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Abstract

We investigate a practical domain adaptation task, called source-free unsupervised
domain adaptation (SFUDA), where the source pretrained model is adapted to
the target domain without access to the source data. Existing techniques mainly
leverage self-supervised pseudo-labeling to achieve class-wise global alignment [1]
or rely on local structure extraction that encourages the feature consistency among
neighborhoods [2]. While impressive progress has been made, both lines of
methods have their own drawbacks – the “global” approach is sensitive to noisy
labels while the “local” counterpart suffers from the source bias. In this paper, we
present Divide and Contrast (DaC), a new paradigm for SFUDA that strives to
connect the good ends of both worlds while bypassing their limitations. Based on
the prediction confidence of the source model, DaC divides the target data into
source-like and target-specific samples, where either group of samples is treated
with tailored goals under an adaptive contrastive learning framework. Specifically,
the source-like samples are utilized for learning global class clustering thanks to
their relatively clean labels. The more noisy target-specific data are harnessed at the
instance level for learning the intrinsic local structures. We further align the source-
like domain with the target-specific samples using a memory-based maximum
mean discrepancy (MMD) loss to reduce the distribution mismatch. Extensive
experiments on VisDA, Office-Home, and the more challenging DomainNet have
verified the superior performance of DaC over current state-of-the-art approaches.
The code is available at https://github.com/ZyeZhang/DaC.git.

1 Introduction

Deep neural networks have brought impressive advances to the cutting edges of vast machine learning
tasks. However, the leap in performance often comes at the cost of large-scale labeled data. To
ease the process of laborious data annotation, domain adaptation (DA) provides an attractive option
that transfers the knowledge learned from the label-rich source domain to the unlabeled target data.
Though most DA approaches require the availability of source data during adaptation, in real-world
scenarios, one may only access a source-trained model instead of source data due to privacy issues.
Hence, this work studies a more practical task, coded source-free unsupervised domain adaptation
(SFUDA), that seeks to adapt a source model to a target domain without source data.
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There are two mainstream strategies to tackle the SFUDA problem. One line of approaches focuses
on class-wise global adaptation. The key idea is to mitigate domain shift by pseudo-labeling the
target data [1, 3] or generating images with target styles [4]. However, either the pseudo images or
labels can be noisy due to the domain discrepancy, which would compromise the training procedure
and lead to erroneous classifications (Figure 1 (a)). The other direction of research strives to exploit
the intrinsic local structure [2, 5] by encouraging consistent predictions between neighboring samples.
Nonetheless, the closeness of features may be biased by the source hypothesis, which could render
false predictions. Further, as it fails to consider the global context, it may generate spurious local
clusters that are detrimental to the discriminability of the trained model (Figure 1 (b)).

(a) Global adaptation method (b) Local consistency method (c) Divide and contrast (ours)

Figure 1: UMAP [6] visualizations of target features trained for 60 epochs on the randomly selected 6
VisDA classes. The results are compared with two types of baselines, global adaption based CPGA [3]
and neighborhood consistency based NRC [2]. CPGA can achieve clear global-scale clusters but
suffer from false predictions inside each class. NRC can only maintain the intrinsic local consistency
but fail to generate clear intra-class boundaries. In contrast, our method inherits the merits of both
methods – clear global clusters and strong local consistency, while bypassing their limitations.

To address the above issues, we propose Divide and Contrast (DaC), a dedicated framework for
SFUDA that aims to combine the merits of existing techniques, i.e., taking full advantage of both
global and local structures, while sidestepping their limitations. Our key observation is that the
“global” approach based on self-training can form clear clusters in the feature landscape (Figure 1 (a)).
Its prediction artifacts are mainly caused by noisy labels with low prediction confidence. Hence, after
self-training by pseudo labels, we propose to divide the target data into source-like and target-specific
samples, based on the prediction confidence of the source classifier [1]. The two groups of samples
are then fully exploited with tailored learning strategies under a unified adaptive contrastive learning
framework with a memory bank. Specifically, the memory bank consists of representations of all
target samples, and momentum updated in the training stage [3, 7]. Thanks to the high prediction
confidence, the memory bank generates robust class centroids as positive prototypes for source-like
samples. This ensures DaC can obtain a discriminative global structure which is robust to noisy
pseudo labels. In contrast, for the low-confidence target-specific samples, we ignore their noisy
class-level supervisory signals and use the memory bank to generate the positive prototype via the
local structure. This encourages the network to exploit the intrinsic local structures by contrastive
learning.

