
Supplementary Material:
Escaping Saddle Points with Bias-Variance Reduced
Local Perturbed SGD for Communication Efficient

Nonconvex Distributed Learning

Tomoya Murata∗
NTT DATA Mathematical Systems Inc., Tokyo, Japan

Graduate School of Information Science and Technology, The University of Tokyo

Taiji Suzuki†
Graduate School of Information Science and Technology, The University of Tokyo

Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

Abstract

In recent centralized nonconvex distributed learning and federated learning, lo-
cal methods are one of the promising approaches to reduce communication time.
However, existing work has mainly focused on studying first-order optimality
guarantees. On the other side, second-order optimality guaranteed algorithms,
i.e., algorithms escaping saddle points, have been extensively studied in the non-
distributed optimization literature. In this paper, we study a new local algorithm
called Bias-Variance Reduced Local Perturbed SGD (BVR-L-PSGD), that com-
bines the existing bias-variance reduced gradient estimator with parameter pertur-
bation to find second-order optimal points in centralized nonconvex distributed
optimization. BVR-L-PSGD enjoys second-order optimality with nearly the same
communication complexity as the best known one of BVR-L-SGD to find first-order
optimality. Particularly, the communication complexity is better than non-local
methods when the local datasets heterogeneity is smaller than the smoothness of
the local loss. In an extreme case, the communication complexity approaches to
Θ̃(1) when the local datasets heterogeneity goes to zero. Numerical results validate
our theoretical findings.

1 Introduction

Distributed learning is an attractive approach to reduce the total execution time by utilizing the
parallel computations. However, the communication time in distributed learning can be a main
bottleneck in the entire process due to huge parameter size typical in deep learning or low bandwidth
communication environments.

To reduce communication time, one of the promising approaches is the usage of local methods
such as local SGD (also called as Parallel Restart SGD or FedAvg). In local SGD, each worker
independently executes multiple updates of the local model based on his own local dataset, and the
server periodically communicates and aggregates the local models. Many paper have studied local
SGD [26, 31, 7, 6, 16, 14, 29, 28]. Particularly, for convex objectives, it has been shown in [28], for
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the first time, the communication complexity (that is the necessary number of communication rounds
to achieve given desired optimization error) of local SGD can be smaller than the one of minibatch
SGD when the heterogeneity of the local datasets is extremely small. In traditional distributed
learning, the local datasets are typically random subsets of the global dataset and in this case the
heterogeneity of the local datasets may become quite small. However, in the recent federated learning
regimes [17, 25, 19], it is often the case that the heterogeneity of the local datasets is not too small.
Also, the analysis in [28] has only focused on convex cases. Hence, the superiority of local SGD to
minibatch SGD is still quite limited.

Recently, more communication efficient local methods than local SGD have been proposed for
possibly nonconvex objectives to guarantee first-order optimality [13, 23, 20]. SCAFFOLD [13]
is a new local algorithm based on the idea of reducing their called client-drift by using a similar
formulation to the variance reduction technique [11]. They have shown that the communication
complexity of SCAFFOLD can be smaller than the one of minibatch SGD for not too heterogenous
local datasets under the quadraticity of the (possibly nonconvex) local objectives, which is quite
limited. For general nonconvex objectives, the communication complexity of SCAFFOLD is same
as minibatch SGD. More recently, Murate and Suzuki [20] have proposed Bias-Variance Reduced
Local SGD (BVR-L-SGD). BVR-L-SGD utilizes their proposed bias-variance reduced estimator
that simultaneously reduces the bias caused by local gradient steps and the variance caused by
stochastization of the gradients in local optimization based on the formulation of SARAH like
variance reduction [21]. They have shown that the communication complexity of BVR-L-SGD is
smaller than minibatch SGD for not too heterogeneous local datasets for general nonconvex objectives.
Specifically, BVR-L-SGD is superior to minibatch SGD when the Hessian heterogeneity of the local
datasets is small relative to the smoothness of the local loss in order sense.

On the other side, there are vast work that has studied second-order optimality guarantees, which is
much more challenging to ensure but desirable than first-order one, in non-distributed nonconvex
optimization. Several approaches are known and one of the simplest approaches is parameter
perturbation [4, 8, 10]. However, almost all existing analysis of local methods have only focused
on achieving first-order optimality. As an exception, Vlaski et al. [27] have analysed second-order
guarantees of local SGD with parameter perturbation, but the obtained communication complexity is
much worse than the one of minibatch SGD and no benefit of localization has been shown.

Open question. For local methods, it is not well-studied how to find second-order optimal points
with low communication cost and thus we have the following research questions:
Is there a first-order distributed optimization algorithm with second-order optimality guarantees
which satisfies that (i) the communication complexity is smaller than non-local methods for not too
heterogeneous local datasets; and (ii) the communication complexity approaches to Θ(1) when the
heterogeneity of local datasets goes to zero?

Note that the both properties are desirable in distributed optimization. We expect that local methods
are superior to non-local methods for not highly heterogeneous local datasets. Furthermore, when the
local datasets are nearly identical, it is expected that a few communications are sufficient to optimize
the global objective. Only in the case of first-order optimality, Murata and Suzuki [20] have shown
that their proposed BVR-L-SGD satisfies (i) and (ii), and the question has been positively answered.
However, the question is still open in the case of second-order optimality3.

Main Contributions

We propose a new local algorithm called Bias-Variance Reduced Local Perturbed SGD (BVR-L-
PSGD) for nonconvex distributed learning to efficiently find second-order optimal points, which
positively answered the above research questions.

3Since there are communication efficient distributed optimization algorithms that find first-order stationary
points like BVR-L-SGD, we can apply generic algorithms which guarantee second-order optimality to them
[30, 1]. However, this naive approach does not possess the aforementioned property (ii) because the generic
framework requires at least Ω(1/ε3/2) communication rounds to guarantee second-order optimality due to the
multiple negative curvature exploitation steps in their framework for any communication efficient algorithms
with first-order optimality guarantees. Also, this approach requires explicit negative curvature exploitation, that
is complicated and makes the whole algorithm less practical.

2



Algorithm Communication Rounds Assumptions Guarantee
Minibatch SGD 1

ε2 + 1
BPε4 2-3, BSGV 1st-order

Noisy Minibatch SGD [10] 1
ε2 + 1

BPε4 2-4 2nd-order
Minibatch SARAH [22] 1

ε2 +
√
n

BPε2 + n
BP 2-3 1st-order

SSRGD [18] 1
ε2 +

√
n

ε
3
2

2-5, B ≥
√
n

P 2nd-order
Local SGD [31] 1

Bε2 + 1
BPε4 + 1

ε3 2-3, 5 1st-order
SCAFFOLD [13] 1

ε2 + 1
BPε4 2-3, BSGV 1st-order

SCAFFOLD [13] 1
Bε2 + 1

BPε4 + ζ
ε2

1-3, BSGV,
quadraticity 1st-order

BVR-L-SGD [20] 1√
Bε2

+
√
n

BPε2 + ζ
ε2

1-4 1st-order

BVR-L-PSGD (this paper) 1√
Bε2

+
√
n

BPε2 + ζ
ε2 1-5 2nd-order

Table 1: Comparison of the order of the necessary number of communication rounds to achieve desired
optimization error ε in terms of given optimization criteria (described in the column of "Guarantee”)
in nonconvex optimization. "Assumptions” indicates the necessary assumptions to derive the results
(the numbers correspond to Assumptions 2, 3, 4, 5 in Section 2 respectively). BSGV means the
bounded stochastic gradient variance assumption, that is Ez∼Dp∥∇ℓ(x, z) − ∇fp(x)∥2 ≤ σ2. B
is the local computation budget , which is defined in Section 2. P is the number of workers. n is
the total number of samples. The gradient Lipschitzness L, Hessian Lipschitzness ρ, the gradient
boundedness G are regarded as Θ(1) for ease of presentation. In this notation, Hessian heterogeneity
ζ always satisfies ζ ≤ Θ(L) = Θ(1).

The algorithm is based on a simple combination of the existing bias and variance reduced gradient
estimator and parameter perturbation. In our algorithm, parameter perturbation is carried out at every
local update and it is not necessary to determine whether or not to add noise by checking the norm of
the global gradients, which is often required in several previous non-distributed algorithms [5, 18].

We analyse BVR-L-PSGD for general nonconvex smooth objectives. The most challenging part of
our analysis is to ensure that our algorithm efficiently escapes global saddle points even in local
optimization. To realize this, it is necessary to analyse the behavior of the bias-variance reduced
estimator around the saddle points by carefully evaluating the degree of some kind of asymptotic
consistency of the estimator around the saddle points. This point has never been pursued in previous
work and has a unique difficulty of our analysis.

The comparison of the communication complexities of our method with the most relevant existing
results is given in Table 1. Our proposed method enjoys second-order optimality with nearly the same
communication complexity as the one of BVR-L-SGD, which achieves the best known communication
complexity to achieve first-order optimality. This means that our method finds second-order optimal
points without hurting the communication efficiency of the state-of-the-art first-order optimality
guaranteed method. Particularly, the communication complexity is better than minibatch SGD when
Hessian heterogeneity ζ is small relative to smoothness L. Also, the communication complexity
approaches to Õ(1) when heterogeneity ζ goes to zero and the local computation budget B (see
Section 2) goes to infinity. Hence, our method enjoys the aforementioned two desired properties.

Related Work

Here, we briefly review the related studies to our paper.

Local methods. Several recent papers have studied local algorithms combined with variance reduction
technique [24, 2, 15, 12]. Sharma et al. [24] have proposed a local variant of SPIDER [3] and shown
that the proposed algorithm achieves the optimal total computational complexity. However, the
communication complexity essentially matches the ones of non-local SARAH and no advantage of
localization has been shown. Khanduri et al. [15] have proposed STEM and its variants based on their
called two-sided momentum, but again the communication complexity does not improve non-local
methods. Also, Das et al. [2] have considered a SPIDER like local algorithm called FedGLOMO but
the derived communication complexity is even worse than minibatch SARAH. Karimireddy et al.
[12] have proposed Mime, which is a general framework to mitigate client-drift. Particularly, under
δ-Bounded Hessian Dissimilarity (BHD)4, their MimeMVR achieves communication complexity of
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1/(Pε2)+ δ/(
√
Pε3)+ δ/ε2 when B → ∞, that is better than the one of minibatch SGD 1/ε2 when

δ ≤
√
Pε. However, the asymptotic rate is still worse than the one of BVR-L-SGD ζ/ε2 because

ζ ≤ δ always holds.

Second-order guarantee. Neon [30] and Neon2 [1] are generic first-order methods with second-order
guarantees, that repeatedly run a first-order guaranteed algorithm and negative curvature descent.
Another approach is a parameter perturbation for SGD. For the first time, Ge et al. [4] have shown that
SGD with a simple parameter perturbation escapes saddle points efficiently. Later, the analysis has
been refined by [8, 10]. Recently, applying variance reduction technique to second-order guaranteed
methods has been also studied [5, 18] and particularly Li et al. [18] have proposed SSRGD that
combines SARAH [21] with parameter perturbation and shown that SSRGD nearly achieves the
optimal computational complexity with second-order optimality guarantees.

2 Problem Definition and Assumptions

In this section, we first introduce several notations and definitions used in this paper. Then, the
problem settings are described and theoretical assumptions used in our analysis are given.

Notation. ∥ · ∥ denotes the Euclidean L2 norm ∥ · ∥2: ∥x∥ =
√∑

i x
2
i for vector x. For a matrix X ,

∥X∥ denotes the induced norm by the Euclidean L2 norm. For a natural number m, [m] means the
set {1, 2, . . . ,m}. For a set A, #A means the number of elements, which is possibly∞. For any
number a, b, a ∨ b and a ∧ b denote max{a, b} and min{a, b} respectively. We denote the uniform
distribution over A by Unif(A). Given K,T, S ∈ N, let I(k, t, s) be integer k + Kt + KTs for
k ∈ [K] ∪ {0}, t ∈ [T − 1] ∪ {0} and s ∈ [S − 1] ∪ {0}. Note that I(K, t, s) = I(0, t+ 1, s) and
I(k, T, s) = I(k, 0, s+1) for k ∈ [K]∪ {0}, t ∈ [T − 1]∪ {0} and s ∈ [S − 1]∪ {0}. Bd

r denotes
the set {x ∈ Rd|∥x∥ ≤ r}, which is the Euclidean ball in Rd with radius r.

Definition 2.1 (Gradient Lipschitzness). A differentiable function f : Rd → R is L-gradient
Lipschitz if ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,∀x, y ∈ Rd.

Definition 2.2 (Hessian Lipschitzness). A twice differentiable function f : Rd → R is ρ-Hessian
Lipschitz if

∥∥∇2f(x)−∇2f(y)
∥∥ ≤ ρ∥x− y∥,∀x, y ∈ Rd.

Definition 2.3 (Second-order optimality). For a ρ-Hessian Lipschitz function f , x ∈ Rd is an
ε-second-order optimal point of f if ∥∇f(x)∥ ≤ ε and ∇2f(x) ⪰ −√ρεI .

2.1 Problem Settings

Objective function. We want to minimize nonconvex smooth objective f(x) := 1
P

∑P
p=1 fp(x),

where fp(x) := Ez∼Dp
[ℓ(x, z)] for x ∈ Rd, where Dp is the data distribution associated with worker

p. In this paper, we focus on offline settings (i.e., #supp(Dp) < ∞ for every p ∈ [P ]) for simple
presentation. It is easy to extend our results to online settings. Also, just for simplicity, it is assumed
that each local dataset has an equal number of samples, i.e., #supp(Dp) = n/P for every p, p′ ∈ [P ],
where n is the total number of samples.
Optimization criteria. Since objective function f is nonconvex, it is generally difficult to find a
global minima of f . Previous work in distributed learning has mainly focused on finding first-order
stationary points of f . In this study, we aim to find ε-second-order stationary points of f in distributed
learning settings.
Data access constraints and communication settings. It is assumed that each worker p can only
access the own data distribution Dp without communication. Aggregation (e.g., summation) of all
the worker’s d-dimensional parameters or broadcast of a d-dimensional parameter from one worker
to the other workers can be realized by single communication. 5

Evaluation criteria: communication complexity. In this paper, we compare communication
complexities of optimization algorithms to satisfy the aforementioned optimization criteria. In typical
situations, single communication is more time-consuming than single stochastic gradient computation.
Let C be the single communication cost and G be the single stochastic gradient computation cost.

4δ-BHD condition in [12] requires ∥∇2ℓ(x, z) −∇2f(x)∥ ≤ δ for every x ∈ Rd, z ∼ Dp and p ∈ [P ].
Note that δ-BHD condition requires both intra Hessian dissimilarity boundedness ∥∇2fi(x)−∇2f(x)∥, which
is bounded by ζ under Assumption 1, and additionally inner Hessian dissimilarity ∥∇2ℓ(x, z) − ∇2fi(x)∥.
Hence, δ-BHD is much stronger than Assumption 1 and it is possible that δ ≫ ζ.
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Using these notations, C ≥ G is assumed. We expect that increasing the number of available stochastic
gradients in a single communication round leads to faster convergence. Hence, it is natural to increase
the number of stochastic gradient computations in a single communication round unless the total
stochastic gradient computation time exceeds C to reduce the total running time. This motivates
the concept of local computation budget B (≤ C/G): given a communication and computational
environment, it is assumed that each worker can only computes at most B single stochastic gradients
per communication round on average. Then, we compare the communication complexity, that is the
total number of communication rounds of a distributed optimization algorithm to achieve the desired
optimization accuracy. From the definition, we can see that the communication complexity on a fixed
local computation budget B := C/G captures the best achievable total running time of an algorithm.

2.2 Theoretical Assumptions

In this paper, we assume the following five assumptions. The first one has already been adopted in
several previous work [13, 20]. The other ones are standard in the nonconvex optimization literature
to guarantees second-order optimality.
Assumption 1 (Hessian heterogeneity [13, 20]). {fp}Pp=1 is second-order ζ-heterogeneous, i.e., for
any p, p′ ∈ [P ],

∥∥∇2fp(x)−∇2fp′(x)
∥∥ ≤ ζ,∀x ∈ Rd.

Assumption 1 characterizes the heterogeneity of local objectives {fp}Pp=1 in terms of Hessians and has
a important role in our analysis. Intuitively, we expect that relatively small heterogeneity parameter ζ
to the smoothness parameter L (defined in Assumption 2) reduces the necessary number of communi-
cation rounds to optimize the global objective. Especially when the local objectives are identical, i.e.,
Dp = Dp′ for every p, p′ ∈ [P ], ζ becomes zero. When each Dp is the empirical distribution of n/P
IID samples from common data distribution D, we have ∥∇2fp(x) − ∇2fp′(x)∥ ≤ Θ̃(

√
P/nL)

with high probability by matrix Hoeffding’s inequality under Assumption 2 for fixed x. Hence, in
traditional distributed learning regimes, Assumption 1 naturally holds. An important remark is that
Assumption 2 implies ζ ≤ 2L, i.e., the heterogeneity is bounded by the smoothness. Even in federated
learning regimes, we expect ζ ≪ 2L for some problems practically.
Assumption 2 (Gradient Lipschitzness). ∀p ∈ [P ], z ∈ supp(Dp), ℓ(·, z) is L-gradient Lipschitz.

