− η(κ+1)(X) < ξ

)
≤ Kβξ

β .

This assumption bears close resemblance to the margin condition introduced in [2] but, clearly
enough, in order to make the optimal decision for Precision@κ, the classifier needs to distinguish
between η(κ)(x) and η(κ+1)(x) with a certain quantifiable probability over X . With this assumption
at hand, one can show the following high probability regret bound for φn,k`@κ .

Theorem 5.7. Let Assumption 5.1 hold with parameters λ, Cλ > 0, ‖ · ‖∞, and Assumption 5.6 hold
with parameter β > 0 and Kβ . Suppose further that k satisfies 4 log(2/δ) ≤ k ≤ n/2. Then, with
probability at least 1− δ over D it holds that

Reg`@κ(φn,k`@κ) ≤ Kβ(2∆(n, k, δ))1+β + 2δ ,

where ∆(n, k, δ) = Cλ
(
2k
n

)λ
+
√

log(3m/δ)
k . In particular with

k = Ω(log(3m/δ)λ/(2λ+1) · n2λ/(2λ+1),

we have

Reg`@κ(φn,k`@κ) ∈ O

( log(m/δ)

n

)λ(1+β)
2λ+1

+ 2δ .

Remark 5.8. Theorem 5.7 does not require label sparsity in order to achieve a logarithmic dependence
on the number of labels m. Label sparsity given in Assumption 4.1 does not help in general in
optimizing Precision@κ, since when all conditionals are smaller than t, sparsity does not help find
the labels with the top-κ marginals, which is needed to make an optimal decision for Precision@κ.
Remark 5.9. The margin condition in Assumption 5.6 is generally inevitable in order to obtain fast
rates for Precision@κ. To see this, one should delve into the proof of the lower bound in Theorem
5.11 (Appendix D), where it is shown that, for the multi-label problem constructed therein, the margin
condition in Assumption 4.2 implies the one in Assumption 5.6 with β = α.

5.4 Regret lower bounds

In this section, we present lower bounds for MLC problems with Hamming loss and Precision@κ
that scale with the label sparsity. In order to do so, we introduce two reductions that map binary data
to multi-label data and multi-label classifiers to binary classifiers. These reductions are designed
so as to preserve regret (scaled with sparsity for Hamming loss), in that lower bounds for binary
classification turn to lower bounds for the multi-label problem with Hamming loss and Precision@κ.
Theorem 5.10. Let us denote by P the class of probability distributions over X × Y for which the
following assumptions hold: 1) Assumption 5.1 holds with some parameters λ, Cλ > 0, ‖ · ‖∞;
2) Assumption 4.1 holds with parameters s ∈ N, t ∈ [0, 1/2); 3) Assumption 4.2 holds with some
parameters α, Cα > 0. Then there exists a constant C > 0 such that for any n ≥ 1 and any mapping
f̂n : (X × Y)n 7→ M(X ,Y) it holds that

sup
P∈P

E
[
Reg`H (f̂n)

]
≥ Csn−

λ(1+α)
2λ+1 ,

where s denotes the sparsity ratio s = s/m.

Lower bound for Precision@κ can be also obtained as follows.
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Theorem 5.11. Let us denote by P the class of probability distributions over X × Y for which the
following assumptions hold: 1) Assumption 5.1 holds with some parameters λ, Cλ > 0, ‖ · ‖∞; 2)
Assumption 5.6 holds with some parameters β ≥ 0 and Kβ ≥ 0. Then there exists a constant C > 0

such that for any n ≥ 1 and any mapping f̂n : (X × Y)n 7→ M(X ,Y) it holds that

sup
P∈P

E
[
Reg`@κ(f̂n)

]
≥ Cn−

λ(1+β)
2λ+1 .