To prevent the local clustering from forming spurious clusters, as shown in Figure 1 (b), we further
transfer the cluster structure from the source-like domain to the target-specific samples. In particular,
we propose a maximum mean discrepancy (MMD) based on a memory bank for measuring the
distribution mismatch between the source-like and target-specific data. Since the set of source-like
and target-specific samples are dynamically updated in our framework, the introduction of a memory
bank can effectively alleviate the instability and batch bias caused by mini batches. As seen in
Figure 1 (c), the proposed DaC framework can generate clearer and cleaner clusters than both the
class-wise and instance discrimination methods. Finally, we provide a rigorous theoretical analysis
of the upper bound of the task risk of the target model (Sec. 3) that justifies the soundness of our
proposed framework. Extensive experiments demonstrate that our proposed DaC framework has
set a new state of the art on a number of challenging datasets, including VisDA, Office-Home, and
DomainNet.

We summarize our contributions as follows: 1) a novel divide-and-contrast paradigm for SFUDA
that can fully exploit both the global and local structures of target data via data segmentation and
customized learning strategies for data subsets; 2) a unified adaptive contrastive learning framework
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that achieves class-wise adaptation for source-like samples and local consistency for target-specific
data; 3) a memory bank based MMD loss to reduce the batch bias in batch training and an improved
MMD loss with non-negative exponential form; 4) new state-of-the-art performance on VisDA,
Office-Home, and DomainNet.

2 Related Work

Unsupervised Domain Adaptation. Conventional UDA methods alleviate the domain discrepancy
between the source domain and target domain by leveraging the Maximum Mean Discrepancy
(MMD) [8] to match high-order moments of distributions [9, 10, 11] or by adversarial training
to learn domain invariant features [12, 13]. In addition, some methods [14, 15] utilize contrastive
learning to enhance the global class-level structure by minimizing intra-class distance and maximizing
inter-class distance, and others [16, 7] use memory bank to provide class-level information from
the source domain and instance-level information from the target domain for contrastive learning.
However, the absence of source data makes these methods cannot be applied directly.

Source-free Unsupervised Domain Adaptation. Source-free Unsupervised Domain Adaptation
(SFUDA) aims to adapt the well-trained source model to the target domain without the annotated
source data. Some methods focus on generating target-style images [4] or reconstructing fake source
distributions via source model [17]. Another stream of SFUDA methods is exploiting the information
provided by the source model. Some methods [1, 18, 19, 3] only leverage the class-level information
from the source model and adapt the source model to the target domain by pseudo-labeling, while
the other [2, 5] only exploit the neighborhood information and encourage the consistent predictions
among samples with highly local affinity.

Contrastive Learning. Contrastive learning achieves the promising improvement on unsupervised
visual representation learning [20, 21, 22, 23, 24] by learning instance discriminative representations.
Although the instance-level contrastive learning has well generalization capability in downstream
tasks, it does not perform well on the source-free domain adaptation tasks, which demand correct
measurement of inter-class affinities on the unsupervised target domain.

3 Preliminaries and Analysis

Our Divide and Contrast paradigm mainly divides the target data DT into source-like samples DS and
target-specific outliers DO via the source classifier. We claim the consistency robustness (Claim 3.1)
of the source-like samples, and further show in Theorem 3.2 an upper bound of task error on the
target domain. In this part, we introduce some notations, assumptions, and our theoretical analysis.

Preliminary. Only with a well-trained model on source domain, the goal of the SFUDA task
is to learn a model h which minimizes the task risk ϵDT

(h) in the target domain, i.e. ϵDT
(h) =

PDT
[h(x) ̸= h∗(x))], where DT is our available nt unlabeled i.i.d samples from target domain, and

h∗ is the ideal model in all model space H. Specifically, we consider a C-way classification task,
where the source and target domain share the same label space. The model h̄ consists of a feature
extractor ϕ and a classifier g, i.e. h̄(x) = g(ϕ(x)), which maps input space RI to prediction vector
space RC , and h(x) = argmaxc h̄(x)[c]. The source model is denoted as: hs = gs ◦ ϕs. The feature
from the feature extractor is denoted as fi = ϕ(xi). For the training stage, the batch data randomly
sampled from DT is denoted as BT , and δ is the softmax function.