Assumption 3 (Existence of global optimum). f has a global minimizer x∗ ∈ Rd.
Assumption 4 (Hessian Lipschitzness). ∀p ∈ [P ], z ∈ supp(Dp), ℓ(·, z) is ρ-Hessian Lipschitz.
Assumption 5 (Bounded stochastic gradient). ∀p ∈ [P ], z ∈ supp(Dp),∇ℓ(·, z) is G-bounded, i.e.,
∥∇ℓ(x, z)∥ ≤ G,∀x ∈ Rd.

In our analysis, G has no significant impact because G only depends on our theoretical communication
complexity in logarithmic order.

3 Main Ideas and Proposed Algorithm

Our proposed algorithm is based on a natural combination of (i) Bias-Variance Reduced (BVR)
estimator; and (ii) parameter perturbation at each local update. The first idea has been proposed by
[20] to find first-order stationary points with small communication complexity. The second one is a
well-known approach to find second-order stationary points in non-distributed nonconvex optimization
[4, 8, 10]. In this section, we illustrate these two ideas and provide its concrete procedures.

3.1 Review of BVR Estimator [20]

The bias-variance reduced estimator aims to efficiently find first-order stationary points by simul-
taneously reducing the bias caused by local gradient descent steps and the variance caused by
stochastization of the used gradients.

First we consider why the standard local SGD is not sufficient to achieve fast convergence and
sometimes slower than minibatch SGD. Recall that in local SGD each worker takes the update rules

5In this work, it is assumed that all the workers can participate in a single communication. It is not so hard to
extend our algorithm and analysis to worker sampling settings, which is more realistic in cross-device federated
learning.
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Algorithm 1 BVR-L-PSGD(x̃0, η, b, K, T , S, r)
1: Add noise x0 = x̃0 + ηξ−1, where ξ−1 ∼ Unif(Bd

r ).
2: for s = 0 to S − 1 do
3: for p = 1 to P in parallel do
4: v

(p)
I(0,0,s) = ∇fp(xI(0,0,s)).

5: end for
6: Communicate {v(p)I(0,0,s)}

P
p=1. Set vI(0,0,s) = 1

P

∑P
p=1 v

(p)
I(0,0,s).

7: for t = 0 to T − 1 do
8: for p = 1 to P in parallel do
9: g

(p)
I(0,t,s) =

1
Kb

∑Kb
l=1∇ℓ(xI(0,t,s), zl,I(0,t,s)),

10: g
(p),ref
I(0,t,s) =

1
Kb

∑Kb
l=1∇ℓ(xI(0,t−1,s), zl,I(0,t,s)) (zl,I(0,t,s)

i.i.d.∼ Dp).

11: v
(p)
I(0,t,s) = 1t≥1(g

(p)
I(0,t,s) − g

(p),ref
I(0,t,s) + v

(p)
I(0,t−1,s)) + 1t=0v

(p)
I(0,0,s).

12: end for
13: Communicate {v(p)I(0,t,s)}

P
p=1. Set vI(0,t,s) = 1

P

∑P
p=1 v

(p)
I(0,t,s).

14: Randomly select pt,s ∼ Unif[P ]. # Only worker pt,s runs local optimization.
15: for k = 0 to K − 1 do
16: bk = 1k≡0 (mod⌈

√
K⌉)⌈
√
K⌉b+ 1k ̸≡0 (mod⌈

√
K⌉)b.

17: gI(k,t,s) =
1
bk

∑bk
l=1∇ℓ(xI(k,t,s), zl,I(k,t,s)),

18: grefI(k,t,s) =
1
bk

∑bk
l=1∇ℓ(xI(k−1,t,s)), zl,I(k,t,s)) (zl,I(k,t,s)

i.i.d.∼ Dpt,s ).
19: vI(k,t,s) = 1k≥1(gI(k,t,s) − grefI(k,t,s) + vI(k−1,t,s)) + 1k=0vI(0,t,s).
20: Update x̃I(k+1,t,s) = xI(k,t,s) − ηvI(k,t,s).
21: Add noise xI(k+1,t,s) = x̃I(k+1,t,s) + ηξI(k,t,s), where ξI(k,t,s) ∼ Unif(Bd

r ).
22: end for
23: Communicate xI(0,t+1,s).
24: end for
25: end for

of x(p)
k+1 = x

(p)
k − ηg

(p)
k for k ∈ [B/b] in each communication round, where g

(p)
k is a stochastic

gradient with minibatch size b at x(p)
k on local dataset Dp and B is given local computation budget.

In typical convergence analysis, we need to bound the expected deviation of g(p)k from ideal global
gradient∇f(xk), that is E∥g(p)k −∇f(x

(p)
k )∥2 = ∥∇fp(x(p)

k )−∇f(x(p)
k )∥2+E∥g(p)k −∇fp(x

(p)
k )∥2.

The former term is called bias and the latter one is called variance. A typical assumption to bound
the first term is bounded gradient heterogeneity assumption, that requires ∥∇fp(x)−∇f(x)∥ ≤ ζ1
for every x ∈ Rd and p ∈ [P ]. Under this assumption, the first term is only bounded by ζ1, that is
a constant. The second term is typically bounded by σ2/b for g(p)k with minibatch size b, when the
variance of a single stochastic gradient is bounded by σ2. These facts show that the bias is still a
constant and does not vanish even if minibatch size b is enhanced and the variance vanishes. This is
why local SGD can be worse than minibatch SGD when ζ1 is not too small. Also, we can see that
the variance is still a constant for fixed minibatch size b and this is a common reason why minibatch
SGD and local SGD only show slow convergences. These observations give critical motivations of
the simultaneous reduction of the bias and variance.

The bias-variance reduced estimator v
(p)
k is defined as v

(p)
k := (1/b)

∑b
l=1(∇ℓ(x

(p)
k , zl) −

∇ℓ(x0, zl)) + ∇f(x0) (SVRG version). It is known that the bias caused by localization can
be bounded by ζ∥x(p)

k − x0∥ and the variance caused by stochastization can be bounded by
(L2/b)∥x(p)

k − x0∥2, where ζ is the Hessian heterogeneity of {fp} and L is the smoothness of
ℓ. This implies that both the bias and variance of v(p)k converges to zero as x(p)

k and x0 go to x∗. In
other words, bias-variance reduced estimator v(p)k is asymptotically consistent to the global gradient
∇f(x(p)

k ) by using periodically computed global full gradients∇f(x0). We actually adopt SARAH
version of BVR estimator as in [20] rather than SVRG one due to its theoretical advantages.
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3.2 Parameter Perturbation at Local Updates

Although the bias-variance reduced estimator is useful to guarantee first-order optimality with small
communication complexity in noncovex optimization, the algorithm often gets stuck at saddle points.
To tackle this problem, we borrow the ideas of escaping saddle points in non-distributed nonconvex
optimization. Particularly, to efficiently find second-order optimal points, we utilize parameter
perturbation. Parameter perturbation is a familiar approach in non-distributed nonconvex optimization.
Specifically, Jin et al. [8, 10] have considered the update rule of xk+1 = xk − η∇f(xk) + ηξk,
where ξk ∼ Unif(Bdr ) for some small radius r. This algorithm is called Perturbed GD (PGD) or
Noisy GD. Similar to this formulation, we add noise at each local update, i.e., x(p)

k+1 = x̃
(p)
k+1 + ηξ

(p)
k ,

where x̃
(p)
k+1 = x

(p)
k − ηv

(p)
k . The intuition behind the noise addition is that random noise has some

components along the negative curvature directions of the global objective around the saddle point,
and we expect that noise addition helps the parameter proceed to the decreasing directions of f and
escape the saddle points.

Necessity of local perturbation. Perturbing the global model at the server side is an intuitive way,
but not sufficient for communication efficiency when we want to utilize small heterogeneity of the
local datasets (i.e., ζ ≪ L). The bias-variance reduced estimator with local perturbation enables
to escape multiple global saddle points in local optimization and achieves second-order optimality
with communication complexity Θ̃(ζ/ε2) for sufficiently large B. In contrast, perturbing the global
parameter at the server side only ensures to escape single global saddle point at each round and only
achieves communication complexity of Θ̃(L/ε2). This is the reason why local perturbation rather
than global one is adopted.

3.3 Concrete Procedures

The full description of our proposed Bias-Variance Reduced Local Perturbed SGD (BVR-L-PSGD)
is given in Algorithm 1. When we set the noise size r = 0, Algorithm 1 essentially matches BVR-L-
SGD. Additionally setting K = 1, Algorithm 1 matches SARAH. The algorithm requires Θ(ST )
communication rounds. At each communication round, each worker computes large batch stochastic
gradients and the server constructs vI(0,t,s) by aggregating them. vI(0,t,s) is used as an estimator of
∇f(xI(0,t,s)) to reduce computational cost. In line 14-21, we randomly select worker pt,s and only
worker pt,s runs local optimization as described above. In the local optimization, we use SARAH
like bias variance reduced estimator (line 16-18) rather than SVRG one and add noise (line 20) at
each local update.

4 Convergence Analysis

In this section, we provide convergence theory of BVR-L-PSGD (Algorithm 1). All the omitted
proofs are found in the supplementary material. For simple presentations, we use Θ̃ symbol to hide
an extra poly-logarithmic factors that depend on L, ρ,G,K, b, T, S, 1/ε, 1/q, where q represents the
confidence parameter in high probability bounds.

4.1 Finding First-Order Stationary Points

First, we derive Descent Lemma for BVR-L-PSGD and first-order optimality guarantees by using it.
Proposition 4.1 (Descent Lemma). Let S ∈ N and I(k, t, s) ≥ I(k0, t0, s0) ∈ [KTS] ∪ {0}.
Suppose that Assumptions 1, 2, 3 and 5 hold. Given q ∈ (0, 1), r > 0, if we appropriately choose
η = Θ̃(1/L ∧ 1/(Kζ) ∧

√
b/K/L ∧

√
Pb/(

√
KTL)), it holds that

f(xI(k,t,s)) ≤ f(xI(k0,t0,s0))−
η

2

I(k−1,t,s)∑
i=I(k0,t0,s0)

∥∇f(xi)∥2 + η∆Ir
2 +R1

with probability at least 1 − 3q. Here, ∆I := I(k, t, s) − I(k0, t0, s0),
R1 := − 1

4η

∑I(k,t,s)−1
i=I(k0,t0,s0)

∥xi+1 − xi∥2 +
cη
η (∆I∧K

K

∑I(k0,t0,s0)−1
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
∆I∧KT

KT

∑I(0,t0,s0)−1
i=I(0,0,s0)

∥xi+1 − xi∥2) for some universal constant cη > 0.
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From Proposition 4.1 with I(k0, t0, s0)← 0 and I(k, t, s)← KTS gives the following corollary.

Corollary 4.2. Suppose that Assumptions 1, 2, 3 and 5 hold. Under the same setting as in Proposition
4.3 and S ≥ Θ((f(x0) − f(x∗))/(ηKTε2)), with probability at least 1 − 3q, there exists i ∈
[KTS − 1] ∪ {0} such that ∥∇f(x̃i)∥ ≤ ε.

Remark (Communication complexity). The total number of communication rounds Θ(TS) becomes
Õ
(
T +

(
L/K + ζ + L/

√
Kb+

√
TL/
√
KPb

)
(f(x̃0)− f(x∗))/ε

2
)

. Given local computation

budget B, we set T := Θ(1 + n/(BP )) and Kb := Θ(B) with b ≤ Θ(
√
B). Then, we have the

averaged number of local computations per communication round Kb+ n/(PT ) = Θ(B) and the
communication complexity TS with budget B becomes

Õ
(
1 + n

BP + L√
Bε2

+
√
nL

BPε2 + ζ
ε2

)
,

which matches the best known communication complexity [20].

4.2 Escaping Saddle Points

Next, we show that BVR-L-PSGD implicitly exploits the negative curvature of f around saddle points
and efficiently escapes the saddle points by utilizing the asymptotic consistency of BVR estimator
and the parameter perturbation at each local update.

We rely on the technique of coupling sequence [10]. Given saddle point x̃I(k0,t0,s0) and Î ≥
I(k0, t0, s0), we define a new sequence {x′

i}∞i=I(k0,t0,s0)
as follows:

(1) ⟨ξ′
Ĩ
, emin⟩ = −⟨ξĨ , emin⟩; (2) ⟨ξ′

Ĩ
, ej⟩ = ⟨ξĨ , ej⟩ for j ∈ {2, . . . , d}; and (3) All the other

randomness is completely same as the one of {xi}KTS−1
i=0 . Let r0 := |⟨ξĨ , emin⟩|. Note that |⟨ξĨ −

ξ′
Ĩ
, emin⟩| = 2r0 and thus ∥ξĨ −ξ′

Ĩ
∥ = 2r0. Also, observe that xĨ+1−x′

Ĩ+1
= η⟨ξĨ −ξ′

Ĩ
, emin⟩emin.

We define Ĩ used in the definition of coupling sequence as follows:

Ĩ :=


I(k0, t0, s0), (1/(ηλ) ≤

√
K)

I(k′0, t0, s0)− 1, (
√
K < 1/(ηλ) ≤ K)

I(0, t0 + 1, s0)− 1, (K < 1/(ηλ) ≤ KT )

I(0, 0, s0 + 1)− 1. (KT < 1/(ηλ))

Here, k′0 is the minimum index k that satisfies k > k0 and k ≡ 0 (mod⌈
√
K⌉). We can easily check

that Ĩ − I(k0, t0, s0) ≤ 1/(ηλ).

Then, we show that either of the two sequences {xi} or {x′
i} efficiently escapes the saddle points

by bounding the norm of the cumulative difference of xi and x′
i from below. The novel and most

difficult part of the analysis is to evaluate the norm of the cumulative difference of the deviations
∥
∑J

i=Ĩ
(1 − ηH)J−i(vi − ∇f(xi) − v′i + ∇f(x′

i))∥ generated by the two sequences, where v′i
denotes the BVR estimator at iteration i generated by sequence {x′

i}.
Proposition 4.3 (Implicit Negative Curvature Exploitation). Let I(k0, t0, s0) ∈ [KTS] ∪ {0}.
Suppose that Assumptions 1, 2, 3, 4 and 5 hold, ∥∇f(x̃I(k0,t0,s0))∥ ≤ ε and the minimum eigenvalue
λmin of H := ∇f(x̃I(k0,t0,s0)) satisfies λ := −λmin >

√
ρε. Under b = Ω(K ∨ 1/(

√
Kρε) ∨

T/(PK)), if we appropriately chooseJI(k0,t0,s0) = Θ̃(1/(ηλ)), η = Θ̃(1/L∧1/(Kζ)∧
√
b/K/L∧√

Pb/(
√
KT/L)), withFI(k0,t0,s0) := cFηJI(k0,t0,s0)r

2 and r := crε (cF = Θ(1) and cr = Θ̃(1))
we have

f(xI(k0,t0,s0)+JI(k0,t0,sp)
)− f(xI(k0,t0s0)) ≤ −FI(k0,t0,s0) +R2

with probability at least 1/2− 9q/2. Here, R2 :=
2cη
η

JI(k0,t0,s0)∧K

K

∑I(k0,t0,s0)−1
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
2cη
η

JI(k0,t0,s0)∧KT

KT

∑I(0,t0,s0)−1
i=I(0,0,s0)

∥xi+1 − xi∥2 for some universal constant cη > 0.

Proposition 4.3 says the function value decreases by roughlyFI(k0,t0,s0) and the global model escapes
saddle points with probability at least 1/2 after JI(k0,t0,s0) local steps.
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4.3 Finding Second-Order Stationary Points

In this subsection, we derive final theorem that guarantees the second-order optimality of the global
model by combining Propositions 4.1 and 4.3.

Theorem 4.4 (Final Theorem). Suppose that Assumptions 1, 2, 3, 4 and 5 hold. Under b =

Ω(K ∨ 1/(
√
Kρε) ∨ T/(PK)), if we appropriately choose η = Θ̃(1/L ∧ 1/(Kζ) ∧

√
b/K/L ∧√

Pb/(
√
KTL)), r = Θ̃(ε) and S = Θ(1 + (f(x̃0)− f(x∗))/(ηKTε2)), with probability at least

1/2, there exists i ∈ [KTS] ∪ {0} such that x̃i is ε-second-order optimal point of f 6.