Notice that some bound r(δ) on the regret that holds with probability (1 − δ), translates into a
bound r(δ) + δ on the expected regret in a straightforward manner. Therefore any lower bound on
the expected regret also applies when considering high probability bounds. As a consequence, the
Hamming loss upper bound in Theorem 5.2 is optimal up to a log s/δ factor and the regret bound
for Precision@κ given in Theorem 5.7 is optimal up to a logm/δ factor. It is an interesting open
question whether these log factors can be eliminated to get matching regret bound.

6 Parametric Setting

In this section, we work with multi-label scoring functions in the form of f : X 7→ Rm. A
multi-label scoring function is mapped to a multi-label classifier as φf (x) = (sgn(fj(x)))j∈[m].
Notice that, for convenience, we now view the multi-label space as {±1}m, instead of {0, 1}m.
Likewise the Hamming loss and Precision@κ will be defined on {±1}m. We will work with
convex surrogate loss functions with a single argument that applies to a multi-label score function
as (`(yif(x))j∈[m], resulting in a vector of losses for x. The risk of a scoring function f in terms
of surrogate loss ` is then defined as R`(f) = 1/m

∑m
j=1 E`(Y jfj(X)), and the Bayes `-risk as

R∗` = inff R`(f), the infimum being taken over all measurable functions. The `-regret of f is as
usual Reg`(f) = R`(f)−R∗` . In addition, we will assume that the loss functions ` are classification
calibrated, as recalled in the next definition.

Definition 6.1. A loss function ` : R 7→ R is classification calibrated if for all η ∈ [0, 1] such that
η 6= 1/2 it holds that

inf
z∈R : z(2η−1)≤0

η`(z) + (1− η)`(−z) > inf
z∈R

η`(z) + (1− η)`(−z) .

In words, a loss function ` is classification-calibrated if the sign of the argmin classifier always
equals the sign of the Bayes optimal classifier according to true underlying distribution. Examples of
classification-calibrated losses are the exponential loss, the (truncated) squared loss, and the hinge
loss.

Our analysis of the regret of Hamming loss and Precision@κ extends the work of [3] to MLC. In
[3], it is shown that for each classification-calibrated loss, there exists a nondecreasing function
ψ : [0, 1] 7→ [0,∞) that provides an upper bound on the regret of the 0-1 loss in terms of the regret of
the surrogate loss, i.e., ψ(Reg0-1(f)) ≤ Reg`(f) for all measurable function f : X 7→ R. We extend
their 0-1 loss result to Hamming loss and Precision@κ under sparsity assumptions. Further results,
including consistency, are contained in Appendix E.

6.1 Regret upper bound for Hamming loss

We now give regret upper bounds for Hamming loss using classification calibrated losses. These
upper bounds scale with the sparsity factor s = s/m, and apply to multi-label classifiers whose
regret is small enough. Notice that placing small regret constraints on the multi-label classifier is
unavoidable, since a classifier that has very poor performance, e.g. f bad

j (x) = −ηj(x) for all j,
will always suffer a regret that does not depend on s. Observe that a similar assumption on the
performance of the classifiers is also implicitly made in Theorem 5.2 in the form of a lower bound
Ω(log(2m/δ)/(1− 2t)2) on the sample size n, which ensures that the plug-in estimator cannot have
arbitrarily large regret.

8



10−3 100 103
0

0.1

0.2

0.3

0.4

α

Cα = 1

Cα = 2

Cα = 4

Figure 1: Maximum value of t in order for Theorem 6.2 to hold. If t is
below the curve, an s sparse classifier satisfies the condition in Theorem
6.2. Here, α and Cα are the constants in Assumption 4.1. Notice that
Cα ≥ 1 when ηj(x) 6= 1

2 for all x and j.

Theorem 6.2. Let Assumption 4.1 hold with parameters s ∈ N, t ∈ [0, 1/2) and Assumption 4.2
hold with parameters3 α and Cα. If Reg`H (φf ) < s (2Γ(1− 2t))

α+1 then

Γs

(
Reg`H (φf )

s

) α
α+1

ψ

(
1

2Γ

(
Reg`H (φf )

s

) 1
α+1

)
≤ Reg`(f) , (4)

where s = s
m and Γ = C

1/(α+1)
α (α+ 1)/αα/(α+1).