Assumptions. Following the subpopulation assumption in [25, 26, 27, 28], we also denote DTi

the conditional distribution of target data DT given the ground-truth y = i, and further assume
DTi

∩ DTj
= ∅ for all i ̸= j. To introduce the expansion assumption [27, 26], we first define

that the suitable set of input transformations B(x) takes the general form B(x) = {x′ : ∃A ∈
A s.t.||x′ − A(x)|| < r} for a small radius r > 0 and a set of data augmentations A. Then, the
neighborhood of a sample x ∈ DTi is defined as N (x) := DTi ∩ {x′|B(x) ∩ B(x′) ̸= ∅}, as well as
that of a set S ⊂ DT as: N (S) := ∪x∈SN (x). The consistency error of h on domain DT is defined
as : RDT

(h) = EDT
[1(∃x′ ∈ B(x) s.t. h(x′) ̸= h(x))], which indicates the model stability of local

structure and input transformations. To this end, we introduce the expansion assumption to study the
target domain.
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Definition 3.1 ((q, γ)-constant expansion [27, 26])). We say Q satisfies (q, γ)-constant expansion
for some constant q, γ ∈ (0, 1), if for any set S ⊂ Q with PQ[S] > q, we have PQ[N (S) \ S] >
min {γ,PQ[S]}.

Theoretical analysis. Our Divide and Contrast paradigm mainly divides the target data into source-
like and target-specific samples via the source classifier. Specifically, by freezing the source classifier
i.e. h = gs ◦ ϕ [1], we select confident samples with prediction probability greater than a threshold
τc, and regard them as source-like samples: DS = {xi|maxc δ(h̄(xi)) ≥ τc, xi ∈ DT }, and the rest
target data is target-specific samples DO = DT \ DS . Denote by DSi

the conditional distribution of
DS where DSi

= DS ∩ DTi
. The definition is similar for DOi

. The following claim guarantees the
existence of τc and the consistency robustness of source-like samples:
Claim 3.1. Suppose h is Lh-Lipschitz w.r.t the L1 distance, there exists threshold τc ∈ (0, 1) such
that the source-like set DS is consistency robust, i.e. RDS

(h) = 0. More specifically,

τc ≥
Lhr

4
+

1

2
.

Remark 1. Claim 3.1 illustrates the source-like set with a small consistency error, as long as the
τc is large enough. Moreover, we empirically claim that model predictions on DS are more robust,
i.e. ϵDS

(h) ≤ ϵDT
(h) [18]. The great properties of the source-like set, consistency, and robustness,

motivate us to transfer knowledge from source-like samples to target-specific samples, by contrastive
learning and distribution matching.

Assume we have a pseudo-labeler hpl based on the source model. The following theorem establishes
the upper bound on the target risks and states the key idea behind our method. The proofs of both the
claim and theorem are provided in Appendix A.
Theorem 3.2. Suppose the condition of Claim 3.1 holds and DT ,DS satisfies (q, γ)-constant
expansion. Then the expected error of model h ∈ H on target domain DT is bounded,

ϵDT
(h) ≤ (PDT

[h(x) ̸= hpl(x)]− ϵDS
(hpl) + q)

RDT
(h)(1 + γ)

γ ·min {q, γ}
+max

i∈[C]
{dH∆H(DSi

,DOi
)}+λ,

where constant λ w.r.t the expansion constant q and task risk of the optimal model.
Remark 2. The Theorem 3.2 states that the target risk is bounded by the following three main parts,
the fitting accuracy between model h and pseudo-labeler PDT

[h(x) ̸= hpl(x)], the consistency regu-
larization RDT

(h), and the H-divergence between the source-like samples target-specific samples
dH∆H(DSi

,DOi
). To constrain the above three parts, the theoretical insight of our method lies in

class-wise adaptation, consistency of local structure, and alignment between target-specific and
source-like samples.