Remark (High probability bound). Theorem 4.4 guarantees that Algorithm 1 finds an approximate
second-order optimal point in KTS iterations with probability at least 1/2. Repeating Algorithm 1
log2(1/q) times guarantees that the same statement holds with probability at least 1− q.
Remark (Communication complexity). The total number of communication rounds TS is given by
Õ
(
T +

(
L/K + ζ + L/

√
Kb+

√
TL/
√
KPb

)
(f(x̃0)− f(x∗))/ε

2
)

. Given local computation

budget B, we set T := Θ(1 + n/(BP )) and Kb := Θ(B) with b ≤ Θ(
√
B). Then, we have the

averaged number of local computations per communication round Kb+ n/(PT ) = Θ(B) and the
communication complexity Θ(TS) with budget B becomes

Õ
(
1 + n

BP + L√
Bε2

+
√
nL

BPε2 + ζ
ε2

)
.

This implies that for ζ = o(L) the communication complexity is strictly smaller than the one of
minibatch SGD Õ(1 + L/ε2 +G2/(BPε4)). Note that the rate matches to the one of BVR-L-SGD
[20]. Hence, our method finds second-order optimal points without hurting communication efficiency
of the state-of-the-art first-order optimality guaranteed method. Furthermore, when B → ∞, we have
Θ̃(1 + ζ/ε2), that goes to Θ̃(1) as ζ → 0.

In summary, BVR-L-PSGD enjoys the desirable properties (i) and (ii) described in Section 1.

5 Numerical Resutls

In this section, we give some experimental results to verify our theoretical findings.

Data Preparation. We artificially generated heterogeneous local datasets from CIFAR107 dataset.
The data preparation procedure is completely in accordance with [20] and the details are found in
[20]. We set homogeneity parameter q to 0.35, which captures how similar the local datasets are
(q = 0.1 corresponds to I.I.D. case and higher q does to higher heterogeneity).

Model. We conducted our experiments using a two-hidden layers fully connected neural network
with 100 hidden units and softplus activation. For loss function, we used the standard cross-entropy
loss. We initialized parameters by uniformly sampling the parameters from [−1/100, 1/100].
Implemented Algorithms. Minibatch SGD, Noisy Minibatch SGD, BVR-L-SGD [20] and our
proposed BVR-L-PSGD were implemented. We set K = 64 and b = 16, and thus B = 1024. For
BVR-L-PSGD, the noise radius was tuned from r ∈ {0.5, 2.5, 12.5}. For each algorithm, we tuned
learning rate η from {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}. The details of the tuning procedure are found
in the supplementary material.

Evaluation. We compared the implemented algorithms using six criteria of train gradient norm
∥∇f(x)∥; train loss; train accuracy; test gradient norm; test loss and test accuracy against the number
of communication rounds. The total number of communication rounds was fixed to 1, 000 for each
algorithm. We independently repeated the experiments 5 times and report the mean and standard
deviation of the above criteria. Due to the space limitation, we will only report train gradient norm,
train loss and test accuracy in the main paper. The full results are found in the supplementary material.

Results. Figure 1 shows the performances of BVR-L-SGD and our proposed algorithm. We can

6One limitation of Theorem 4.4 is that it only guarantees the existence of ε-second-order optimal point x̃i in
the history of {x̃i}KTS−1

i=0 . However, this is also the case in the existing studies [5, 18]. We empirically found
that the outputs of each communication rounds showed stable performances (see Section 5).

7https://www.cs.toronto.edu/~kriz/cifar.html.
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(a) Train Gradient Norm (b) Train Loss (c) Test Accuracy

Figure 1: Comparison of (a) train gradient norm; (b) train loss; and (iii) test accuracy against the
number of communication rounds for a three layered DNN on heterogeneous CIFAR10.

see that the both algorithms got stuck at a small gradient norm region in initial rounds. After that
BVR-L-SGD showed unstable convergence and took a lot of time to escape the stucked region. In
contrast, our proposed method efficiently escaped the stucked region and consistently achieves better
train loss and test accuracy than BVR-L-SGD. Also, our method consistently outperformed Minibatch
SGD and Noisy Minibatch SGD.

6 Conclusion

In this paper, we have studied a new local algorithm called Bias-Variance Reduced Local Perturbed
SGD (BVR-L-PSGD) based on a combination of the bias-variance reduced gradient estimator with
parameter perturbation to efficiently find second-order optimal points in centralized nonconvex
distributed optimization. We have shown that BVR-L-PSGD enjoys second-order optimality without
hurting the best known communication complexity for first-order optimality guarantees. Particularly,
the communication complexity is better than non-local methods when Hessian heterogeneity ζ of
local datasets is smaller than the smoothness of the local loss L in order sense. Also, for sufficiently
large B, the communication complexity of our method approaches to Θ̃(1) when the local datasets
heterogeneity ζ goes to zero. The numerical results have validated our theoretical findings.
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A Supplementary Material for Numerical Results

In this section, we give additional information and numerical results that complement the contents in
Section 5.

Parameter Tuning

For the implemented algorithms, learning rate η was tuned. Also, for Noisy Minibatch SGD and
BVR-L-PSGD, noise radius r was also tuned. We ran each algorithm for all the patterns of the tuning
parameters and chose the ones that maximized the minimum train accuracy.

Additional Numerical Results

Here, we provide the full results of our numerical experiments. Figures 2 and 3 show the comparisons
of the six criterion, i.e., train gradient norm, train loss, train accuracy, test gradient norm, test loss
and test accuracy with fixed local computation budget B = 1, 024 under q = 0.1 (I.I.D. case) and
q = 0.35 (heterogeneous case) respectively.

Computing Infrastructures

• OS: Ubuntu 16.04.6
• CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
• CPU Memory: 128 GB.
• GPU: NVIDIA Tesla P100.
• GPU Memory: 16 GB
• Programming language: Python 3.7.3.
• Deep learning framework: Pytorch 1.3.1.

(a) Train Graident Norm (b) Train Loss (c) Train Accuracy

(d) Test Gradient Norm (e) Test Loss (f) Test Accuracy

Figure 2: Comparison of the six criterion against the number of communication rounds for a three
layered DNN on I.I.D. CIFAR10 with q = 0.1.

13



(a) Train Gradient Norm (b) Train Loss (c) Train Accuracy

(d) Test Gradient Norm (e) Test Loss (f) Test Accuracy

Figure 3: Comparison of the six criterion against the number of communication rounds for a three
layered DNN on heterogeneous CIFAR10 with q = 0.35.
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B Convergence Analysis

In this section, complete analysis of BVR-L-PSGD is provided. Particularly, detailed proofs of
Proposition 4.1, Corollary 4.2 (Subsection B.3), Proposition 4.3 (Subsection B.4 and Theorem 4.4
(Subsection B.5) are given.

B.1 Miscellaneous Results

Lemma B.1. Let A ∈ Rd×d with the smallest and largest eigenvalues λmin ∈ (−∞, 0) and
λmax ∈ [0, 1) respectively. Then, for J ∈ N ∪ {0}, it holds that

∥A(1−A)J∥ ≤ (−λmin)(1− λmin)
J +

e

J + 1
.

Proof. First, when J = 0, trivially ∥A(1−A)J∥ ≤ max{−λmin, λmax} < (−λmin) + e. Thus, we
assume J > 0. Note that ∥A(1−A)J∥ = supσ∈[λmin,λmax]|σ(1− σ)J |. We consider the two cases
σ ∈ [λmin, 0) and σ ∈ [0, λmax].

In the former case, h(σ) := |σ(1 − σ)J | = −σ(1 − σ)J is monotonically decreasing function on
(−∞, 0) because the derivative function h′(σ) = −(1− σ)J + Jσ(1− σ)J−1 = (1− σ)J−1((J +
1)σ − 1) < 0, and hence supσ∈[λmin,0)h(σ) ≤ (−λmin)(1− λmin)

J .

In the latter case, h(σ) = σ(1−σ)J has the derivative function h′(σ) = (1−σ)J−Jσ(1−σ)J−1 =
(1− σ)J−1(1− (J + 1)σ). Thus, it holds that h′(1/(J + 1)) = 0, h′(σ) > 0 for σ ∈ [0, 1/(J + 1))
and h′(σ) < 0 for σ ∈ (1/(J + 1), 1). Hence, for σ ∈ [0, λmax] with λmax ∈ [0, 1), h(σ) ≤
h(1/(J + 1)) ≤ e/(J + 1).

In summary, we have shown that supσ∈[λmin,λmax]h(σ) ≤ (−λmin)(1− λmin)
J + e/(J + 1). This

is the desired result.

B.2 Concentration Inequalities

Lemma B.2 (Corollary 8 in [9]). Let X1, . . . , Xn be random vectors in Rd. Suppose that {Xi}ni=1
and corresponding filtrations {Fi}ni=1 satisfies the following conditions:

E[Xi | Fi−1] = 0 and P(∥Xi∥ ≥ s | Fi−1) ≤ 2e
− s2

2σ2
i ,∀s ∈ R,∀i ∈ [n]

for random variables {σi}ni=1 with σi ∈ Fi−1 (i ∈ [n]). Then, for any q ∈ (0, 1) and A > a > 0,
with probability at least 1− q it holds that

n∑
i=1

σ2
i ≥ A or

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≤ c

√√√√max

{
n∑

i=1

σ2
i , a

}(
log

2d

q
+ loglog

A

a

)
for some constant c > 0.

Note that if X is bounded and centered random vector, i.e., ∥X∥ ≤ σ a.s. and E[X] = 0, it holds
that P(∥X∥ ≥ s) ≤ 2e−s2/2σ2

for every s ∈ R. Hence, ∥Xi∥ ≤ σ2
i a.s. and E[Xi] = 0 conditioned

on Fi−1 is a sufficient condition for applying Lemma B.2.

B.3 Finding First-Order Stationary Points

Proof of Proposition 4.1

We fix k ∈ [K] ∪ {0}, t ∈ [T − 1] ∪ {0} and s ∈ [S − 1] ∪ {0}. From L-smoothness of f , we have

f(xI(k+1,t,s)) ≤ f(xI(k,t,s)) + ⟨∇f(xI(k,t,s)), xI(k+1,t,s) − xI(k,t,s)⟩+
L

2
∥xI(k+1,t,s) − xI(k,t,s)∥2.
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From this inequality, we have

f(xI(k+1,t,s)) ≤ f(xI(k,t,s)) + ⟨∇f(xI(k,t,s))− vI(k,t,s) + ξI(k,t,s), xI(k+1,t,s) − xI(k,t,s)⟩

+ ⟨vI(k,t,s) − ξI(k,t,s), xI(k+1,t,s) − xI(k,t,s)⟩+
L

2
∥xI(k+1,t,s) − xI(k,t,s)∥2

= f(xI(k,t,s)) + ⟨∇f(xI(k,t,s))− vI(k,t,s) + ξI(k,t,s), xI(k+1,t,s) − xI(k,t,s)⟩

−
(
1

η
− L

2

)
∥xI(k+1,t,s) − xI(k,t,s)∥2

=f(xI(k,t,s)) +
η

2
∥vI(k,t,s) − ξI(k,t,s) −∇f(xI(k,t,s))∥2 −

η

2
∥∇f(xI(k,t,s))∥2

+
1

2η
∥xI(k+1,t,s) − xI(k,t,s)∥2 −

(
1

η
− L

2

)
∥xI(k+1,t,s) − xI(k,t,s)∥2

= f(xI(k,t,s)) +
η

2
∥vI(k,t,s) − ξI(k,t,s) −∇f(xI(k,t,s))∥2 −

η

2
∥∇f(xI(k,t,s))∥2

−
(

1

2η
− L

2

)
∥xI(k+1,t,s) − xI(k,t,s)∥2

≤ f(xI(k,t,s)) + η∥vI(k,t,s) −∇f(xI(k,t,s))∥2 −
η

2
∥∇f(xI(k,t,s))∥2

−
(

1

2η
− L

2

)
∥xI(k+1,t,s) − xI(k,t,s)∥2 + η∥ξI(k, t, s)∥2

≤ f(xI(k,t,s)) + η∥vI(k,t,s) −∇f(xI(k,t,s))∥2 −
η

2
∥∇f(xI(k,t,s))∥2

−
(

1

2η
− L

2

)
∥xI(k+1,t,s) − xI(k,t,s)∥2 + ηr2. (1)

Here, for the first equality we used the fact vI(k,t,s) − ξI(k,t,s) = −(1/η)(xI(k+1,t,s) − xI(k,t,s)).
The second equality follows from the facts vI(k,t,s) − ξI(k,t,s) = (1/η)(xI(k+1,t,s) − xI(k,t,s)) and
⟨a − b,−b⟩ = (1/2)(∥a − b∥2 − ∥a∥2 + ∥b∥2) for any a, b ∈ Rd. For the second inequality, we
used the relation ∥a+ b∥ ≤ 2(∥a∥2 + ∥b∥2) for any a, b ∈ Rd. The last inequality holds from the
definition of ξI(k,t,s).

Thus, for every k, k0 ∈ [K − 1], t, t0 ∈ [T − 1] and s, s0 ∈ [S − 1] (I(k, t, s) ≥ I(k0, t0, s0)), we
have

f(xI(k,t,s)) ≤ f(xI(k0,t0,s0)) + η

I(k,t,s)−1∑
i=I(k0,t0,s0)

∥vi −∇f(xi)∥2

− η

2

I(k,t,s)−1∑
i=I(k0,t0,s0)

∥∇f(xi)∥2 −
(

1

2η
− L

2

) I(k,t,s)−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2

+ η(I(k, t, s)− I(k0, t0, s0))r
2. (2)
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Now we bound the deviation ∥vI(k,t,s) −∇f(xI(k,t,s))∥2. Observe that

vI(k,t,s) −∇f(xI(k,t,s)) = gI(k,t,s) − grefI(k,t,s) + vI(k−1,t,s) −∇f(xI(k,t,s))

= gI(k,t,s) − grefI(k,t,s) +∇fpt,s(xI(k−1,t,s))−∇fpt,s(xI(k,t,s))

+∇fpt,s
(xI(k,t,s))−∇fpt,s

(xI(k−1,t,s)) +∇f(xI(k−1,t,s))−∇f(xI(k,t,s))

+ vI(k−1,t,s) −∇f(xI(k−1,t,s))

=

k−1∑
κ=0

(gI(κ+1,t,s) − grefI(κ+1,t,s) +∇fpt,s
(xI(κ,t,s))−∇fpt,s

(xI(κ+1,t,s)))

+

k−1∑
κ=0

(∇fpt,s
(xI(κ+1,t,s))−∇fpt,s

(xI(κ,t,s)) +∇f(xI(κ,t,s))−∇f(xI(κ+1,t,s)))

+ vI(0,t,s) −∇f(xI(0,t,s)).

Further, we have

vI(0,t,s) −∇f(xI(0,t,s)) =
1

P

P∑
p=1

(g
(p)
I(0,t,s) − g

(p),ref
I(0,t,s) + vI(0,t−1,s) −∇f(xI(0,t,s))

=
1

P

P∑
p=1

(g
(p)
I(0,t,s) − g

(p),ref
I(0,t,s) +∇f(xI(0,t−1,s))−∇f(xI(0,t,s))

+ vI(0,t−1,s) −∇f(xI(0,t−1,s))

=

t−1∑
τ=0

1

P

P∑
p=1

(g
(p)
I(0,τ+1,s) − g

(p),ref
I(0,τ+1,s) +∇f(xI(0,τ,s))−∇f(xI(0,τ+1,s))

+ vI(0,0,s) −∇f(xI(0,0,s)).

Note that the last term is exactly zero from the definition of vI(0,0,s).

We define
αI(κ,t,s) := gI(κ,t,s) − grefI(κ,t,s) +∇fpt,s

(xI(κ−1,t,s))−∇fpt,s
(xI(κ,t,s)),

βI(κ,t,s) := ∇fpt,s
(xI(κ,t,s))−∇fpt,s

(xI(κ−1,t,s)) +∇f(xI(κ−1,t,s))−∇f(xI(κ,t,s)),

γI(0,τ,s) :=
1
P

∑P
p=1(g

(p)
I(0,τ,s) − g

(p),ref
I(0,τ,s) +∇f(xI(0,τ−1,s))−∇f(xI(0,τ,s)),

and 
AI(k,t,s) :=

∑k−1
κ=0 αI(κ+1,t,s),

BI(k,t,s) :=
∑k−1

κ=0 βI(κ+1,t,s),

CI(0,t,s) :=
∑t−1

τ=0 γI(0,τ+1,s).

