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A Theoretical Details

Our Divide and Contrast paradigm mainly divides the target data DT into source-like samples DS

and target-specific outliers DO via the network predictions from the source classifier. We claim the
consistency robustness (Claim A.1) of the source-like samples. We further show in Theorem A.2
a upper bound of task error on target domain, and design our objective function motivated by
constraining the upper bound.

We first review the main notations and assumptions in Section 3. Considering a C-way classification
task, our model consists of source classifier and feature extractor h̄ = gs ◦ ϕ, which maps input
space RI to prediction vector space RC , and h(x) = argmaxc h̄(x)[c]. Slightly different from the
theoretical derivation, we use h = gs ◦ ϕ to denote our model in Section 4 to simplify the symbolic
notations. Following in [25, 26, 27, 28], we denote DTc

as the conditional distribution (probability
measure) of DT given the ground truth y = c, and also assume that the supports of DTi

and DTj

are disjoint for all i ̸= j. This canonical assumption shows that the target distribution consists of C
class-wise subpopulations, and different class subpopulations have disjoint supports.

In order to study the local structure, we define that the suitable set of input transformations B(x) ⊂ DT

takes the general form:

B(x) = {x′ : ∃A ∈ A s.t. ||(x′ −A(x)|| < r},

where || · || is L1 distance function, r > 0 is a small radius, and A is a set of data augmentations. B(x)
generally depicts the local structures around sample x, which can be understand as the neighborhood
set in [2, 5] and the set of augmented data in [37, 49]. To this end, we further introduce the population
consistency error on DT to demonstrate the consistency robustness of predictions from the model
within B(x):

RDT
(h) = Ex∼DT

[1(∃x′ ∈ B(x) s.t. h(x′) ̸= h(x))].

Following [25, 27, 26], we study target domain relies on the expansion property, which implies
the continuity of data distributions in each class-wise subpopulations. For this, we first define the
neighborhood function of a sample x ∈ DTi

as: N (x) := DTi
∩ {x′|B(x) ∩ B(x′) ̸= ∅}, as well as

that of a set S ⊂ DT as: N (S) := ∪x∈SN (x).
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Definition A.1 ((q, γ)-constant expansion [26])). We say Q satisfies (q, γ)-constant expansion
for some constant q, γ ∈ (0, 1), if for any set S ⊂ Q with PQ[S] > q, we have PQ[N (S) \ S] >
min {γ,PQ[S]}.

Our Divide and Contrast paradigm selects confident samples (from target data) with prediction
probability greater than a threshold τ , and regard them as source-like samples:

DS = {xi|max
c

h̄(xi) ≥ τ, xi ∈ DT },

and the rest target data is target-specific samples DO = DT \ DS . Define the conditional distribution
of source-like samples as DSi

= DS ∩ DTi
. The definition is similar for DOi

. The following claim
guarantees the consistency and robustness of source-like samples:

Claim A.1. Suppose h is Lh-Lipschitz w.r.t the L1 distance, there exists threshold τ ∈ (0, 1) such
that the source-like set DS is consistency robust, i.e. RDS

(h) = 0. More specifically,

τ ≥ Lhr

4
+

1

2
.

Proof of Claim A.1. Suppose DS is defined by τ ≥ Lhr
4 + 1

2 . If ∃ x, x′ ∈ DS , x′ ∈ B(x) ∩
DS s.t. h̄(x) ̸= h̄(x′). Denote h(x) = i, h(x′) = j, since i ̸= j, there is h̄(x)[i]− h̄(x′)[j] ≥ 2τ−1,

and h̄(x′)[j] − h̄(x)[i] ≥ 2τ − 1. Then we have:

Lh||x− x′|| ≥ ||h̄(x)− h̄(x′)|| ≥ |h̄(x)[i] − h̄(x′)[j]|+ |h̄(x)[j] − h̄(x′)[i]| ≥ 4τ − 2 ≥ Lhr,

Since x′ ∈ B(x), ||x − x′|| < r, and Lipschitz constant Lh > 0, this forms a contradiction with
Lh||x − x′|| ≥ Lhr. Thus, ∀x ∈ DS , x

′ ∈ B(x) ∩ DS , the network predictions are consistent,
i.e. RDS

(h) = 0.