Based on the theoretical analysis, our method consists of three parts: 1) achieves preliminary
class-wise adaptation by Lself , which fits h to pseudo-labels; 2) leverages adaptive contrastive loss
Lcon to jointly achieve robust class-wise adaptation for source-like samples and local consistency
regularization for target-specific samples; 3) minimizes the discrepancy between the source-like set
and target-specific outliers by LEMMD. The entire loss is defined as:

L = Lcon + αLself + βLEMMD. (1)

4 Divide and Contrast for Source-free Unsupervised Domain Adaptation

In this section, we introduce DaC, our proposed method for source-free unsupervised domain
adaptation. As the overview shown in Figure 2, our method consists of three parts, self-training by
pseudo-labels, an adaptive contrastive learning framework, and distribution alignment. The overall
algorithm of DaC is summarized in Appendix C.

4.1 Data Segmentation and Self-Training

To achieve preliminary class-wise adaptation without target annotations, we generate pseudo-labels
to supervise the transformation set of input B(x). In practice, we consider two different augmentation
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Figure 2: The illustration of the proposed DaC framework.

strategies in augmentation set: A = {Aw,As}, where weak augmentation Aw refers to random
cropping and flipping, and strong augmentation As refers to the automatically learned augmentation
strategy in [29].

Pseudo-labeling. We apply the strategy proposed in [1] to update pseudo-labels in each epoch.
Denote by pi = δ(gs(fi)) the prediction from source classifier. The initial centroid for each class k
is attained by: ck =

∑nt
i fipi[k]∑nt
i pi[k]

. The centroids estimate the centers of different categories, and the
samples are labeled identically with its nearest initial centroid:

Ỹ = {ỹi|ỹi = argmax
k

cos (ϕ(xi), ck), xi ∈ DT }, (2)

where cos (·, ·) is the cosine similarity. The k-th centroid is further modified by: ck =
∑nt

i 1(ỹi=k)fi∑nt
i 1(ỹi=k)

,
where 1(·) is the indicator function, and pseudo-labels are further updated by the modified centroids
ck based on Eqn. 2 in each epoch.

Self-training for Consistency Regularization. During the training iteration, we transfer each sample
xi into two views: Aw(xi),As(xi). Network predictions on the two views are denoted as pwi and
psi respectively. Denote by ŷi = onehot(ỹi) the one-hot coding of pseudo-labels. Since the same
semantic content of the two augmented views, we encourage consistent predictions between two
types outputs by the following loss:

Lself = −Exi∈BT

[
C∑

c=1

ŷci log(p
w
i [c]) + ŷci log(p

s
i [c])

]
+

C∑
c=1

KL(p̄c||
1

C
) + ωH(pwi ), (3)

where p̄c = EBT
[pwi [c]] is regularized by uniform distribution to encourage output diversity, H(pwi ) =

−EBT
[
∑

c p
w
i [c] log(p

w
i [c])] is the Shannon entropy [30], which is used to encourage confident

outputs and accelerate convergence, and ω is the corresponding parameters.

Dataset Division. As the analysis before, we divide all samples in DT into the source-like set
and target-specific outliers. During the training process, samples are dynamically grouped into the
source-like set by the threshold τc:

D̃k
S = {xi|max

c
(pwi [c]) ≥ τc, argmax

c
(pwi [c]) = k, xi ∈ DT }, (4)

and the target-specific samples are the rest target data, i.e. D̃O = DT \ D̃S , where D̃S = ∪C
k=1D̃k

S .
More specifically, D̃k

O = {xi|xi ∈ D̃O, ỹi = k, ỹi ∈ Ỹ}. To this end, we design an adaptive
contrastive learning framework that jointly adapts source-like features to class-wise prototypes and
optimizes target-specific features by local structures.
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4.2 Adaptive Contrastive Learning

Similar to [20, 16], we employ a momentum updated memory bank to store all target features
F = {zi}nt

i=1. The memory bank dynamically generates C source-like class centroids {wc}Cc=1

and no target-specific features {vj}no
j=1, where no = |D̃O| is the current number of target-specific

samples, which dynamically changes in the training stage.