Note that E[AI(k,t,s)] = E[CI(k,t,s)] = 0. Using these definitions, we have

∥vI(k,t,s) −∇f(xI(k,t,s))∥2 ≤ 3(
∥∥AI(k,t,s)

∥∥2 + ∥∥BI(k,t,s)

∥∥2 + ∥∥CI(k,t,s)

∥∥2).
We denote all the randomness up to iteration I(κ− 1, t, s) as FI(κ−1,t,s).

Bounding ∥AI(k,t,s)∥

Let αl,I(κ,t,s) := ∇ℓ(xI(κ,t,s), zl,I(κ,t,s)) − ∇ℓ(xI(κ−1,t,s), zl,I(κ,t,s)) + ∇fpt,s
(xI(κ−1,t,s)) +

∇fpt,s
(xI(κ,t,s)). Then, αI(κ,t,s) = (1/b)

∑b
l=1 αl,I(κ,t,s). Observe that αl,I(κ,t,s) satisfies

E[αl,I(κ,t,s) | FI(κ−1,t,s)] = 0

and

P(∥αl,I(κ,t,s)∥ ≥ s | FI(κ−1,t,s)) ≤ 2e
− s2

2(σ(α)
I(κ,t,s))

2
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for every s ∈ R and κ ∈ [k], where σ
(α)
I(κ,t,s) := 2L∥xI(κ,t,s) − xI(κ−1,t,s)∥. Here, we

used the fact that ∥∇ℓ(xI(κ,t,s), zl,I(κ,t,s)) − ∇ℓ(xI(κ−1,t,s), zl,I(κ,t,s)) + ∇fpt,s
(xI(κ−1,t,s)) +

∇fpt,s
(xI(κ,t,s))∥ ≤ 2L∥xI(κ,t,s) − xI(κ−1,t,s)∥ from L-smoothness of ℓ. Note that {αl,I(κ,t,s)}bkl=1

is I.I.D. sequence with at least b samples and ∥αℓ,I(κ,t,s)∥ ≤ 4G almost surely from Assumption 5.
From these results, we can use Lemma B.2 with A = 4KG and a = ε̃ (ε̃ is some positive number
and will be defined later) and get

∥AI(k, t, s)∥2 ≤
c2

b

((
k−1∑
κ=0

(
σ
(α)
I(κ+1,t,s)

)2)
+ ε̃

)(
log

2d

q
+ loglog

4KG

ε̃

)
with probability at least 1− q for some constant c > 0. Also, note that ∥AI(k, t, s)∥ ≤ 4kG almost
surely.

Bounding ∥BI(k,t,s)∥

Observe that

βI(κ,t,s) = ∇fpt,s
(xI(κ,t,s))−∇fpt,s

(xI(κ−1,t,s)) +∇f(xI(κ−1,t,s))−∇f(xI(κ,t,s))

= (∇fpt,s
−∇f)(xI(κ,t,s))− (∇fpt,s

−∇f)(xI(κ−1,t,s))

=

(∫ 1

0

(∇2fpt,s
−∇2f)(θxI(κ,t,s) + (1− θ)xI(κ−1,t,s))dθ

)
(xI(κ,t,s) − xI(κ−1,t,s)).

Hence, from Assumption 1, we get

∥βI(κ,t,s)∥ ≤ ζ∥xI(κ,t,s) − xI(κ−1,t,s)∥ =: σ
(β)
I(κ,t,s).

This gives

∥∥BI(k,t,s)

∥∥2 ≤ k

k−1∑
κ=0

(
σ
(β)
I(κ+1,t,s)

)2
.

Here we used the relation (
∑m

i=1 |ai|)2 ≤ m
∑m

i=1 a
2
i for every {ai}mi=1 ⊂ R. Also, note that

∥BI(k, t, s)∥ ≤ 4kG almost surely.

Bounding ∥CI(0,t,s)∥

The argument is similar to the one of the case of the first term. From Lemma B.2, the third term
∥CI(0,t,s)∥ can be bounded as

∥CI(0, t, s)∥2 ≤
c2

PKb

((
t−1∑
τ=0

(
σ
(γ)
I(0,τ+1,s)

)2)
+ ε̃

)(
log

2d

q
+ loglog

4KTG

ε̃

)
,

with probability at least 1 − q, where σ
(γ)
I(0,τ,s) := 2L

∑K−1
κ=0 ∥xI(κ+1,τ−1,s) − xI(κ,τ−1,s)∥ (≥

2L∥xI(0,τ,s) − xI(0,τ−1,s)∥). Here, we used the fact that {g(p)I(0,τ,s) − g
(p),ref
I(0,τ,s)}

P
p=1 is independent

and each of them is constructed from Kb i.i.d. data samples. Also, note that ∥CI(k, t, s)∥ ≤ 4TG
almost surely.

Put the three results all together, we obtain

∥vI(k,t,s) −∇f(xI(k,t,s))∥2 ≤
3c2

b

((
k−1∑
κ=0

(
σ
(α)
I(κ+1,t,s)

)2)
+ ε̃

)(
log

2KTSd

q
+ loglog

4KG

ε̃

)

+ 3k

k−1∑
κ=0

(
σ
(β)
I(κ+1,t,s)

)2
+

3c2

PKb

((
t−1∑
τ=0

(
σ
(γ)
I(0,τ+1,s)

)2)
+ ε̃

)(
log

2KTSd

q
+ loglog

4TG

ε̃

)
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for every k ∈ [K − 1], t ∈ [T − 1] and s ∈ [S − 1] with probability at least 1− 3q for some constant
c > 0. We set q ← q/(KTS). Now, we set

6c2ε̃

(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
≤ r2.

Then, we have

∥vI(k,t,s) −∇f(xI(k,t,s))∥2 ≤
3c2

b

(
k−1∑
κ=0

(
σ
(α)
I(κ+1,t,s)

)2)(
log

2KTSd

q
+ loglog

G

ε̃

)

+ 3k

k−1∑
κ=0

(
σ
(β)
I(κ+1,t,s)

)2
+

3c2

PKb

(
t−1∑
τ=0

(
σ
(γ)
I(0,τ+1,s)

)2)(
log

2KTSd

q
+ loglog

G

ε̃

)
+ r2

(3)

for every I(k, t, s) ∈ [KTS] ∪ {0}.
Let

V (k, t, s) := 12c2
(
L2

b
+Kζ2 +

L2T

Pb

)(k−1∑
κ=0

∥xI(κ+1,t,s) − xI(κ,t,s)∥2 +
1

T

t−1∑
τ=0

K−1∑
κ=0

∥xI(κ+1,τ,s) − xI(κ,τ,s)∥2
)

×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
.

Observe that ∥vI(k,t,s) −∇f(xI(k,t,s))∥2 ≤ V (k, t, s) + r2 and V (k, t, s) ≤ V (k′, t′, s) for k′ ≥ k
and t′ ≥ t.

Now, we bound
∑I(k,t,s)

i=I(k0,t0,s0)
∥vi −∇f(xi)∥2 by dividing three cases.

Case I. s = s0 and t = t0.

We bound
∑I(k,t,s)

i=I(k−,t−,s−) ∥vi − ∇f(xi)∥2 for general k−, t− and s− with k− ≤ k, t− = t and
s− = s.

I(k,t−,s−)∑
i=I(k−,t−,s−)

∥vi −∇f(xi)∥2

≤
k∑

k′=k−

V (k′, t−, s−) + (k − k− + 1)r2

≤ (k − k− + 1)V (k, t−, s−) + (k − k− + 1)r2

≤ 12c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)
×

(
k − k− + 1

K

k−1∑
κ=0

∥xI(κ+1,t−,s−) − xI(κ,t−,s−)∥2 +
k − k− + 1

KT

t−−1∑
τ=0

K−1∑
κ=0

∥xI(κ+1,τ,s−) − xI(κ,τ,s−)∥2
)

×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (k − k− + 1)r2.
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Since

k − k− + 1

K

k−1∑
κ=0

∥xI(κ+1,t−,s−) − xI(κ,t−,s−)∥2 +
k − k− + 1

KT

t−−1∑
τ=0

K−1∑
κ=0

∥xI(κ+1,τ,s−) − xI(κ,τ,s−)∥2

≤
k−1∑
κ=k−

∥xI(κ+1,t−,s−) − xI(κ,t−,s−)∥2 +
k − k− + 1

K

k−−1∑
κ=0

∥xI(κ+1,t−,s−) − xI(κ,t−,s−)∥2

+
k − k− + 1

KT

t−−1∑
τ=0

K−1∑
κ=0

∥xI(κ+1,τ,s−) − xI(κ,τ,s−)∥2

=

I(k,t−,s−)−1∑
i=I(k−,t−,s−)

∥xi+1 − xi∥2 +
(I(k, t, s)− I(k−, t−, s−) + 1) ∧K

K

I(k−,t−,s−)−1∑
i=I(0,t−,s−)

∥xi+1 − xi∥2

+
(I(k, t−, s−)− I(k−, t−, s−) + 1) ∧KT

KT

I(0,t−,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2,

we get

I(k,t−,s−)∑
i=I(k−,t−,s−)

∥vi −∇f(xi)∥2

≤ 12c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

 I(k,t−,s−)−1∑
i=I(k−,t−,s−)

∥xi+1 − xi∥2 +
(I(k, t−, s−)− I(k−, t−, s−) + 1) ∧K

K

I(k−,t−,s−)−1∑
i=I(0,t−,s−)

∥xi+1 − xi∥2

+
(I(k, t−, s−)− I(k−, t−, s−) + 1) ∧KT

KT

I(0,t−,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(k, t−, s−)− I(k−, t−, s−) + 1)r2.

Setting k− ← k0, t− ← t0 and s− ← s0 gives the desired bound.

Case II. s = s0 and t > t0.

Note that I(k, t, s0)− I(k0, t0, s0) ≥ K. Again, we consider
∑I(k,t,s−)

i=I(k−,t−,s−) ∥vi −∇f(xi)∥2 for
general k−, t− and s− with k ≥ k−, t > t− and s = s−.

I(k,t,s−)∑
i=I(k−,t−,s−)

∥vi −∇f(xi)∥2

≤
I(K−1,t−,s−)∑
i=I(k−,t−,s−)

∥vi −∇f(xi)∥2 +
t−1∑

t′=t−+1

I(K−1,t′,s−)∑
i=I(0,t′,s−)

∥vi −∇f(xi)∥2 +
I(k,t,s−)∑

i=I(0,t,s−)

∥vi −∇f(xi)∥2.
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Using the result of Case I, the first term can be bounded as follows:

I(K−1,t−,s−)∑
i=I(k−,t−,s−)

∥vi −∇f(xi)∥2

≤ 12c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

I(K−1,t−,s−)−1∑
i=I(k−,t−,s−)

∥xi+1 − xi∥2 +
(I(K − 1, t−, s−)− I(k−, t−, s−) + 1) ∧K

K

I(k−,t−,s−)−1∑
i=I(0,t−,s−)

∥xi+1 − xi∥2

+
(I(K − 1, t−, s−)− I(k−, t−, s−) + 1) ∧KT

KT

I(0,t−,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(K − 1, t−, s−)− I(k−, t−, s−) + 1)r2.

Similarly, the second term can be bounded as:

t−1∑
t′=t−+1

I(K−1,t′,s−)∑
i=I(0,t′,s−)

∥vi −∇f(xi)∥2

≤ 12c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

 t−1∑
t′=t−+1

I(K−1,t′,s−)−1∑
i=I(0,t′,s−)

∥xi+1 − xi∥2

+

t−1∑
t′=t−+1

(I(K − 1, t′, s−)− I(0, t′, s−) + 1) ∧KT

KT

I(0,t′,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
≤ 12c2

(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

I(K−1,t−1,s−)−1∑
i=I(0,t−+1,s−)

∥xi+1 − xi∥2 +
t−1∑

t′=t−+1

(I(K − 1, t′, s−)− I(0, t′, s−) + 1) ∧KT

KT

I(0,t′,s−)−1∑
i=I(0,t−,s−)

∥xi+1 − xi∥2

+
(I(K − 1, t− 1, s−)− I(0, t− + 1, s−) + 1) ∧KT

KT

I(0,t−,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(K − 1, t− 1, s−)− I(0, t− + 1, s−) + 1)r2.
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Now, we bound the second term as follows:

t−1∑
t′=t−+1

(I(K − 1, t′, s−)− I(0, t′, s−) + 1) ∧KT

KT

I(0,t′,s−)−1∑
i=I(0,t−,s−)

∥xi+1 − xi∥2

≤ (I(K − 1, t− + 1, s−)− I(0, t− + 1, s−) + 1) ∧KT

KT

I(k−,t−,s−)−1∑
i=I(0,t−,s−

∥xi+1 − xi∥2 +
I(0,t−+1,s−)−1∑
i=I(k−,t−,s−)

∥xi+1 − xi∥2

+

t−1∑
t′=t−+2

(I(K − 1, t′, s−)− I(0, t′, s−) + 1) ∧KT

KT

I(0,t′,s−)−1∑
i=I(0,t−,s−)

∥xi+1 − xi∥2

≤ (I(K − 1, t− + 1, s−)− I(0, t− + 1, s−) + 1) ∧KT

KT

I(k−,t−,s−)−1∑
i=I(0,t−,s−

∥xi+1 − xi∥2 +
I(K−1,t−1,s)−1∑
i=I(k−,t−,s−)

∥xi+1 − xi∥2.

Using this, we have

t−1∑
t′=t−+1

I(K−1,t′,s−)∑
i=I(0,t′,s−)

∥vi −∇f(xi)∥2

≤ 12c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

2

I(K−1,t−1,s−)−1∑
i=I(k−,t−,s−)

∥xi+1 − xi∥2 +
(I(K − 1, t− + 1, s−)− I(0, t− + 1, s−) + 1) ∧K

K

I(k−,t−,s−)−1∑
i=I(0,t−,s−)

∥xi+1 − xi∥2

+
(I(K − 1, t− 1, s−)− I(0, t− + 1, s−) + 1) ∧KT

KT

I(0,t−,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(K − 1, t− 1, s−)− I(0, t− + 1, s−) + 1)r2.

Finally, we bound the last term:

I(k,t,s−)−1∑
i=I(0,t,s−)

∥vi −∇f(xi)∥2

≤ 12c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

I(k,t,s−)−1∑
i=I(0,t,s−)

∥xi+1 − xi∥2 +
(I(k, t, s−)− I(0, t, s−) + 1) ∧KT

KT

I(0,t,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
≤ 12c2

(
KL2

b
+Kζ2 +

KL2T

Pb

)

×

 I(k,t,s−)−1∑
i=I(k−,t−,s−)

∥xi+1 − xi∥2 +
(I(k, t, s−)− I(0, t, s−) + 1) ∧KT

KT

I(k−,t−,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(k, t, s−)− I(0, t, s−) + 1)r2.
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Summing the upper bounds of the three terms, we get

I(k,t,s−)∑
i=I(k−,t−,s−)

∥vi −∇f(xi)∥2

≤ 48c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

 I(k,t,s−)−1∑
i=I(k−,t−,s−)

∥xi+1 − xi∥2 +
(I(k, t, s−)− I(k−, t−, s−) + 1) ∧K

K

I(k−,t−,s−)−1∑
i=I(0,t−,s−)

∥xi+1 − xi∥2

+
(I(k, t, s−)− I(k−, t−, s−) + 1) ∧KT

KT

I(0,t−,s−)−1∑
i=I(0,0,s−)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(k, t, s−)− I(k−, t−, s−) + 1)r2.

Setting k− ← k0, t− ← t0 and s− ← s0 gives the desired bound.

Case III. s > s0

In this case, note that I(k, t, s)− I(k0, t0, s0) ≥ KT holds. Observe that

I(k,t,s)∑
i=I(k0,t0,s0)

∥vi −∇f(xi)∥2

≤
I(K−1,T−1,s0)∑
i=I(k0,t0,s0)

∥vi −∇f(xi)∥2 +
s−1∑

s′=s0+1

I(K−1,T−1,s′)∑
i=I(0,0,s′)

∥vi −∇f(xi)∥2 +
I(k,t,s)∑

i=I(0,0,s)

∥vi −∇f(xi)∥2.

Using the result of Case II, we bound the three terms.

The first term can be bounded as follows:

I(K−1,T−1,s0)∑
i=I(k0,t0,s0)

∥vi −∇f(xi)∥2

≤ 48c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

I(K−1,T−1,s0)−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2 +
(I(K − 1, T − 1, s0)− I(k0, t0, s0) + 1) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2

+
(I(K − 1, T − 1, s0)− I(k0, t0, s0) + 1) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

G

ε̃

)
+ (I(K − 1, T − 1, s0)− I(k0, t0, s0) + 1)r2.
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Similarly, the second term can be bounded as

s−1∑
s′=s0+1

I(K−1,T−1,s′)∑
i=I(0,0,s′)

∥vi −∇f(xi)∥2

≤ 48c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

) s−1∑
s′=s0+1

I(K−1,T−1,s′)−1∑
i=I(0,0,s′)

∥xi+1 − xi∥2
(log2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(K − 1, T − 1, s− 1)− I(k0, t0, s0 + 1) + 1)r2.