Assume we have a pseudo-labeler hpl based on the source model. In Theorem A.2, we establish a
upper bound of target error based on expansion property.

Theorem A.2. Suppose the condition of Claim 3.1 holds and DT ,DS satisfies (q, γ)-constant
expansion. Then the expected error of model h ∈ H on target domain DT is bounded,

ϵDT
(h) ≤ (PDT

[h(x) ̸= hpl(x)]− ϵDS
(hpl) + q)

RDT
(h)(1 + γ)

γ ·min {q, γ}
+max

i∈[C]
{dH∆H(DSi ,DOi)}+λ,

(11)

We have proved that source-like samples are consistency robust (Claim A.1). For the source-like
samples, we further assume that ϵDS

(h) < ϵDT
(h) and Px∼DS

[h(x) ̸= hpl(x)] < Px∼DT
[h(x) ̸=

hpl(x)], which empirically holds since all source-like samples with confident predictions [18]. To
prove Theorem A.2, we first use the expansion property to study the error bound of DS , and introduce
new notations as follows. Let Mi(h) = {x : h(x) ̸= i, x ∈ DSi} denote the source-like samples
where the model makes mistakes. The definition is similar for M(hpl), the source-like samples
where the pseudolabeler makes mistakes. We introduces three disjoint subsets of Mi(h) following
[26]: Mi

1 = {x : h(x) = hpl(x), h(x) ̸= i}, Mi
2 = {x : h(x) ̸= hpl(x), h(x) ̸= i, hpl(x) ̸= i},

Mi
3 = {x : h(x) ̸= hpl(x), h(x) ̸= i, hpl(x) = i}. Mi

1 ∪Mi
2 ⊆ Mi(hpl) ∩Mi(h), where both h

and hpl makes mistakes.

When h fits the pseudolabels well, i.e.Px∼DSi
[1(h(x) ̸= hpl(x))]− ϵDSi

(hpl) ≤ γ, the Lemma A.3
in [26] states that:

PDSi
[Mi

1 ∪Mi
2] = PDSi

[Mi
1] + PDSi

[Mi
2] ≤ q (12)

Thus we define I = {i ∈ [C]|Px∼DSi
[1(h(x) ̸= hpl(x))] − ϵDSi

(hpl) ≤ γ}, where [C] =

{1, 2, . . . , C}. The following lemma bounds the probability of [C] \ I .

Lemma A.1 (Upper bound on the subpopulations of [C] \ I). Under the setting of Theorem A.2,∑
i∈[C]\I

PDS
[DSi

] ≤ 1

γ
(Px∈DS

[h(x) ̸= hpl(x)]− ϵDS
(hpl) + q)

12



Proof of Lemma A.1. For any i ∈ [C], the disjoint three parts Mi
2,Mi

3, and (Mi(hpl) ∩ Mi(h))

have inconsistent predictions between h and hpl. Thus, Mi
2 ∪Mi

3 ∪ (Mi(hpl) ∩Mi(h)) ⊆ {x :
h(x) ̸= hpl(x), x ∈ DSi

}, and we have:

PDSi
[Mi

2] + PDSi
[Mi

3] + PDSi
[Mi(hpl) ∩Mi(h)] ≤ Px∼DSi

[h(x) ̸= hpl(x)] (13)

It is not hard to verify that Mi(hpl) \Mi
1 ⊆ Mi

2 ∪ (Mi(hpl) ∩Mi(h)), then:

ϵDSi
(hpl)− PDSi

[Mi
1] ≤ PDSi

[Mi(hpl) \Mi
1]

≤ PDSi
[Mi

2] + PDSi
[Mi(hpl) ∩Mi(h)]

by Eqn. 13 ≤ Px∼DSi
[h(x) ̸= hpl(x)]− PDSi

[Mi
3]

(14)

Then, we can write:

Px∼DS
[h(x) ̸= hpl(x)] =

∑
i∈I

Px∼DSi
[h(x) ̸= hpl(x)]PDS

[DSi
]

+
∑

i∈[C]\I

Px∼DSi
[h(x) ̸= hpl(x)]PDS

[DSi
]

by Eqn. 14 ≥
∑
i∈I

PDS
[DSi

](ϵDSi
(hpl)− PDSi

[Mi
1])

+
∑

i∈[C]\I

Px∼DSi
[h(x) ̸= hpl(x)]PDS

[DSi ]

by Eqn. 12 and Definition of I >
∑
i∈I

PDS
[DSi ](ϵDSi

(hpl)− q)

+
∑

i∈[C]\I

(ϵDSi
(hpl) + γ)PDS

[DSi
]

≥ ϵDSi
(hpl)− q + γ

∑
i∈[C]\I

PDS
[DSi

]

(15)

By organizing the Eqn. 15, we complete the proof.