To see how this regret bound depends on s, assume ψ(θ) is of the form ψ(θ) = θν , where ν > 1.
This implies that ψ is a strictly convex function. With this in hand, and solving for Reg`H (φf ), Eq.
(4) becomes

Reg`H (φf ) ≤
(

Γ
(ν−1)(α+1)

α+ν 2
ν(α+1)
α+ν s

ν−1
α+ν Reg`(f)

α+1
α+ν

)
. (5)

Thus the Hamming loss regret is upper bounded by a power of Reg`(f), multiplied by a sparsity
factor of the form s

ν−1
α+ν . For the sake of illustration, we can instantiate this upper bound for specific

losses:
• The truncated quadratic loss `(z) = (max{0, 1− z})2 is obtained with ν = 2 (see [3]). The

regret in terms of this surrogate loss boils down to O(s
1

α+2 Reg`(f)
α+1
α+2 ). So without margin

condition, that is when α = 0, this upper bound becomes O(
√
sReg`(f)). In contrast to

Theorem 5.2, the dependency on sparsity ratio s here is worse by a
√
s factor. Moreover,

this dependency becomes less and less relevant as α increases. Very similar conclusions can
be drawn for the exponential loss `(z) = e−z , since the corresponding ψ(θ) = 1−

√
1− θ2

(see again [3]) can be lower bounded by θ2/2 and upper bounded by θ2.
• Arbitrary ν > 1: More generally, the exponents of the sparsity and regret factors are related

to the curvature of the loss as O(s1−
1
ν Reg`(f)

1
ν ) when no margin condition is imposed.

Remark 6.3. In order to apply, Theorem 6.2 needs the regret of φf be below a certain threshold, i.e.,
Reg`H (φf ) < s (2Γ(1− 2t))

α+1. This condition can be easily met by requiring φf to be an s sparse
classifier, and that parameter t in Assumption 4.1 is not too large. Since it is usually the case that
the classifiers employed in MLC are sparse, Theorem 6.2 applies to most interesting MLC problems.
To see this in detail, let Assumption 4.1 hold, and consider an s sparse classifier φf . The maximum
regret w.r.t. `H is clearly at most 2s. Thus, when

(2Γ(1− 2t))
α+1

> 2 (6)

any s sparse classifier will have regret Reg`H (φf ) less then the threshold required by Theorem 6.2.
Also, notice that Γ = (Cα)1/(α+1)(1 + α)/αα/(1+α) therein depends on Cα and α. Therefore, for
an s sparse classifier, (6) is satisfied when t is small enough, the maximum value of t depending on α
and Cα, as exemplified in Figure 1.
Remark 6.4. In Appendix H we show that the upper bound of Theorem 6.2 cannot be improved by
more than a factor of 2.
Remark 6.5. When working with classes F with finite pseudo-dimension (e.g., [15]), the regret
Reg`(f) of any f ∈ F can as usual be decomposed into an estimation error R`(f) − R`(f∗) and
an approximation error R`(f∗) − R∗` , where f∗ ∈ argminf∈FR`(f). If each component Fi of
F has finite pseudo-dimension di, and f̂ is the multi-label scoring function that minimizes the

3Our notation differs from [3]. Our α correspond to their β.

9



multi-label empirical risk minimization w.r.t. the surrogate loss function, then the estimation error
R`(f̂)−R`(f∗) can with probability at least 1− δ be upper bounded by an expression of the form√

(maxi di)+log(m/δ)
n . Combined, e.g., with (5), this yields regret upper bounds of the form

Reg`H (φf̂ ) ≤ s
ν−1
α+ν

(√
(maxi di) + log(m/δ)

n
+R`(f

∗)−R∗`

) α+1
α+ν

. (7)

Remark 6.6. One thing to observe is that in the sparse MLC setting what is relevant is not only the
dependence on the sample size n, but also the dependence on the sparsity factor s. This is because in
such tasks, the total number of classes m can even be larger the total number of samples n. Hence,
in bounds like (5) or (7), it is the dependence on both s and Reg`(f) (and the interplay between the
two) that better elucidates the main dependencies.