We bound the last term as

I(k,t,s)∑
i=I(0,0,s)

∥vi −∇f(xi)∥2

≤ 48c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

I(k,t,s)−1∑
i=I(0,0,s)

∥xi+1 − xi∥2
(logKTSd

q
+ loglog

4KTG

ε̃

)
+ (I(k, t, s)− I(0, 0, s) + 1)r2.

Summing up the three terms, we get

I(k,t,s)∑
i=I(k0,t0,s0)

∥vi −∇f(xi)∥2

≤ 48c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

 I(k,t,s)−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2 +
(I(k, t, s)− I(k0, t0, s0) + 1) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2

+
(I(k, t, s)− I(k0, t0, s0) + 1) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(k, t, s)− I(k0, t0, s0) + 1)r2.
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Combining the three cases, we obtain

I(k,t,s)∑
i=I(k0,t0,s0)

∥vi −∇f(xi)∥2

≤ 48c2
(
KL2

b
+K2ζ2 +

KL2T

Pb

)

×

 I(k,t,s)−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2 +
(I(k, t, s)− I(k0, t0, s0) + 1) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2

+
(I(k, t, s)− I(k0, t0, s0) + 1) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


×
(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
+ (I(k, t, s)− I(k0, t0, s0) + 1)r2.

Combining this bound with (2), we obtain

f(xI(k,t,s))

≤ f(xI(k0,t0,s0))−
η

2

I(k,t,s)−1∑
i=I(k0,t0,s0)

∥∇f(xi)∥2

−
(

1

2η
− L

2
− 48c2η

(
KL2

b
+K2ζ2 +

KTL2

Pb

)(
log

2KTSd

q
+ loglog

4KTG

ε̃

)) I(k,t,s)−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2

+

{
48c2η

(
KL2

b
+K2ζ2 +

KTL2

Pb

)(
log

2KTSd

q
+ loglog

4KTG

ε̃

)

×

 (I(k, t, s)− I(k0, t0, s0)) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2

+
(I(k, t, s)− I(k0, t0, s0)) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2
}

+ η(I(k, t, s)− I(k0, t0, s0))r
2

with probability at least 1− 3q.

We can choose η = Θ̃(1/L ∧
√

b/K/L ∧ 1/(Kζ) ∧
√
Pb/(

√
KTL)) such that η ≤ 1/(8L) and

48c2η

(
KL2

b
+K2ζ2 +

KTL2

Pb

)(
log

2KTSd

q
+ loglog

4KTG

ε̃

)
≤ cη

η
.
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for some constant cη ∈ (0, 1/4). Then, the above result can be simplified as

f(xI(k,t,s)) ≤ f(xI(k0,t0,s0))−
η

2

I(k,t,s)−1∑
i=I(k0,t0,s0)

∥∇f(xi)∥2

− 1

8η

I(k,t,s)−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2

+
cη
η

 (I(k, t, s)− I(k0, t0, s0)) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2

+
(I(k, t, s)− I(k0, t0, s0)) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


+ η(I(k, t, s)− I(k0, t0, s0))r
2 (4)

with probability at least 1− 3q.

Also, we bound ∥xI(k,t,s) − xI(k0,t0,s0)∥2. Note that

∥xI(k,t,s) − xI(k0,t0,s0)∥
2 ≤ (I(k, t, s)− I(k0, t0, s0))

I(k,t,s)−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2

≤ 8η(I(k, t, s)− I(k0, t0, s0))

{
f(xI(k0,t0,s0))− f(xI(k,t,s))

− 1

8η

I(k−1,t,s)∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2

+
cη
η

 (I(k, t, s)− I(k0, t0, s0)) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2

+
(I(k, t, s)− I(k0, t0, s0)) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


+ η(I(k, t, s)− I(k0, t0, s0))r
2

}
.

for every k, k0 ∈ [K − 1], t, t0 ∈ [T − 1] and s, s0 ∈ [S − 1] (I(k, t, s) ≥ I(k0, t0, s0)) with
probability at least 1− 3q.

By the way, we also derive (loose) almost sure bound as follows: From (1) and the fact that
∥vI(k,t,s) −∇f(xI(k,t,s))∥2 ≤ 3(4KG2 + 4KG2 + 4TG2) ≤ 36KTG2 almost surely, it holds that

f(xI(k,t,s))− f(xI(k0,t0,s0)) ≤ 36ηKT (I(k, t, s)− I(k0, t0, s0))G
2 + η(I(k, t, s)− I(k0, t0, s0))r

2

≤ 36ηK2T 2SG2 + ηKTSr2

≤ 36ηK2T 2S(G2 + r2) (5)

almost surely.
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Proof of Corollary 4.2

Using Proposition 4.1 with I(k, t, s) = KTS and I(k0, t0, s0) = 0, we have

f(xKTS) ≤ f(x0)−
η

2

KTS−1∑
i=0

∥∇f(xi)∥2

− 1

8η

KTS−1∑
i=0

∥xi+1 − xi∥2 + ηKTSr2.

Then, −∥∇f(xi)∥2 ≤ −(1/2)∥∇f(x̃i)∥2 + ∥∇f(xi) − f(x̃i)∥2 ≤ −(1/2)∥∇f(x̃I(k,t,s))∥2 +

η2L2r2 ≤ −(1/2)∥∇f(x̃i)∥2 + r2 gives

f(xKTS) ≤ f(x0)−
η

4

KTS−1∑
i=0

∥∇f(x̃i)∥2

− 1

8η

KTS−1∑
i=0

∥xi+1 − xi∥2 + 2ηKTSr2.

Choosing cr ≤ 1/4 immediately leads the desired result.

B.4 Escaping Saddle Points

Given {xi}KTS−1
i=0 , we introduce the concept of coupling sequence [10]. Given xI(k0,t0,s0), let

{ei}di=1 be the normalized eigenvectors of ∇f(x̃I(k0,t0,s0)) associated with the eigenvalues λ1 <
· · · < λd. We set emin := e1 and λmin := λ1. We assume that λ := −λmin >

√
ρε.

Then, for given Î ≥ I(k0, t0, s0), we define coupling sequence {x′
i}

KTS−1
i=0 as follows: (1)

⟨ξ′
Ĩ
, emin⟩ = −⟨ξĨ , emin⟩; (2) ⟨ξ′

Ĩ
, ej⟩ = ⟨ξĨ , ej⟩ for j ∈ {2, . . . , d}; and (3) All the other

randomness is completely same as the one of {xi}KTS−1
i=0 . Let r0 := |⟨ξĨ , emin⟩|. Note that

|⟨ξĨ − ξ′
Ĩ
, emin⟩| = 2r0 and thus ∥ξĨ − ξ′

Ĩ
∥ = 2r0. Also, observe that xĨ+1 − x′

Ĩ+1
=

η⟨ξĨ − ξ′
Ĩ
, emin⟩emin. We define Ĩ used in the definition of the coupling sequence as follows:

Ĩ :=


I(k0, t0, s0), (1/(ηλ) ≤

√
K)

I(k′0, t0, s0)− 1, (
√
K < 1/(ηλ) ≤ K)

I(0, t0 + 1, s0)− 1, (K < 1/(ηλ) ≤ KT )

I(0, 0, s0 + 1)− 1. (KT < 1/(ηλ))

Here, k′0 is the minimum index k that satisfies k > k0 and k ≡ 0 (mod⌈
√
K⌉). We can easily check

that Ĩ − I(k0, t0, s0) ≤ 1/(ηλ).

Note that

P
(
r0 ≥

qr

2
√
d

)
≥ 1− q (6)

from the arguments in Section A.2 of [8].

To prove Proposition 4.3, first note that the following result:
Proposition B.3. Let k0 ∈ [K] ∪ {0}, t0 ∈ [T − 1] ∪ {0} and s0 ∈ [S − 1] ∪ {0}. Fix any
J ∈ {1, . . . , I(0, 0, S)− I(k0, t0, s0)} and F > 0. Under the same conditions as Proposition 4.1,
it holds that

min
{
f(xI(k0,t0,s0)+J )− f(xI(k0,t0s0)), f(x

′
I(k0,t0,s0)+J )− f(x′

I(k0,t0s0)
)
}

≤ −F +
2cη
η

J ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
J ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


or ∀J ∈ [J ] : max
{
∥xI(k0,t0,s0)+J − xI(k0,t0,s0)∥

2, ∥x′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥2
}

≤ 8ηJ
(
F + 2ηJ r2

)
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with probability at least 1− 6q.

Proof. First note that xi = x′
i for i ≤ I(k0, t0, s0). From the bounds of ∥xI(k0,t0,s0)+J −

xI(k0,t0,s0)∥2 and ∥x′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥2, we can see that

max
{
∥xI(k0,t0,s0)+J − xI(k0,t0,s0)∥

2, ∥x′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥2
}

≤ 8ηJ

(
max

f(xI(k0,t0,s0))− f(xI(k0,t0s0)+J)−
1

8η

I(k0,t0,s0)+J−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2,

f(x′
I(k0,t0,s0)

)− f(x′
I(k0,t0s0)+J)−

1

8η

I(k0,t0,s0)+J−1∑
i=I(k0,t0,s0)

∥x′
i+1 − x′

i∥2


+
cη
η

J ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
J ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2
+ ηJr2

)
for every J ∈ [J ] with probability at least 1− 6q.

We define I(kJ , tJ , sJ) := I(k0, t0, s0) + J . Note that sJ ≥ s0. From (4),

f(xI(k0,t0,s0))− f(xI(k0,t0,s0)+J)−
1

8η

I(k0,t0,s0)+J−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2

= f(xI(k0,t0,s0))− f(xI(k0,t0,s0)+J )

+ f(xI(k0,t0,s0)+J )− f(xI(k0,t0,s0)+J)−
1

8η

I(k0,t0,s0)+J−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2

≤ f(xI(k0,t0,s0))− f(xI(k0,t0,s0)+J )

− 1

8η

I(k0,t0,s0)+J−1∑
i=I(k0,t0,s0)

∥xi+1 − xi∥2

+
cη
η

 (J − J) ∧K

K

I(kJ ,tJ ,sJ )−1∑
i=I(0,tJ ,sJ )

∥xi+1 − xi∥2 +
(J − J) ∧KT

KT

I(0,tJ ,sJ )−1∑
i=I(0,0,sJ )

∥xi+1 − xi∥2


+ η(J − J)r2

≤ f(xI(k0,t0,s0))− f(xI(k0,t0,s0)+J )

+
cη
η

J ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
J ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


+ ηJ r2.
Here, for the last inequality, we used the fact that I(0, tJ , sJ) ≥ I(0, t0, s0). Also, we assumed
cη ≤ 1/8.

Similarly, we can show that

f(x′
I(k0,t0,s0)

)− f(x′
I(k0,t0,s0)+J)−

1

8η

I(k0,t0,s0)+J−1∑
i=I(k0,t0,s0)

∥x′
i+1 − x′

i∥2

≤ f(x′
I(k0,t0,s0)

)− f(x′
I(k0,t0,s0)+J )

+
cη
η

J ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
J ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


+ ηJ r2.
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Therefore, we get

max
{
∥xI(k0,t0,s0)+J − xI(k0,t0,s0)∥

2, ∥x′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥2
}

≤ 8ηJ

{
−min

{
f(xI(k0,t0,s0)+J )− f(xI(k0,t0s0)), f(x

′
I(k0,t0,s0)+J )− f(x′

I(k0,t0s0)
)
}

+
2cη
η

J ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
J ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2
+ 2ηJ r2

}

for every J ∈ [J ]. Now, suppose that

min
{
f(xI(k0,t0,s0)+J )− f(xI(k0,t0s0)), f(x

′
I(k0,t0,s0)+J )− f(x′

I(k0,t0s0)
)
}

> −F +
2cη
η

J ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
J ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2
 . (7)

Then, using (7), we obtain

max
{
∥xI(k0,t0,s0)+J − xI(k0,t0,s0)∥

2, ∥x′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥2
}

≤ 8ηJ (F + 2ηJ r2).

This finishes the proof.

We fix k0 ∈ [K − 1], t0 ∈ [T − 1], s0 ∈ [S − 1] and JI(k0,t0,s0) ∈ N. Let FI(k0,t0,s0) :=

cFηJI(k0,t0,s0)r
2. From this definition, (4) immediately implies that

f(xI(k0,t0,s0)+J)− f(xI(k0,t0,s0))

≤ cη
η

J ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
J ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2
+ ηJ r2.

=
2

cF
FI(k0,t0,s0) +

cη
η

JI(k0,t0,s0) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
JI(k0,t0,s0) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2


(8)

for every J ∈ [JI(k0,t0,s0)] with probability at least 1− 3q. Here, for simplifying the notations, we
set F := FI(k0,t0,s0) and J := JI(k0,t0,s0).

We want to show the following proposition:
Proposition B.4. Under the same conditions as Proposition 4.3, it holds that

max
{
∥xI(k0,t0,s0)+J − xI(k0,t0,s0)∥

2, ∥x′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥2
}
> 8(cF + 2)η2J 2r2

for some J ∈ [J ] with probability at least 1− 3q.

Proof. We consider the event H that is an intersection of (6), (14) and (15) (derived later), which
holds probability at least 1 − 3q. From now, the arguments are conditioned on H . Observe that
8ηJ (F + 2ηJ r2) = 8(cF + 2)η2J 2r2.

Suppose that

max
{
∥xI(k0,t0,s0)+J − xI(k0,t0,s0)∥

2, ∥x′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥2
}
≤ 8(cF + 2)η2J 2r2,

which implies

max
{
∥xI(k0,t0,s0)+J − xI(k0,t0,s0)∥, ∥x

′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥
}
≤ 2
√
2(cF + 2)ηJ r.
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for every J ∈ [J ]. Then, we have

max
{
∥xI(k0,t0,s0)+J − x̃I(k0,t0,s0)∥, ∥x

′
I(k0,t0,s0)+J − x̃I(k0,t0,s0)∥

}
≤ max

{
∥xI(k0,t0,s0)+J − xI(k0,t0,s0)∥, ∥x

′
I(k0,t0,s0)+J − x′

I(k0,t0,s0)
∥
}
+ ηr

≤ 4
√
cF + 2ηJ r =: U∆.

We will derive a contradiction. Now, we consider the quantity ∥xi − x′
i∥2 for i > Ĩ . wi denotes

xi − x′
i. Since ξi = ξ′i for i ̸= Î , for I ≥ Ĩ , we have that

wI+1 = xI+1 − x′
I+1

= wI − η(vI − v′I)− η(ξI − ξ′I)

= wI − η(∇f(xI)−∇f(x′
I) + vI −∇f(xI)− v′I +∇f(x′

I))

= wI − η((H+∆I)wI + vI −∇f(xI)− v′I +∇f(x′
I))

= (1− ηH)wI − η(∆IwI + yI)

= η(1− ηH)I−Ĩ ξ̂Ĩ − η
I∑

i=Ĩ

(1− ηH)I−i(∆iwi + yi),

where H := ∇2f(x̃I(k0,t0,s0)), ∆i :=
∫ 1

0
(∇2f(θxi + (1 − θ)x′

i) − H)dθ, yi := vi − ∇f(xi) −
v′i +∇f(x′

i) and ξ̂i = ξi − ξ′i. Let λ := −λmin(∇2f(x̃I(k0,t0,s0)) >
√
ρε. For the last inequality,

we used x̃Ĩ = x̃′
Ĩ
.

First we give an upper bound of the term ∥η(1− ηH)I−Ĩ ξ̂Ĩ∥. Since ξ̂Ĩ = ξĨ − ξ′
Ĩ
= 2⟨ξĨ , emin⟩emin,

we have

η(1− ηH)I−Ĩ ξ̂Ĩ = 2η(1 + ηλ)I−Ĩ⟨ξĨ , emin⟩emin.

Since r0 = 2|⟨ξĨ , emin⟩|, we have∥∥∥η(1− ηH)I−Ĩ ξ̂Ĩ

∥∥∥ = η(1 + ηλ)I−Ĩr0 =: Uξ̂(I). (9)

From now, we will show that the following claims hold for I ∈ {0, . . . , I(k0, t0, s0) + J } with
probability at least 1− q using mathematical induction:

∥wI∥ ≤ c(w)
upper · η(1 + ηλ)I−Ĩr0 =: Uw(I)

for c(w)
upper = Θ̃(1) > 0, and

∥yI∥ ≤ c(y)upper · η2λ

(
L+

√
KL√
b

+Kζ +

√
KTL√
Pb

)
(1 + ηλ)I−Ĩr0 =: Uy(I)

for some c(y)upper = Θ̃(1) > 0. Observe that Uξ , Uw and Uy are monotonically increasing with respect
to I for I ≥ Ĩ). First we check the case I ∈ {0, . . . , Ĩ}. In this case, the both claims trivially holds
from the definition of {x′

i}
KTS−1
i=0 because wi = yi = 0 for i ≤ Ĩ . Suppose that the two claims hold

for the cases {0, . . . , I} with I ≥ Ĩ . We want to show that the two claims also hold for the case
I + 1 > Ĩ .