Lemma A.2. Under the condiction of Theorem A.2, for any i ∈ I , the task error on DSi
is bounded

by:
ϵDSi

(h) ≤ Px∼DSi
[h(x) ̸= hpl(x)]− ϵDSi

(hpl) + 2q

Proof of Lemma A.2. For i ∈ I , we can write:

ϵDSi
(h) = PDSi

[Mi
2] + PDSi

[Mi
3] + PDSi

[Mi
1]

by Eqn. 14 ≤ PDSi
[Mi

2] + 2PDSi
[Mi

1] + Px∼DSi
[h(x) ̸= hpl(x)]− ϵDSi

(hpl)

≤2(PDSi
[Mi

2] + PDSi
[Mi

1]) + Px∼DSi
[h(x) ̸= hpl(x)]− ϵDSi

(hpl)

by Eqn. 12 ≤ 2q + Px∼DSi
[h(x) ̸= hpl(x)]− ϵDSi

(hpl)

(16)

Based on the results above, we turn to bound the target error on the whole target data.

Proof of Theorem A.2.

ϵDT
(h) =

C∑
i=1

PDT
[DTi ]ϵDTi

(h) =
∑
i∈G1

PDT
[DTi ]ϵDTi

(h) +
∑
i∈G2

PDT
[DTi ]ϵDTi

(h) (17)

Following [25], we define G1 = {i ∈ [C] : RDTi
(h) ≤ min {q, γ}}, G2 = {i ∈ [C] : RDTi

(h) >

min {q, γ}} , by the Lemma 2 in [25], we also claim that, for ∀i ∈ G1:

ϵDTi
(h) ≤ q, (18)
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otherwise, by the expansion property A.1, PDTi
[N (Mi(h))\Mi(h)] > min{q, γ}. We claim that the

N (Mi(h)) \Mi(h) is subset of RDTi
(h). If not, ∃ x ∈ N (Mi(h)) \Mi(h), say x ∈ N (Mi(h) \

RDTi
(h)), by the definition of neighborhood, ∃x′ ∈ Mi(h)\RDTi

(h) s.t. ∃x′′ ∈ B(x)∩B(x′). By
the definition of RDTi

(h), we have h(x) = h(x′) = h(x′′) = i, which contradicts to x′ ∈ Mi(h).
Therefore, the consistency error on the subpopulations RDTi

(h) ≥ PDTi
[N (M(h)) \ M(h)] >

min{q, γ}, which contradicts to the definition of G1 that RDTi
(h) ≤ min{q, γ}.

For i ∈ G2, by the Lemma 1 in [25], we have:∑
i∈G2

PDT
[DTi ] ≤

RDT
(h)

min {q, γ}
, (19)

otherwise, RDT
(h) >

∑
i∈G2

PDT
[DTi

] min {q, γ} > RDT
(h), which forms contradiction.

The consistency error on the subpopulation of G2 is greater than min {γ, q}, we use our divided
source-like set to estimate the target error ϵDTi

. Following the Theorem 2 in [28], for all h in the
model space of C-way classification task H, we have:

ϵDTi
(h) = PDTi

[DSi ]ϵDSi
(h) + PDTi

[DOi ]ϵDOi
(h)

≤ PDTi
[DSi

]ϵDSi
(h) + PDTi

[DOi
]
(
ϵDSi

(h) + dH∆H(DSi
,DOi

) + λi

)
≤ ϵDSi

(h) + dH∆H(DSi
,DOi

) + λi,

(20)

where λi = minh∈H{ϵDSi
(h) + ϵDOi

(h)}. Organizing Eqn. 18,19,20 into Eqn. 17, we have:

ϵDT
≤

∑
i∈G1

PDT
[DTi

]q +
∑
i∈G2

PDT
[DTi

]ϵDSi
(h) + max

i
{dH∆H(DSi

,DOi
)}+ λ′

≤ q +
∑
i∈G2

PDT
[DTi

]ϵDSi
(h) + max

i
{dH∆H(DSi

,DOi
)}+ λ′

(by Eqn. 19) ≤ RDT
(h)

min {q, γ}
ϵDS

(h) + max
i

{dH∆H(DSi ,DOi)}+ λ′ + q

(21)

where λ′ = minh∈H{ϵDS
(h) + ϵDO

(h)}. Then, there is:

ϵDS
(h) =

∑
i∈I

ϵDSi
(h)PDS

[DSi ] +
∑

i∈[c]\I

PDS
[DSi ]ϵDSi

(h)

(by Lemma A.1) ≤ 1

γ
(Px∼DS

[h(x) ̸= hpl(x)]− ϵDS
(hpl) + q) +

∑
i∈[c]\I

PDS
[DSi ]ϵDSi

(h)

(by Lemma A.2) ≤ 1

γ
(Px∼DS

[h(x) ̸= hpl(x)]− ϵDS
(hpl) + q)

+ Px∈DS
[h(x) ̸= hpl(x)]− ϵDS

(hpl) + 2q

≤ 1 + γ

γ
(Px∼DT

[h(x) ̸= hpl(x)]− ϵDS
(hpl) + q) + q.

(22)

Combining the results of Eqn. 21 and Eqn. 22, we prove the result of Theorem A.2. Specifically, in
Eqn. 11 , the λ = λ′ + q(1 +

RDT
(h)(1+γ)

γ·min {q,γ} ) is a constant w.r.t the expansion constant q and task
risk of ideal optimal model.

B Additional Experimental Details

B.1 Implementation Details

We train our model on four Nvidia Geforce GTX 1080Ti graphic cards, using SGD with a momentum
of 0.9, and a weight decay of 0.0005. We conduct experiments on VisDA, Office-Home and
DomainNet and set the batch size to 64 for all benchmarks. The initial learning rate is set as 5e-4
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for VisDA, 2e-2 for Office-Home, and 1e-2 for DomainNet. The total epoch is set as 60 for VisDA,
30 for Office-Home and DomainNet. We apply the learning rate scheduler η = η0(1 + 15p)3/4

following [1], where training process p changes from 0 to 1, and we further reduce the learning rate
by a factor of 10 after 40 epochs on Visda, 15 epochs on Office-Home and DomainNet. We find that
most hyperparameters of DaC do not require to be heavily tuned. As can be seen in Table 7, the
performance is not sensitive to the choice of τc, and we set the confidence threshold τc as 0.95 for
all experiments following [50, 35]. We adopt a set of hyperparameters α = 0.5, β = 0.5,K = 5 for
the large scale benchmarks VisDA and DomainNet, and α = 0.7, β = 0.3,K = 3 for most transfer
senarios of Office-Home.

Table 7: Sensitive analysis of τc.
τc 0.91 0.93 0.95 0.97 0.98 target-supervised

Avg. (%) 87.06 87.27 87.34 87.39 87.19 89.6

B.2 Baseline Methods on DomainNet

We compare DaC with source-present and source-free domain adaptation methods. DomainNet is
widely used in multi-source domain adaptation tasks, and its subset is used as one of the benchmarks
of single-source domain adaptation benchmark by [34]. The results of MME [34] and CDAN [40]
are copied from [34]. The rest source-present and source-free methods are implemented by their
official codes. We choose the learning rate for all baselines by five-fold cross-validation, and apply
the training scheduler of their own.

C Algorithm for DaC

As shown in Algorithm 1, our method consists of self-training by pseudo-labeling, adaptive contrastive
learning, and distribution alignment. After self-training to achieve preliminary class-wise adaptation,
we divide target data as source-like and target-specific to conduct representation learning. The
adaptive contrastive learning framework exploits local and global information and improves feature
discriminability. Distribution alignment reduces the mismatching between source-like and target-
specific samples.
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