For a general anchor feature during training time fi = ϕ(Aw(xi)), xi ∈ D̃S ∪ D̃O, we conduct
prototype contrastive loss with similarity measured by inner product:

Lcon = −Exi∈BT
log

exp(fi · k+/τ)

exp (fi · k+/τ) +
∑C+no−1

j=1 exp (fi · k−
j /τ)

, (5)

where the sum is over one positive pair (fi,k
+) and C + no − 1 negative pairs {(fi,k

−)}, the
temperature τ is a hyper-parameter and is empirically set as 0.05.

4.2.1 Prototype Generation

The contrastive loss tries to classify anchor feature f as its positive prototype k+ from all negative
samples. Memory bank generates C + no features, including the class-level signals, i.e. C class
centroids {w} as well as no target-specific instance features {v}. The source-like and target-specific
samples are jointly optimized by generating corresponding positive prototypes.

For the source-like anchor, i.e. xi ∈ D̃k
S , since the network prediction k (in Eqn. 4) is relatively

reliable [18], we encourage contrastive learning to achieve class-wise adaptation by designating
the positive prototype as class centroid wk, i.e. k+ = wk. The rest C − 1 class centroids and no

target-specific features are used to form negative pairs.

For the target specific anchor, due to its noisy class-level supervisory signal, we generate a positive
prototype k+ by introducing Local Structure, including neighborhood consistency and transformation
stability. Specifically, we enhance the semantic consistency with the strongly augmented features
fs
i = ϕ(As(xi)) and the K-nearest features NK(fi), that can be easily found in memory bank via

cosine similarity: NK(fi) = {zj |top-K (cos(fi, zj)) ,∀zk ∈ F}. To this end, the positive prototype

k+ is generated as:k+ = 1
K+1

(
fs
i +

∑K
k=1 zk

)
, where zk ∈ NK(fi). Note that k+ depicts the

local information of its corresponding feature vi, and we use the rest no − 1 target-specific features
{vj}j ̸=i and C class centroids to form negative pairs.

Discussion. For the source-like anchor, the positive prototype k+ = wk is the mean of all source-like
features with confident and consistent predictions, which makes the class-wise adaptation more robust
to noisy pseudo-labels. For the i-th target-specific anchor, its corresponding memory bank feature
zi ∈ F can be found in NK(fi). The contrastive loss constrains the consistency error RDT

in Thm
3.2. Unlike the previous contrastive method [3], Eqn. 5 jointly achieves class-wise adaptation and
instance-wise adaptation. The source-like and target-specific samples are dynamically updated, and
adaptively benefit representation learning.

4.2.2 Memory Bank

One of the most important reasons to utilize the memory bank is to conserve source information
by momentum updating features. Therefore, the memory bank is initialized with the features by
performing forward computation of source feature extractor ϕs: F = {zi|zi = ϕs(xi), xi ∈ DT }.
At each iteration, the memory bank features are updated via momentum strategy for the i-th input
feature: zi = mzi + (1−m)fi, where m ∈ [0, 1] is the momentum coefficient and is empirically
set as 0.2.

The memory bank provides source-like centroids and target-specific features for contrastive learning.
The target-specific features can be directly accessed in memory bank: {vi|vi = zi, xi ∈ D̃O}. We
initialize the source-like set before initializing the source-like centroids. Samples with confident
predictions from the source classifier are termed source-like. To guarantee sufficient samples in a
source-like set in the early training stage, we initialize the source-like set by drawing samples with
top 5% predictions in each class. The c-th source-like set is initialized as:

D̃c
S = argmax

|X |=N,X̂⊆Dt

∑
xi∈X

pwi [c], (6)
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where N = 5%nt is the number of samples in each class. And D̃c
S is updated in training stage by

Eqn. 4. After updating the source-like set D̃S (=
⋃C

c=1 D̃c
S), the c-th class centroids wc is generated

by the mean of all source-like features:

wc =
1

|D̃c
S |

∑
xi∈Dc

S

zi. (7)

4.3 Distribution Alignment

To obtain better adaptation performance, we further achieve alignment by minimize the H-divergence
between source-like set and target-specific samples, i.e. dH∆H(DSi