∥wI+1∥ ≤ η

I∑
i=Ĩ

(1 + ηλ)I−i∥∆iwi∥+ η

I∑
i=Ĩ

(1 + ηλ)I−i∥yi∥+ Uξ̂(I + 1).

Here we used inequality (9). Observe that

∥∆iwi∥ ≤ ∥∆i∥∥wi∥
≤ ∥∆i∥Uw(i)

≤ ∥∆i∥Uw(I + 1)
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and

∥∆i∥ ≤ ρ

∫ 1

0

∥θxi + (1− θ)x′
i − x̃I(k0,t0,s0)∥dθ

≤ ρmax{∥xi − x̃I(k0,t0,s0)∥, ∥x
′
i − x̃′

I(k0,t0,s0)
∥}

≤ ρU∆.

Hence, we get

η

I∑
i=Ĩ

(1 + ηλ)I−i∥∆iwi∥

≤ η(I − Ĩ)ρU∆Uw(I + 1)

≤ ηρJU∆Uw(I + 1) (10)

Similarly, from the inductive assumption on ∥yi∥,

η

I∑
i=Ĩ

(1 + ηλ)I−i∥yi∥

≤ c(y)upperη · ηλJ · η

(
L+

√
KL√
b

+Kζ +

√
KTL√
Pb

)
(1 + ηλ)I−Ĩr0

≤

c
(y)
upperηλJ

(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

)
c
(w)
upper

Uw(I). (11)

These results imply

∥wI+1∥ ≤ ηρJU∆Uw(I + 1) +

c
(y)
upperηλJ · η

(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

)
c
(w)
upper

Uw(I) + Uξ̂(I + 1)

≤

ηρJU∆ +
c
(y)
upperηλJ · η

(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

)
c
(w)
upper

+
1

c
(w)
upper

Uw(I + 1).

Here, we again used the monotonicity of Uw(i) with respect to i. Now, we defineJ := JI(k0,t0,s0) :=

cJ /(ηλ) (≤ cJ /(η
√
ρε)) for some cJ = Θ̃(1) ≥ 2, which does not depend on index I(k0, t0, s0)

and will be determined later. Also, we set c(w)
upper ≥ 3 and c

(y)
upper := c

(w)
upper. These definitions

with appropriate η ≤ 1/(cJ (L+
√
KL/

√
b+Kζ +

√
KTL/

√
Pb))} × 1/(6c

(w)
upper) = Θ̃(1/L ∧√

b/K/L) ∧ 1/(Kζ) ∧
√
Pb/(

√
KTL) and cr ≤ 1/(24

√
cF + 2c2J c

(w)
upper) give

ηρJU∆ ≤ 4cr
√
cF + 4× η2J 2ρε ≤ 1

6c
(w)
upper

≤ 1

18
(12)

and

c
(y)
upperηλJ · η

(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

)
c
(w)
upper

≤ 1

6c
(w)
upper

≤ 1

18
. (13)

Hence, we obtain

∥wI+1∥ ≤
4

9
Uw(I + 1) ≤ Uw(I + 1).

Next, we consider the quantity ∥yI+1∥. Let k, t, s be I + 1 = I(k, t, s). We define
αI(κ,t,s) := gI(κ,t,s) − grefI(κ,t,s) +∇fpt,s

(xI(κ−1,t,s))−∇fpt,s
(xI(κ,t,s)),

βI(κ,t,s) := ∇fpt,s
(xI(κ,t,s))−∇fpt,s

(xI(κ−1,t,s)) +∇f(xI(κ−1,t,s))−∇f(xI(κ,t,s)),

γI(0,τ,s) :=
1
P

∑P
p=1(g

(p)
I(0,τ,s) − g

(p),ref
I(0,τ,s) +∇f(xI(0,τ−1,s))−∇f(xI(0,τ,s)).
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Similarly, we define


α′
I(κ,t,s) := g′I(κ,t,s) − (grefI(κ,t,s))

′ +∇fpt,s
(x′

I(κ−1,t,s))−∇fpt,s
(x′

I(κ,t,s)),

β′
I(κ,t,s) := ∇fpt,s

(x′
I(κ,t,s))−∇fpt,s

(x′
I(κ−1,t,s)) +∇f(x

′
I(κ−1,t,s))−∇f(x

′
I(κ,t,s)),

γ′
I(0,τ,s) :=

1
P

∑P
p=1((g

(p)
I(0,τ,s))

′ − (g
(p),ref
I(0,τ,s))

′ +∇f(x′
I(0,τ−1,s))−∇f(x

′
I(0,τ,s))

that are associated with sequence {x′
i}∞i=I(k0,t0,s0)

. Let α̂I(κ,t,s) = αI(κ,t,s) − α′
I(κ,t,s), β̂I(κ,t,s) =

βI(κ,t,s) − β′
I(κ,t,s) and γ̂I(κ,t,s) = γI(κ,t,s) − γ′

I(κ,t,s). Then we further define


ÂI(k,t,s) :=

∑k−1
κ=0 α̂I(κ+1,t,s),

B̂I(k,t,s) :=
∑k−1

κ=0 β̂I(κ+1,t,s),

ĈI(0,t,s) :=
∑t−1

τ=0 γ̂I(0,τ+1,s)

These definitions give

yI+1 = vI+1 −∇f(xI+1)− v′I+1 +∇f(x′
I+1)

= ÂI(k,t,s) + B̂I(k,t,s) + ĈI(0,t,s)

+ vI(0,0,s) −∇f(xI(0,0,s))− v′I(0,0,s) +∇f(x
′
I(0,0,s))

This implies

∥yI+1∥ = ∥vI+1 −∇f(xI+1)− v′I+1 +∇f(x′
I+1)∥

≤
∥∥∥ÂI(k,t,s)

∥∥∥+ ∥∥∥B̂I(k,t,s)

∥∥∥+ ∥∥∥ĈI(0,t,s)

∥∥∥ .
Here, we used the fact that vI(0,0,s) −∇f(xI(0,0,s))− v′I(0,0,s) +∇f(x

′
I(0,0,s)) = 0.

Bounding ∥ÂI(k,t,s)∥

Observe that α̂I(κ, t, s) satisfies

E[α̂I(κ, t, s) | FI(κ−1,t,s)] = 0.

Let

û
(α)
l,I(κ,t,s)

:=∇ℓ(xI(κ,t,s), zl,I(κ,t,s))−∇ℓ(x′
I(κ,t,s), zl,I(κ,t,s))− (∇ℓ(xI(κ−1,t,s), zl,I(κ,t,s))−∇ℓ(x′

I(κ−1,t,s), zl,I(κ,t,s))

+ (∇fpt,s
(xI(κ−1,t,s))−∇fpt,s

(x′
I(κ−1,t,s)))− (∇fpt,s

(xI(κ,t,s))−∇fpt,s
(x′

I(κ,t,s))).
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Note that E[û(α)
l,I(κ,t,s)|FI(κ,t,s)−1] = 0 and α̂I(κ,t,s) = (1/b)

∑b′

l=1 û
(α)
l,I(κ,t,s). Observe that

∥û(α)
l,I(κ,t,s)∥

= ∥∇ℓ(xI(κ,t,s), zl,I(κ,t,s))−∇ℓ(x′
I(κ,t,s), zl,I(κ,t,s))− (∇ℓ(xI(κ−1,t,s), zl,I(κ,t,s))−∇ℓ(x′

I(κ−1,t,s), zl,I(κ,t,s)))

+ (∇fpt,s
(xI(κ−1,t,s))−∇fpt,s

(x′
I(κ−1,t,s)))− (∇fpt,s

(xI(κ,t,s))−∇fpt,s
(x′

I(κ,t,s)))∥

=

∥∥∥∥∫ 1

0

∇2ℓ(θxI(κ,t,s) + (1− θ)x′
I(κ,t,s), zl,I(κ,t,s))dθ(xI(κ,t,s) − x′

I(κ,t,s))

−
∫ 1

0

∇2ℓ(θxI(κ−1,t,s) + (1− θ)x′
I(κ−1,t,s), zl,I(κ,t,s))dθ(xI(κ−1,t,s) − x′

I(κ−1,t,s))

+

∫ 1

0

∇2fpt,s(θxI(κ,t,s) + (1− θ)x′
I(κ−1,t,s))dθ(xI(κ,t,s) − x′

I(κ,t,s))

−
∫ 1

0

∇2fpt,s
(θxI(κ−1,t,s) + (1− θ)x′

I(κ−1,t,s))dθ(xI(κ−1,t,s) − x′
I(κ−1,t,s))

∥∥∥∥
= ∥Hzl,I(κ,t,s)

wI(κ,t,s) +∆zl,I(κ,t,s),I(κ,t,s)wI(κ,t,s) − (Hzl,I(κ,t,s)
wI(κ−1,t,s) +∆zl,I(κ,t,s),I(κ−1,t,s)wI(κ−1,t,s))

+Hpt,swI(κ,t,s) +∆pt,s,I(κ,t,s)wI(κ,t,s) − (Hpt,swI(κ−1,t,s) +∆pt,s,I(κ−1,t,s)wI(κ−1,t,s))∥
≤ ∥(Hzl,I(κ,t,s)

−Hpt,s
)(wI(κ,t,s) − wI(κ−1,t,s))∥

+ ∥(∆I(κ,t,s),zl,I(κ,t,s)
−∆I(κ,t,s))wI(κ,t,s)∥+ ∥(∆I(κ−1,t,s),zl,I(κ,t,s)

−∆I(κ−1,t,s))wI(κ−1,t,s)∥
≤ 2L∥wI(κ,t,s) − wI(κ−1,t,s)∥

+ 2ρmax{∥xI(κ,t,s) − x̃I(k0,t0,s0)∥, ∥x
′
I(κ,t,s) − x̃I(k0,t0,s0)∥,

∥xI(κ−1,t,s) − x̃I(k0,t0,s0)∥, ∥x
′
I(κ−1,t,s) − x̃I(k0,t0,s0)∥}(∥wI(κ,t,s)∥+ ∥wI(κ−1,t,s)∥)

≤ 2L∥wI(κ,t,s) − wI(κ−1,t,s)∥+ 4ρU∆Uw(I + 1).

Here, Hz := ∇2ℓ(x̃I(k0,t0,s0), z), Hpt,s := ∇2fpt,s(x̃I(k0,t0,s0)), ∆z,I(κ,t,s) :=∫ 1

0
(∇2ℓ(θxI(κ,t,s) + (1 − θ)x′

I(κ,t,s), z) − Hz)dθ and ∆pt,s,I(κ,t,s) :=
∫ 1

0
(∇2fpt,s

(θxI(κ,t,s) +

(1− θ)x′
I(κ,t,s))−Hpt,s

)dθ.
We define

σ̂
(α)
I(κ,t,s) := 2L∥wI(κ,t,s) − wI(κ−1,t,s)∥+ 4ρU∆Uw(I + 1).

Here, for the last inequality, we used the inductive assumption on ∥wI(κ,t,s)∥ for I(κ, t, s) ≤
I(k − 1, t, s) and the proven bound for ∥wI(k,t,s)∥. Also, we used the simple fact that (1 +

ηλ)I(κ,t,s)−I(k0,t0,s0) ≤ (1 + ηλ)I+1−I(k0,t0,s0) Hence, we have

P(∥û(α)
l,I(κ,t,s)∥ ≥ s | FI(κ−1,t,s)) ≤ 2e

− s2

2(σ̂(α)
I(κ,t,s))

2

for every s ∈ R and κ ∈ [k]. Also note that {û(α)
l,I(κ,t,s)}

bκ
l=1 is i.i.d. sequence conditioned on

FI(κ−1,t,s). Also note that ∥α̂I(κ,t,s)∥ ≤ 8G almost surely from Assumption 5. From these results,
we can use Lemma B.2 with A = 8kG and a = ε̃′ (ε̃′ is some positive number and will be defined
later) and get

∥∥∥ÂI(k,t,s)

∥∥∥ ≤ c

√√√√((k−1∑
κ=0

1

bκ+1

(
σ̂
(α)
I(κ+1,t,s)

)2)
+ ε̃′

)(
log

2KTSd

q
+ loglog

8KG

ε̃′

)
(14)

for every k ∈ [K] ∪ {0}, t ∈ [T − 1] ∪ {0} and s ∈ [S] ∪ {0} with probability at least 1 − q for
some constant c > 0. Note that this event always holds under H .
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Bounding ∥B̂I(k,t,s)∥

Observe that

B̂I(k,t,s) = ∇fpt,s
(xI(k,t,s))−∇fpt,s

(xI(0,t,s)) +∇f(xI(0,t,s))−∇f(xI(k,t,s))

+∇fpt,s
(x′

I(k,t,s))−∇fpt,s
(x′

I(0,t,s)) +∇f(x
′
I(0,t,s))−∇f(x

′
I(k,t,s))

=

∫ 1

0

∇2fpt,s
(θxI(k,t,s) + (1− θ)x′

I(k,t,s))dθ(xI(k,t,s) − x′
I(k,t,s))

−
∫ 1

0

∇2fpt,s
(θxI(0,t,s) + (1− θ)x′

I(0,t,s))dθ(xI(0,t,s) − x′
I(0,t,s))

+

∫ 1

0

∇2f(θxI(k,t,s) + (1− θ)x′
I(k,t,s))dθ(xI(k,t,s) − x′

I(k,t,s))

−
∫ 1

0

∇2f(θxI(0,t,s) + (1− θ)x′
I(0,t,s))dθ(xI(0,t,s) − x′

I(0,t,s))

= (Hpt,s +∆pt,s,I(κ,t,s))wI(k,t,s) − (Hpt,s +∆pt,s,I(0,t,s))wI(0,t,s)

+ (H+∆I(0,t,s))wI(0,t,s) − (H+∆I(k,t,s))wI(k,t,s)

= (Hpt,s
−H)(wI(k,t,s) − wI(0,t,s))

+ (∆I(k,t,s),pt,s
−∆I(k,t,s))wI(k,t,s) − (∆I(0,t,s),pt,s

−∆I(0,t,s))wI(0,t,s).

This implies that

∥∥∥B̂I(k,t,s)

∥∥∥ ≤ ζ∥wI(k,t,s) − wI(0,t,s)∥+ 4ρU∆Uw(I + 1)

≤ ζ

k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥+ 4ρU∆Uw(I + 1).

Bounding ∥ĈI(0,t,s)∥

The argument is similar to the case of ∥ÂI(k,t,s)∥. From Lemma B.2, the third term ∥ĈI(0,t,s)∥ can
be bounded as

∥∥∥ĈI(0,t,s)

∥∥∥ ≤ c√
PKb

√√√√((t−1∑
τ=0

(
σ̂
(γ)
I(0,τ+1,s)

)2)
+ ε̃′

)(
log

2KTSd

q
+ loglog

8TG

ε̃′

)
(15)

for every t ∈ [T − 1] ∪ {0} and s ∈ [S − 1] ∪ {0} with probability at least 1− q, where

σ
(γ)
I(0,τ,s) := 2L∥wI(0,τ,s) − wI(0,τ−1,s)∥+ 4ρU∆Uw(I + 1).

Here, we used the facts that {g(p)I(0,τ,s)−g
(p)ref
I(0,τ,s)+∇fp(xI(0,τ−1,s))−∇fp(xI(0,τ,s))}Pp=1 has mean

zero and each of them is constructed from Kb i.i.d. data samples, and {(g(p)I(0,τ,s))
′ − (g

(p)ref
I(0,τ,s))

′ +

∇fp(x′
I(0,τ−1,s))−∇fp(x

′
I(0,τ,s))}

P
p=1 possesses the same property.
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Hence, we have
∥yI+1∥

= ∥vI+1 −∇f(xI+1)− v′I+1 +∇f(x′
I+1)∥

≤
∥∥∥ÂI(k,t,s)

∥∥∥+ ∥∥∥B̂I(k,t,s)

∥∥∥+ ∥∥∥ĈI(0,t,s)

∥∥∥
≤

c

√√√√8L2

k−1∑
κ=0

1

bκ+1
∥wI(κ+1,t,s) − wI(κ,t,s)∥2 + 32Kρ2U2

∆Uw(I + 1)2 + ε̃′

+ ζ

k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥+ 4ρU∆Uw(I + 1)

+
c√
PKb

√√√√8L2

t−1∑
τ=0

∥wI(0,τ+1,s) − wI(0,τ,s)∥2 + 32Tρ2U2
∆Uw(I + 1)2 + ε̃′


×

√
log

2KTSd

q
+ loglog

8KTG

ε̃′

Now, we further bound the term ∥wI(κ+1,τ,s) − wI(κ,τ,s)∥.