6.2 Regret upper bound for Precision@κ

Recall that Precision@κ is a ranking metric that ignores the values of the scoring function components
at hand, only the ranking of these values is relevant. For instance, unlike risk R`(f), shifting the
value of f ’s components by the same amount does not change R`@κ(Tκ(f)). As a consequence, low
Reg`@κ(Tκ(f)) does not imply low Reg`(f). Thus, to remedy this problem, we re-center the values
of the scoring function f so that f[κ](x) > 0 and f[κ+1](x) < 0 to make it invariant to shifting values.
We denote by f ′ the centered version of f , i.e., f ′(x) =

(
fj(x)− (1/2)

(
f[κ](x) + f[κ+1](x)

))
j∈[m]

.
Notice that Reg`@κ(Tκ(f)) = Reg`@κ(Tκ(f ′)). For simplicity, we assume that ∀x ∈ X , f[κ](x) 6=
f[κ+1](x) to remove ties. (One simple way to avoid ties is to add infinitesimal random noise to the
values of f ). At this point, we can rely on Theorem 6.2 to obtain an upper bound on Reg`@κ(Tκ(f))
in terms of the surrogate loss regret Reg`(f), when combined with the following result.
Theorem 6.7. Let 0 ≤ s ≤ κ. If Assumption 4.1 holds with parameters s ∈ N, t ∈ [0, 1/2), then

Reg`@κ(Tκ(f)) ≤ m

2κ

(
Reg`H (φf ′)

)
,

where f ′(x) =
(
fj(x)− (1/2)

(
f[κ](x) + f[κ+1](x)

))
j∈[m]

. Equivalently, for f that satisfies, ∀x,
f[κ](x) > 0, f[κ+1](x) < 0,

Reg`@κ(Tκ(f)) ≤ m

2κ

(
Reg`H (φf )

)
.

The inequalities are equalities if ∀x ∈ X ,∀k ∈ [κ], η[k](x) > 1
2 .

As an example, when a truncated quadratic loss is used, we obtain following upper bound by
combining Theorem 6.2 with Theorem 6.7:

Reg`@κ(Tκ(f)) ≤ m

2κ

(
Reg`H (φf ′)

)
= O

(
κ−1s

1
α+2 (mReg`(f

′))
α+1
α+2

)
. (8)

In turn, Reg`(f
′) in the RHS of (8) can be upper bounded as in (7).

7 Conclusions
The results we presented aim at filling the gap in the statistical analysis of MLC problems and methods.
In the non-parametric setting, we provided upper and lower finite-sample regret bounds for k-NN
classifiers in MLC with Hamming loss and Precision@κ under suitable smoothness assumptions.
In fact, our analysis may be extended to other loss functions, like rank loss (e.g., [11]) and micro-
and macro-averaged complex performance measures (e.g., [22]). The crucial point is formulating
the right assumptions for those loss functions. The general steps of these analyses will be similar to
those contained in this paper, since the Bayes classifiers for these losses are in fact based on marginal
quantities [23]. As an other important research avenue to explore is to make our lower bound more
tight. Lower bounds that are given in this paper are tight up to log factors and to weed out this log
factor seems challenging in the multi-label setup.

In the parametric setting, we considered general regret reductions from MLC surrogate losses to
Hamming loss and Precision@κ, and then we presented regret bounds one can achieve by empirical
risk minimization operating on the surrogate losses. One natural question is to understand to what
extent these regret bounds (like those contained in Eqs. (7) and (8)) are tight, specifically when the
approximation error R`(f∗)−R∗` is strictly positive.
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