,DOi
), where the kernel-based

Max Mean Discrepancy (MMD) [8] is widely used. We use D̃i
S , D̃i

O to estimate DSi
,DOi

, the
related optimization target is: minh∈H dκMMD(D̃i

S , D̃i
O), where κ is the kernel function. MMD

depicts the domain discrepancy by embedding two distribution into reproducing kernel Hilbert space.
Considering the MMD between two domain S, T with the linear kernel function in mini-batch (batch
size B):

dMMD(S, T ) =
1

m

m∑
i=1

si

 1

m

m∑
i′=1

si′ −
1

n

n∑
j′=1

tj′

+
1

n

n∑
i=1

ti

 1

n

n∑
j′=1

tj′ −
1

m

m∑
i′=1

si′

 . (8)

where s, t represent the features of two domain, m,n are their corresponding amounts in mini-
batch (m+ n = B). The previous UDA methods regard S, T as the source and the target domain,
respectively. Two domains take an equal number of samples ( i.e. m = n = B/2). Since the absence
of source data, we use MMD to measure the discrepancy between source-like and target-specific
samples, whose amounts m,n are uncertain in the random batch sampling. The vanilla MMD
is not applicable in our setting because samples in mini-batch have estimation bias of the whole
distribution, especially when the m or n is small. To this end, we use features in the memory bank
to estimate the whole distribution and reduce batch bias. Specifically, for S = D̃c

S , T = D̃c
O, we

replace 1
m

∑m
i′=1 si′ with ED̃c

S
[z] = wc, 1

n

∑n
j′=1 tj′ with ED̃c

O
[z], and rewrite Eqn. 8 as our linear

memory bank-based MMD:
LLMMD = Exi∈BT

fi(q
−
i − q+

i ), (9)

where q−
i is the correlating prototype in the memory bank at the same domain. For example, if fi is

from the source-like set, q−
i = wc, q

+
i = ED̃c

O
[z]. To avoid the negative term in Eq. 9, we improve

it as a non-negative form. By simply clipping max {0,fq− − fq+}, we have:

max {0,fq− − fq+} = max {fq+,fq−} − fq+ ≤ log
(
exp(fq+) + exp(fq−)

)
− fq+,

the inequality holds by the log-sum-exp bound. And the last term above can be more generally
organized into our Exponential-MMD loss as follows:

LEMMD = −Exi∈BT
log

exp(fiq
+
i /τ)

exp(fiq
+
i /τ) + exp(fiq

−
i /τ)

. (10)

where τ is the temperature hyper-parameter, note that we set the temperature the same as that in Eqn.
5 (i.e. τ = 0.05). Thus the Exponential-MMD loss can be obtained by the calculated results in the
memory bank without additional computing costs.

5 Experiments

5.1 Experimental Setup

Datasets and benchmarks. We conduct experiments on three benchmark datasets: Office-Home [31]
contains 65 classes from four distinct domains (Real, Clipart, Art, Product) and a total of 15,500
images. VisDA-2017 [32] is a large-scale dataset, with 12-class synthetic-to-real object recognition
tasks. The dataset consists of 152k synthetic images from the source domain while 55k real object
images from the target domain. DomainNet [33] is originally a large-scale multi-source domain
adaptation benchmark, which contains 6 domains with 345 classes. Similar to the setting of [34, 35],
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we select four domains (Real, Clipart, Painting and Sketch) with 126 classes as the single-source
unsupervised domain adaptation benchmark and construct seven single-source adaptation scenarios
from the selected four domains. All results are the average of three random runs.

Implementation Details. We adopt the Resnet-50 [36] as backbone for Office-Home and ResNet-101
for VisDA, and conduct ResNet-34 for DomainNet similar to previous work [34, 35]. We use the
same basic experimental setting in [1, 2] for a fair comparison. For the network architecture, the
feature extractor consists of the backbone and a full-connected layer with batch normalization, and the
classification head is full-connected with weight normalization. Following SHOT, the source model
is supervised by smooth labels, the source model initializes the network, and we only train the feature
extractor. The learning rate for the backbone is 10 times greater than that of the additional layer. The
learning rate for the backbone is set as 2e-2 on Office-Home, 5e-4 on VisDA, and 1e-2 on DomainNet.
We train 30 epochs for Office-Home, 60 epochs for VisDA, and 30 epochs for DomainNet. More
training details are delineated in Appendix B.