To do this, it is important to carefully distinguish the three cases: I(κ+1, τ, s) = Ĩ+1, I(κ+1, τ, s) <

Ĩ + 1 and I(κ+ 1, τ, s) > Ĩ + 1.

For the former case, note that ∥wĨ+1 − wĨ∥ = ∥wĨ+1∥ = ηr0. Also note that ∥wI(κ+1,τ,s) −
wI(κ,τ,s)∥ = 0 for I(κ+ 1, τ, s) < Ĩ + 1.

Case I. 1/(ηλ) ≤
√
K.

In this case, Ĩ = I(k0, t0, s0). Suppose that s = s0 and t = t0. Then, since 1/(ηλ) ≤
√
K, it holds

that
k−1∑
κ=0

1

bκ+1
∥wI(κ+1,t,s) − wI(κ,t,s)∥2 ≤

1

b

∑
i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥2 +
η2r20
b

≤ 1

b

∑
i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥2 +
η4λ2Kr20

b

and
k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥ ≤
∑

i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥+ ηr0

≤
∑

i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥+ η2λKr0.

Also,
∑t−1

τ=0 ∥wI(0,τ+1,s) − wI(0,τ,s)∥2 = 0.

Next, suppose that s = s0 and t > t0. Since I(0, t, s) > I(k0, t0, s0), ∥wI(k0+1,t0,s0)−wI(k0,t0,s0)∥
does not appear in the two terms

k−1∑
κ=0

1

bκ+1
∥wI(κ+1,t,s) − wI(κ,t,s)∥2 ≤

1

b

k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥2

and
k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥.
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Also, since I(k0, t0, s0) > I(0, 0, s),
t−1∑
τ=0

∥wI(0,τ+1,s) − wI(0,τ,s)∥2 =
∑

τ={0,...,t−1}\{t0}

∥wI(0,τ+1,s) − wI(0,τ,s)∥2 + ∥wI(0,t0+1,s) − wI(0,t0,s)∥
2

≤K
∑

i∈{I(0,0,s),...,I(0,t,s)−1}\{I(0,t0,s0),...,I(0,t0+1,s0)−1}

∥wi+1 − wi∥2

+ 2K
∑

i∈{I(0,t0,s),...,I(0,t0+1,s)−1}\{I(k0,t0,s0)}

∥wi+1 − wi∥2 + 2η2r20

≤ 2K
∑

i∈{I(0,0,s),...,I(0,t,s)−1}\{I(k0,t0,s0)}

∥wi+1 − wi∥2 + 2η2r20

= 2K
∑

i∈{I(0,0,s),...,I(0,t,s)−1}\{Ĩ}

∥wi+1 − wi∥2 + 2η2r20

Finally, when s > s0, ∥wĨ+1 − wĨ∥ never appears in the bound of ∥yI∥.

Case II.
√
K < 1/(ηλ) ≤ K.

In this case, Ĩ = I(k′0, t0, s0) − 1, where k′0 is the minimum number that satisfies k′0 > k0 and
k′0 ≡ 0 (mod⌈

√
K⌉). Note that bk′

0
= ⌈
√
K⌉b.

Suppose that s = s0 and t = t0. Then, since 1/(ηλ) ≤ K, it holds that
k−1∑
κ=0

1

bκ+1
∥wI(κ+1,t,s) − wI(κ,t,s)∥2 ≤

1

b

∑
i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥2 +
η2r20√
Kb

and
k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥ ≤
∑

i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥+ ηr0

≤
∑

i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥+ η2λKr0.

Also,
∑t−1

τ=0 ∥wI(0,τ+1,s) − wI(0,τ,s)∥2 = 0.

Next, suppose that s = s0 and t > t0. Since I(0, t, s) > I(k0, t0, s0), ∥wI(k0+1,t0,s0)−wI(k0,t0,s0)∥
does not appear in the two terms

k−1∑
κ=0

1

bκ+1
∥wI(κ+1,t,s) − wI(κ,t,s)∥2 ≤

1

b

k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥2

and
k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥.

Also, similar to Case I, since I(k′0, t0, s0) > I(0, 0, s),
t−1∑
τ=0

∥wI(0,τ+1,s) − wI(0,τ,s)∥2 ≤ 2K
∑

i∈{I(0,0,s),...,I(0,t,s)−1}\{I(k0,t0,s0)}

∥wi+1 − wi∥2 + 2η2r20

= 2K
∑

i∈{I(0,0,s),...,I(0,t,s)−1}\{Ĩ}

∥wi+1 − wi∥2 + 2η2r20.

Finally, when s > s0, ∥wĨ+1 − wĨ∥ never appears in the bound of ∥yI∥.
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Case III. K < 1/(ηλ) ≤ KT .

In this case, Ĩ = I(0, t0 + 1, s0)− 1. Since I + 1 = I(k, t, s) > Ĩ , if s = s0, then we can see that
t ≥ t0 + 1 > t0. Then, ∥wĨ+1 − wĨ∥ does not appear in the two terms

k−1∑
κ=0

1

bκ+1
∥wI(κ+1,t,s) − wI(κ,t,s)∥2 ≤

1

b

k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥2

and

k−1∑
κ=0

∥wI(κ+1,t,s) − wI(κ,t,s)∥.

Observe that

t−1∑
τ=0

∥wI(0,τ+1,s) − wI(0,τ,s)∥2 =
∑

τ={0,...,t−1}\{t0}

∥wI(0,τ+1,s) − wI(0,τ,s)∥2 + ∥wI(0,t0+1,s) − wI(0,t0,s)∥
2

≤K
∑

i∈{I(0,0,s),...,I(0,t,s)−1}\{I(0,t0,s0),...,I(0,t0+1,s0)−1}

∥wi+1 − wi∥2

+ 2K
∑

i∈{I(0,t0,s),...,I(0,t0+1,s)−2}

∥wi+1 − wi∥2 + 2η2r20

≤ 2K
∑

i∈{I(0,0,s),...,I(0,t,s)−1}\{Ĩ}

∥wi+1 − wi∥2 + 2η2r20.

When s > s0, ∥wĨ+1 − wĨ∥ never appears in the bound of ∥yI+1∥.

Case IV. KT < 1/(ηλ).

In this case, Ĩ = I(0, 0, s0 + 1)− 1. Since I + 1 = I(k, t, s) > Ĩ , we know that s ≥ s0 + 1 > s0.
Hence, ∥wĨ+1 − wĨ∥ never appears in the bound of ∥yI+1∥.

In summary, we have

∥yI+1∥

≤

c

√√√√√8L2

1

b

∑
i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥2 +

(
η2λ2K + 1/

√
K
)
η2r20

b

+ 32Kρ2U2
∆Uw(I + 1)2 + ε̃′

+ ζ

 ∑
i∈{I(0,t,s),...,I(k−1,t,s)}\{Ĩ}

∥wi+1 − wi∥+ η2λKr0

+ 4ρU∆Uw(I + 1)

+
c√
PKb

√√√√√8L2

2K
∑

i∈{I(0,0,s),...,I(0,t,s)−1}\{Ĩ}

∥wi+1 − wi∥2 + 2η2r20

+ 32Tρ2U2
∆Uw(I + 1)2 + ε̃′


×

√
log

2KTSd

q
+ loglog

8KTG

ε̃′
.
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Now, we bound ∥wI(κ+1,τ,s) − wI(κ,τ,s)∥ for the case I(κ+ 1, τ, s) > Ĩ + 1.

∥wI(κ+1,τ,s) − wI(κ,τ,s)∥

=

∥∥∥∥∥∥η(1− ηH)I(κ+1,τ,s)−Ĩ ξ̂Ĩ − η

I(κ,τ,s)∑
i=Ĩ

(1− ηH)I(κ,τ,s)−i(∆iwi + yi)

− η(1− ηH)I(κ,τ,s)−Ĩ ξ̂Ĩ + η

I(κ,τ,s)−1∑
i=Ĩ

(1− ηH)I(κ,τ,s)−1−i(∆iwi + yi)

∥∥∥∥∥∥
=
∥∥∥−η2H(1− ηH)I(κ,t,s)−Ĩ ξ̂Ĩ

+ η

I(κ,τ,s)−1∑
i=Ĩ

ηH(1− ηH)I(κ,τ,s)−1−i(∆iwi + yi)− η(∆I(κ,τ,s)wI(κ,τ,s) + yI(κ,τ,s))

∥∥∥∥∥∥
≤ η

∥∥∥ηH(1− ηH)I(κ,t,s)−Ĩ ξ̂Ĩ

∥∥∥
+ η

I(κ,τ,s)−1∑
i=Ĩ

∥∥∥ηH(1− ηH)I(κ,τ,s)−1−i
∥∥∥ ∥∆iwi + yi∥+ η∥∆I(κ,τ,s)wI(κ,τ,s) + yI(κ,τ,s)∥

≤ η2λ(1 + ηλ)I(κ,t,s)−Ĩr0

+ η

I(κ,τ,s)−1∑
i=Ĩ

(
ηλ(1 + ηλ)I(κ,t,s)−1−i +

e

I(κ, t, s)− i

)
∥∆iwi + yi∥+ η∥∆I(κ,τ,s)wI(κ,τ,s) + yI(κ,τ,s)∥.

For the second inequality, we used the following two facts:∥∥∥ηH(1− ηH)J ξ̂Ĩ
∥∥∥ ≤ ηλ(1 + ηλ)J∥ξ̂Ĩ∥

and ∥∥ηH(1− ηH)J
∥∥ ≤ ηλ(1 + ηλ)J +

e

J + 1

for J ∈ N ∪ {0}. The former inequality holds because ξ̂Ĩ = 2⟨ξĨ , emin⟩emin and emin is the
minimum eigenvector ofH. The latter inequality is the direct result of the from Lemma B.1.

Then, we further bound the upper bound as follows:

∥wI(κ+1,τ,s) − wI(κ,τ,s)∥

≤ η2λ(1 + ηλ)I(κ,t,s)−Ĩr0

+ η

I(κ,τ,s)−1∑
i=Ĩ

(
ηλ(1 + ηλ)I(κ,t,s)−1−i +

e

I(κ, t, s)− i

)
∥∆iwi + yi∥+ η∥∆I(κ,τ,s)wI(κ,τ,s) + yI(κ,τ,s)∥

≤ η2λ(1 + ηλ)I(κ,t,s)−Ĩr0
+ 4e(1 + logJ )ηρU∆Uw(I) + 2e(1 + logJ )η(1 + ηλJ )Uy(I).

≤ 4e(1 + logJ )ηρU∆Uw(I) +

 1

c
(y)
upper

(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

) + 2e(1 + logJ )η(1 + ηλJ )

Uy(I)

=: Uŵ(I).

For the first inequality, we used ∥∆i∥ ≤ ρU∆, the inductive assumptions on ∥wi∥ and ∥yi∥ for
i ≤ I(k, t, s)− 1 and

∑i′

i=i0
1/(i+ 1− i0) ≤ 1 + log(i′ + 1− i0) for i′ ≥ i0.
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Concretely, we computed

I(κ,τ,s)−1∑
i=Ĩ

(
ηλ(1 + ηλ)I(κ,t,s)−1−i +

e

I(κ, t, s)− i

)
∥∆iwi∥

≤
I(κ,τ,s)−1∑

i=Ĩ

(
ηλ(1 + ηλ)I(κ,t,s)−1−i +

e

I(κ, t, s)− i

)
ρU∆Uw(i)

≤ ρU∆(1 + e(1 + logJ ))Uw(I)

≤ 2e(1 + logJ )ρU∆Uw(I).

Also, we computed

I(κ,τ,s)−1∑
i=Ĩ

(
ηλ(1 + ηλ)I(κ,t,s)−1−i +

e

I(κ, t, s)− i

)
∥yi∥

≤
I(κ,τ,s)−1∑

i=Ĩ

(
ηλ(1 + ηλ)I(κ,t,s)−1−i +

e

I(κ, t, s)− i

)

×

(
c(y)upperη

2λ

(
L+

√
KL√
b

+Kζ +

√
KTL√
Pb

)
(1 + ηλ)i−Ĩr0

)

≤ c(y)upperη
3λ2J

(
L+

√
KL√
b

+Kζ +

√
KTL√
Pb

)
(1 + ηλ)I(κ,t,s)−1−Ĩr0

+ c(y)uppere(1 + logJ )η2λ

(
L+

√
KL√
b

+Kζ +

√
KTL√
Pb

)
(1 + ηλ)I(κ,t,s)−Ĩr0

≤ e(1 + logJ )(1 + ηλJ )Uy(I).

Using the bound of ∥wI(κ+1,τ,s) − wI(κ,τ,s)∥, we get

∥yI+1∥

≤

c

√√√√√8L2

K

b
Uŵ(I) +

(
η2λ2K + 1/

√
K
)
η2r20

b

+ 32Kρ2U2
∆Uw(I + 1)2 + ε̃′

+ ζ
(
KUŵ(I) + η2λKr0

)
+ 4ρU∆Uw(I + 1)

+
c√
PKb

√
8L2 (2K2TUŵ(I) + 2η2r20) + 32Tρ2U2

∆Uw(I + 1)2 + ε̃′
}

×

√
log

2KTSd

q
+ loglog

8KTG

ε̃′

≤

{(
2
√
2c
√
KL√

b
+Kζ +

4c
√
KTL√
PKb

)
Uŵ(I) +

(
2
√
2cηλ

√
KL√

b
+

2
√
2cL

K1/4
√
b
+ ηλKζ +

4cL√
PKb

)
ηr0

+

(
4
√
2c
√
K√

b
+ 4 +

4
√
2c
√
T√

PKb

)
ρU∆Uw(I + 1) + 2c

√
ε̃′

}

×

√
log

2KTSd

q
+ loglog

8KTG

ε̃′
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Under b ≥ 1/(K1/2η2(L+
√
KL/

√
b+Kζ +

√
KTL/

√
Pb)2ρε), from λ ≥ √ρε, we have

2
√
2cηλ

√
KL√

b
+

2
√
2cL

K1/4
√
b
+ ηλKζ +

4cL√
PKb

≤ η

(
2
√
2c
√
KL√

b
+ 2
√
2c

(
L+

√
KL√
b

+

√
KTL√
Pb

)
+Kζ + 4c

(
L+

√
KL√
b

+

√
KTL√
Pb

))
λ

≤ 12cη

(
L+

√
KL√
b

+Kζ +

√
KTL√
Pb

)
λ.

Also, under b ≥ K and b ≥ T/(PK), we have

4
√
2c
√
K√

b
+ 4 +

4
√
2c
√
T√

PKb
≤ 24c.

We choose ε̃ such that ε̃′ ≤ η4L2λ2r20/(64(log
2KTSd

q + loglog 8KTG
ε̃′ )c2). Then, it holds that

∥yI+1∥ ≤

{
4c

(√
KL√
b

+Kζ +

√
KTL√
PKb

)
Uŵ(I) + 12cη

(
L+

√
KL√
b

+Kζ +

√
KTL√
Pb

)
ηλr0

+ 24cρU∆Uw(I + 1)

}
×

√
log

2KTSd

q
+ loglog

8KTG

ε̃′
+ 0.25Uy(I + 1).

From the definition of Uŵ(I):

Uŵ(I) := 4e(1 + logJ )ηρU∆Uw(I) +

 1

c
(y)
upper

(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

) + 2e(1 + logJ )η(1 + ηλJ )

Uy(I),

we get

∥yI+1∥ ≤

{
4c

(
1

c
(y)
upper

+ 2e(1 + logJ )η

(√
KL√
b

+Kζ +

√
KTL√
PKb

)
(1 + ηλJ )

)
Uy(I)

+ 12cη

(
L+

√
KL√
b

+Kζ +

√
KTL√
Pb

)
ηλr0

+

(
24c+ 16ce(1 + logJ )η

(√
KL√
b

+Kζ +

√
KTL√
PKb

))
ρU∆Uw(I + 1)

}

×

√
log

2KTSd

q
+ loglog

8KTG

ε̃′
+ 0.25Uy(I + 1).

From the definitions of J and U∆ with r = crε with cr = Õ(1), we have

ρU∆Uw(I) ≤ ρU∆
c
(w)
upper

c
(y)
upperηλ

(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

)Uy(I + 1)

≤ 4cr
√
cF + 2cJ ηρε

ηλ2

c
(w)
upper

c
(y)
upperη

(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

)Uy(I + 1)

≤ 4cr
√
cF + 2cJ

η
(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

)Uy(I + 1).
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Here, for the last inequality, we used λ ≥ √ρε and c
(y)
upper = c

(w)
upper.