Baselines. We compare DaC with multiple source-present and source-free domain adaptation
baselines. Here we briefly introduce some of the most related state-of-the-art source-free methods:
SHOT [1] and CPGA [3] exploit pseudo label prediction to achieve class-wise adaptation, NRC [2]
and G-SFDA [5] strengthen the local structure by neighborhood information from source model,
and SHOT++ [37] is a two-stage extension of SHOT, which adds the rotation prediction auxiliary
task [38] to SHOT [1] in the first stage and trains the second stage in a semi-supervised manner
(MixMatch [39]). SF in tables is short for source-free.

5.2 Comparison with State-of-the-arts
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Figure 3: Average accuracy curve on
VisDA over 60 epochs.

We compare DaC with the state-of-the-art methods on
the Office-Home, VisDA, and DomainNet. As the results
for VisDA shown in Table 2, our method surpasses all
baselines in terms of average accuracy, including the re-
cent source-present method BCDM and the most recent
source-free method CPGA (87.3% v.s. 86.0%). For the
DomainNet, Table 3 illustrates the proposed DaC has sig-
nificantly outperformed the best source-free baseline by
more than 3 percent (68.3 v.s. 65.1), and outperforms all
source-present and source-free methods w.r.t average ac-
curacy. Similar observation on the results of Office-Home
can be found in Table 4. The reported results indicate the
superiority of our method.

We further compare the effectiveness of our framework
with the state-of-the-art SFUDA methods, in which
CPGA [3] focuses on class-level supervision while
NRC [2] focuses on neighborhood consistency. We show
the UMAP visualization results in Fig. 1, and the accuracy
curve in Fig. 3. Since the early accuracy of CPGA is low,
Fig. 3 records the curve from 18 epochs. While CPGA
suffers false prediction within each cluster, NRC source bias local clusters due to the loss of global
context, causing target error amplification. Our method can achieve fast convergence speed and
stable high classification performance thanks to the effectiveness of the proposed divide and contrast
scheme.

To validate the scalability of our model, we extend DaC into a two-stage version called DaC++. The
second training stage is the same as SHOT++ for a fair comparison. Table 1 shows that DaC++
outperforms SHOT++ by more than 1 percent, and DaC++ is quite close to the target supervised
learning performance even without any target annotations.

Table 1: Comparison of DaC++ and other state-of-the-art methods on VisDA.
VisDA NRC [2] CPGA [3] SHOT++ [37] DaC DaC++ target-supervised

Avg. (%) 85.9 86.0 87.3 87.3 88.6 89.6
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Table 2: Accuracy (%) on the VisDA dataset (ResNet-101).

Method SF plane bicycle bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet-101 [36] ✗ 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CDAN [40] ✗ 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SWD [41] ✗ 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MCC [42] ✗ 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR [43] ✗ 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
BCDM [44] ✗ 95.1 87.6 81.2 73.2 92.7 95.4 86.9 82.5 95.1 84.8 88.1 39.5 83.4

3C-GAN [4] ✓ 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT [1] ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
G-SFDA [5] ✓ 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC [2] ✓ 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
CPGA [3] ✓ 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0

DaC ✓ 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3

Table 3: Accuracy (%) on the DomainNet dataset (ResNet-34). The * baselines are implemented by
the official codes.

Method SF Rw→Cl Rw→Pt Pt→Cl Cl→Sk Sk→Pt Rw→Sk Pt→Rw Avg.

ResNet-34 [36] ✗ 58.4 62.5 56.0 50.1 41.9 48.2 70.1 56.7
MME [34] ✗ 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4
CDAN [40] ✗ 65.0 64.9 63.7 53.1 63.4 54.5 73.2 62.5
VDA* [42] ✗ 63.5 65.7 62.6 52.7 53.6 62.0 74.9 62.1
GVB* [45] ✗ 68.2 69.0 63.2 56.6 63.1 62.2 73.8 65.2

BAIT* [46] ✓ 64.7 65.4 62.1 57.1 61.8 56.7 73.2 63
SHOT* [1] ✓ 67.1 65.1 67.2 60.4 63 56.3 76.4 65.1
G-SFDA* [5] ✓ 63.4 67.5 62.5 55.3 60.8 58.3 75.2 63.3
NRC* [2] ✓ 67.5 68.0 67.8 57.6 59.3 58.7 74.3 64.7

DaC ✓ 70.0 68.8 70.9 62.4 66.8 60.3 78.6 68.3

Table 4: Accuracy (%) on the Office-Home dataset (ResNet-50).

Method SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

ResNet-50 [36] ✗ 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
MCD [13] ✗ 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN [40] ✗ 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BNM [47] ✗ 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
BDG [48] ✗ 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7

SHOT [1] ✓ 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
G-SFDA [5] ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
CPGA [3] ✓ 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
NRC [2] ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2

DaC ✓ 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8

5.3 Ablation Analysis

Role of Divide and Contrast paradigm. To study the effectiveness of our proposed Divide and
Contrast paradigm, we conduct contrastive learning without splitting target data. We strengthen the
local or class-level global structure with two contrastive learning schemes. Scheme-S focuses on
obtaining discriminative class-wise clusters using a contrastive learning method similar to CPGA [3].
Specifically, the positive prototype is the class centroid w.r.t, the anchor’s pseudo label, while
other centroids are the negative samples. Scheme-T only enhances the local structure by instance
discrimination learning following [22, 20], the positive prototype is the anchor’s corresponding
feature in the memory bank, and the negative samples are the remaining features in the memory bank.

As shown in Table 5, both schemes improve the performance of self-training thanks to the contrastive
framework. However, Scheme-S is vulnerable to the noisy pseudo labels while the Scheme-T can not
further transfer the robust class-level classification into target outliers. Our method, in comparison,
outperforms all the alternatives by a large margin.

Component-wise Analysis. we conduct our ablation study by isolating each part of our method
on VisDA. As the results shown in Table 6, each component of our methods helps to enhance the
performance, in which the adaptive contrastive learning framework makes the most contributions to
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Table 5: Comparison with different contrastive learning schemes in the best accuracy over 60 epochs
on VisDA.

SHOT Scheme-S Scheme-T DaC Avg. (%)

✓ 82.9
✓ ✓ 84.1
✓ ✓ 84.4

✓ 87.3

the promotion of accuracy (over 3% points). Besides, both strong augmentation and local structure
enhance the local neighborhood information for each sample, which benefit the theoretical consistency
RDT

(h) and improve the performance. Last but not least, removing the distribution alignment
degrades the average accuracy to 86.5%, which means both our linear and exponential memory-bank-
based MMD are helpful. The LEMMD outperforms LLMMD because the non-negative exponential form
is upper bound of the other, and is stable in batch training.

Table 6: Ablation study of different losses (left) and different modules (right) on VisDA.
BackBone Lself Lcon LLMMD LEMMD Avg.

✓ 59.5
✓ ✓ 83.3
✓ ✓ ✓ 86.5
✓ ✓ ✓ ✓ 87.0
✓ ✓ ✓ ✓ 87.3

Method Acc

DaC 87.3
DaC w/o Local Structure 86.7

DaC w/o Strong Augmentation 85.6

6 Conclusion

In this paper, we have presented Divide and Contrast (DaC), a novel learning paradigm for the SFUDA
problem that can inherit the advantages of (global) class-wise and (local) neighbors consistency
approaches while sidestepping their limitations. The key idea is to divide the target data according
to the prediction confidence of the source hypothesis (source-like v.s. target-specific) and apply
customized learning strategies that can best fit the data property. We achieve this goal via a proposed
adaptive contrastive learning where different groups of data samples are learned under a unified
framework. We also proposed a MMD loss based on a memory bank to transfer the knowledge from
the source-like domain to the target-specific data. While promising performance has been achieved
using our proposed approach, it would be an interesting future avenue to investigate how to extend
the DaC framework to more DA tasks, e.g. semi-supervised SFUDA or source-free open-set DA.
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