Therefore, we arrive at

∥yI+1∥ ≤

{
4c

(
1

c
(y)
upper

+ 2e(1 + logJ )η

(√
KL√
b

+Kζ +

√
KTL√
PKb

)
(1 + ηλJ )

)
Uy(I)

+
12c

c
(y)
upper

Uy(I + 1)

+

 96ccr
√
cF + 2cJ

η
(
L+

√
KL√
b

+Kζ +
√
KTL√
Pb

) + 64ce(1 + logJ )cr
√
cF + 2cJ

Uy(I + 1)

}

×

√
log

2KTSd

q
+ loglog

8KTG

ε̃′
+ 0.25Uy(I + 1).

We set c(y)upper = c
(w)
upper = max{3, 48c

√
log 2KTSd

q + loglog 8KTG
ε̃′ }. Then, since ηλJ ≤ cJ ,

if we choose η such that η(L +
√
KL/

√
b + Kζ +

√
KTL/

√
Pb)) ≤ 1/(48ce(1 + cJ )(1 +

logJ )
√
log 2KTSd

q + loglog 8KTG
ε̃′ ), the first term can be bounded by 0.25Uy(I + 1).

Next, from the definition of c(y)upper, we can see that the second term is bounded by 0.25Uy(I + 1).

Finally, we can choose η such that η(L+
√
KL/

√
b+Kζ +

√
KTL/

√
Pb)) ≥ Θ̃(

√
cη + 1/(cJ )).

Then if we appropriately choose cr ≤ Õ((
√
cη + 1/cJ )/(

√
cF + 2cJ )), the third term can be

bounded by 0.25Uy(I + 1). Therefore, we conclude that

∥yI+1∥ ≤ Uy(I + 1).

This finishes the proof of the mathematical induction.

Let J̃ := J − (Ĩ − I(k0, t0, s0)). From (9), (12) and (13), we have

∥wI(k0,t0,s0)+J ∥ =

∥∥∥∥∥∥η(1− ηH)J̃ ξ̂Ĩ − η

Ĩ+J̃∑
i=Ĩ

(1− ηH)Ĩ+J̃−i(∆iwi + yi)

∥∥∥∥∥∥
≥ ∥η(1− ηH)J̃ ξ̂Ĩ∥

−

∥∥∥∥∥∥η
Ĩ+J̃∑
i=Ĩ

(1− ηH)Ĩ+J̃−i∆iwi

∥∥∥∥∥∥
−

∥∥∥∥∥∥η
Ĩ+J̃∑
i=Ĩ

(1− ηH)Ĩ+J̃−iyi

∥∥∥∥∥∥
≥ η(1 + ηλ)J̃ r0 −

1

3c
(w)
upper

Uw(I(k0, t0, s0) + J )

=
2η(1 + ηλ)J̃ r0

3
.

Now, we define cJ as the minimum positive number that satisfies

cJ ≥ 1 + 2log(48
√
cF + 2J

√
d/q).

From (6), we can see that

2η(1 + ηλ)J̃ r0
3

≥ 4U∆.

41



This is because we have

log
(
(1 + ηλ)J̃

)
= J̃ log(1 + ηλ)

≥ J̃
(
1− 1

1 + ηλ

)
≥ ηλJ̃

2

≥ ηλ(J − 1/(ηλ))

2

=
cJ − 1

2

≥ log(48
√
cF + 2J

√
d/q)

and thus

2η(1 + ηλ)J̃ r0
3

≥ η(1 + ηλ)J̃ qr

3
√
d

≥ 4× 4
√
cF + 2ηJ r = 4U∆.

Here, the first inequality holds from (6). This contradicts with ∥wI(k0,t0,s0)+J ∥ ≤ 2U∆.

Proof of Proposition 4.3

Now, we prove Proposition 4.3. Combining Proposition B.3 with Proposition B.4, we have

min{f(xI(k0,t0,s0)+JI(k0,t0,s0)
)− f(xI(k0,t0s0)), f(x

′
I(k0,t0,s0)+JI(k0,t0,s0)

)− f(x′
I(k0,t0s0)

)}

≤ − FI(k0,t0,s0)

+
2cη
η

JI(k0,t0,s0) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
JI(k0,t0,s0) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2
 .

with probability at least 1− 9q.

Finally, since {xi}KTS
i=0 has the same marginal distribution as {x′

i}KTS
i=0 , we conclude that

f(xI(k0,t0,s0)+JI(k0,t0,s0)
)− f(xI(k0,t0s0))

≤ −FI(k0,t0,s0)

+
2cη
η

JI(k0,t0,s0) ∧K

K

I(k0,t0,s0)−1∑
i=I(0,t0,s0)

∥xi+1 − xi∥2 +
JI(k0,t0,s0) ∧KT

KT

I(0,t0,s0)−1∑
i=I(0,0,s0)

∥xi+1 − xi∥2
 .

(16)

with probability at least 1/2− 9q/2. This finishes the proof of Proposition 4.3.

B.5 Finding Second Order Stationary Points

Let R1 := {x ∈ Rd|∥∇f(x)∥ > ε}, R2 := {x ∈ Rd|∥∇f(x)∥ ≤ ε ∧ λmin(∇2f(x)) < −√ρε}
andR3 := Rd \ (R1 ∪R2) = {x ∈ Rd|∥∇f(x)∥ ≤ ε ∧ λmin(∇2f(x)) ≥ −√ρε}.
We define

ιm+1 =

{
ιm + 1 (x̃ιm ∈ R1 ∪R3)

ιm + Jιm (x̃ιm ∈ R2)

with ι1 := 0. Note that Jιm ≤ cJ /(η
√
ρε). Let M := min{m ∈ N|E[ιm] ≥ KTS/8}. Observe

that ιM ≤ M × cJ /(η
√
ρε) ≤ (KTS/8) × cJ /(η

√
ρε) because ιKTS/8 ≥ KTS/8 always
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holds. We define Š as the minimum number that satisfies Š ≥ (S/8) × cJ /(η
√
ρε)) ∨ S with

S = Θ(1 + (f(x̃0) − f(x∗))/(ηKTε2)), where in the definition of η we set S ← Š. Then
ιM ≤ KTŠ always holds. We will use Propositions 4.1 and 4.3 with S ← Š. s(ιm) denotes the
maximum natural number s′ satisfying ιm ≥ I(0, 0, s′) and t(ιm) denotes the maximum natural
number t′ satisfying ιm ≥ I(0, t′, s(ιm)). We will show that x̃i ∈ R3 for some i ∈ [KTS]∪{0}with
probability at least 1/2. Let Ei is the event that x̃i′ /∈ R3 for all i′ ≤ i for i ∈ [KTS] ∪ {0}. Note
that Ei+1 ⊂ Ei for every i. We can say that the objective of this section is to show P(EKTS) ≤ 1/2.
Proposition B.5. Suppose that Assumptions 1, 2, 3, 4 and 5 hold. Under K = O(L/ζ ∧ b ∧ Pb/T ),
if we appropriately choose η = Θ̃(1/L ∧ 1/(Kζ) ∧

√
b/K/L ∧

√
Pb/(

√
KTL)) and r = Θ̃(ε),

then it holds that

7η

512
E[ιM ]ε2 ≤ f(x̃0)− f(x∗) +

η

64

M−1∑
m=1

P(x̃ιm ∈ R3)ε
2.

Proof of Proposition B.5

First, we consider the difference E[f(xιm+1
)− f(xιm)].

Bounding E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R1]

Let H1 be the event where (4) with I(k0, t0, s0) ← ιm and I(k, t, s) ← ιm+1 holds. Note that
P(H1|x̃ιm ∈ R1) ≥ 1− 3q. From Proposition 4.3 and (5), we have for every q ∈ (0, 1/6),

E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R1]

= E[f(xιm+1)− f(xιm)|x̃ιm ∈ R1, H1]P(H1|x̃ιm ∈ R1)

+ E[f(xιm+1)− f(xιm)|x̃ιm ∈ R1, H
∁
1 ]P(H∁|x̃ιm ∈ R1)

≤ − (1− 3q)
η

2
E∥∇f(xιm)∥2|x̃I(k,t,s) ∈ R1, H1] + ηr2

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R1, H1

P(H1|x̃ιm ∈ R1)

+ 3q × 36ηK2T 2S(G2 + r2)

≤ − η

8
ε2 + 2ηr2

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R1, H1

P(H1|x̃ιm ∈ R1)

+ 3q × (36ηK2T 2S(G2 + r2)

≤ − η

8
ε2 + 2ηr2

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R1


+ 3q × 36ηK2T 2S(G2 + r2).
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For the second inequality, we used 1/(1 − 3q) ≤ 1/2 and −∥∇f(xI(k,t,s))∥2 ≤
−(1/2)∥∇f(x̃I(k,t,s))∥2+∥∇f(xI(k,t,s))−f(x̃I(k,t,s))∥2 ≤ −(1/2)∥∇f(x̃I(k,t,s))∥2+η2L2r2 ≤
−(1/2)∥∇f(x̃I(k,t,s))∥2 + r2 since η ≤ 1/L.

Thus, setting q := (ηε2/16)/(96K2T 2S(G2 + ηr2)) and cr ≤ 1/
√
96, we get

E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R1]

≤ − η

16
ε2 + 3ηr2

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R1


≤ − η

32
E[ιm+1 − ιm|x̃im ∈ R1]ε

2

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R1

 . (17)

Here, we used E[ιm+1 − ιm|x̃im ∈ R1] = 1.

Bounding E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R2]

H2 denotes the event where (16) with I(k0, t0, s0) ← ιm holds. Note that P(H2|x̃ιm ∈ R2) ≥
1/2− 7q/2 by Proposition 4.3. Let q ∈ (0, 1/14) and with cF ≥ 16. We will use Proposition 4.3,
(8) and (5).

E[f(xιm+1)− f(xιm)|x̃ιm ∈ R2]

= E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R2, H2]P(H2|x̃ιm ∈ R2)

+ E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R2, H1, H

∁
2 ]P (H1, H

∁
2 |x̃ιm ∈ R2)

+ E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R2, H

∁
1 , H

∁
2 ]P (H∁

1 , H
∁
2 |x̃ιm ∈ R2).

The first term can be bouded as

E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R2, H2]P(H2|x̃ιm ∈ R2)

≤

{
−E[Fιm |x̃ιm ∈ R2, H2]

+
2cη
η

E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R2, H2

}P(H2|xιm ∈ R2).
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Here, the inequality holds from Proposition 4.3. The second term can be bounded as

E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R2, H1, H

∁
2 ]P (H1, H

∁
2 |x̃ιm ∈ R2)

≤

{
2

cF
E[Fιm |x̃ιm ∈ R2, H1, H

∁
2 ]

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R2, H1, H
∁
2

}P(H1, H
∁
2 |xιm ∈ R2).

Here, we used (8).

Finally, the last term can be bounded as

E[f(xιm+1)− f(xιm)|x̃ιm ∈ R2, H
∁
1 , H

∁
2 ]P (H∁

1 , H
∁
2 |x̃ιm ∈ R2)

≤ 36ηK2T 2S(G2 + r2)P(H∁
1 , H

∁
2 |x̃ιm ∈ R2).

From these bounds, we have

E[f(xιm+1)− f(xιm)|x̃ιm ∈ R2]

≤ −
(
1

2
− 7q

2
− 2

cF

)
E[Fιm |x̃ιm ∈ R2]

+
3cη
η

E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R2


+ 3q × 36ηK2T 2S(G2 + r2)

≤ − cFc
2
rη

8
E[Jιm |x̃ιm ∈ R2]ε

2

+
3cη
η

E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R2


+ 3q × 36ηK2T 2S(G2 + r2)

Here, for the first inequality, we used the facts that Fιm only depends on the start point x̃ιm ∈ R2

and does not depend on H2, which only captures the randomness after iteration index ιm, and
P(H2|x̃ιm ∈ R2, Eιm) ≥ 1/2 − 7q/2. For the last inequality, we used FI(k,t,s) = cFηJI(k,t,s)r2
with cF ≥ 16 and r = crε

2.
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Thus, setting q := (cFc
2
rηε

2/16)/(96K2T 2S(G2 + ηr2)), we get

E[f(xιm+1)− f(xιm)|x̃ιm ∈ R2]

≤ − cFc
2
rη

8
E[Jιm |x̃ιm ∈ R2]ε

2

+
3cη
η

E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R2


+

cFc
2
rηε

2

16

= − cFc
2
rη

16
E[ιm+1 − ιm|x̃ιm ∈ R2]ε

2

+
3cη
η

E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R2

 (18)

Bounding E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R3]

Similar to the arguments for bounding E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R1], we have

E[f(xιm+1
)− f(xιm)|x̃ιm ∈ R3]

≤ 3ηr2 +
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R3


= −

(
η

32
∧ cFc

2
rη

16

)
E[ιm+1 − ιm|x̃ιm ∈ R3] +

η

32
∧ cFc

2
rη

16
+ 3ηr2

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|x̃ιm ∈ R3

 . (19)

Here, we used the fact that E[ιm+1 − ιm|x̃im ∈ R3]P(x̃ιm ∈ R3) = P(x̃ιm ∈ R3).
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Hence, combining (17), (18) and (19) yields

E[f(xιm+1
)− f(xιm)]

≤ −
(

η

32
∧ cFc

2
rη

16

)
E[ιm+1 − ιm]ε2 +

(
η

32
∧ cFc

2
rη

16
+ 3ηc2r

)
P(x̃ιm ∈ R3)ε

2

+
3cη
η

E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2


≤ − cFc
2
rη

16
E[ιm+1 − ιm]ε2 +

(
cFc

2
rη

16
+ 3ηc2r

)
P(x̃ιm ∈ R3)ε

2

+
3cη
η

E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2


under cr ≤ 1/
√
2cF . Summing this inequality from m = 1 to M − 1 results in

E[f(xιM )− f(x0)]

≤ − cFc
2
rη

16
E[ιM ]ε2 +

(
cFc

2
rη

16
+ 3ηc2r

)M−1∑
m=1

P(x̃ιm ∈ R3)ε
2

+
3cη
η

E

M−1∑
m=1

(ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2
 . (20)

Here, we used the definition ι1 = 0.

By the way, from (4) and (5), we can also derive a different bound for E[f(xιm+1)− f(xιm)]. For
every q ∈ (0, 1/6), we have

E[f(xιm+1)− f(xιm)]

= E[f(xιm+1
)− f(xιm)|H1]P(H1)

+ E[f(xιm+1
)− f(xιm)|H∁

1 ]P(H∁)

≤ − (1− 3q)
1

8η
E

[
ιm+1−1∑
i=ιm

∥xi+1 − xi∥2|H1

]
P(H1) + 2ηr2E[ιm+1 − ιm|H1]P(H1)

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2|H1

P(H1)

+ 3q × 36ηK2T 2S(G+ r2).
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Observe that

− E

[
ιm+1−1∑
i=ιm

∥xi+1 − xi∥2|H1

]
P(H1)

= − E

[
ιm+1−1∑
i=ιm

∥xi+1 − xi∥2
]
+ E

[
ιm+1−1∑
i=ιm

∥xi+1 − xi∥2|H∁
1

]
P (H∁

1 )

≤ − E

[
ιm+1−1∑
i=ιm

∥xi+1 − xi∥2
]
+ 3q × 192η2(KTG2 + r2)

Here, for the inequality, we used

∥xi+1 − xi∥2 ≤ 3η2∥vi −∇f(xi)∥2 + 3η2∥∇f(xI)∥2 + 3η2r2

≤ 96η2KTG2 + 3η2G2 + 3η2r2

≤ 192η2(KTG2 + r2)

Hence, with q := ηr2/{(96K2T 2S(G+ ηr2) + 72η(KTG2 + r2)(cJ /(η
√
ρε))} we get

E[f(xιm+1
)− f(xιm)]

≤ − 1

16η
E

[
ιm+1−1∑
i=ιm

∥xi+1 − xi∥2
]
+ 2ηr2E[ιm+1 − ιm]

+
cη
η
E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2


+ ηr2

≤ − 1

16η
E

[
ιm+1−1∑
i=ιm

∥xi+1 − xi∥2
]
+ 3ηr2E[ιm+1 − ιm]

+
2cη
η

E

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2
 .

Summing this inequality from m = 1 to M − 1 gives

E[f(xιM )− f(x0)]

≤ − 1

16η

M−1∑
m=1

E

[
ιm+1−1∑
i=ιm

∥xi+1 − xi∥2
]
+ 3ηr2E[ιM ]

+
cη
η
E

M−1∑
m=1

(ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2
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Combining this inequality with (20), with we obtain

E[f(xιM )− f(x0)]

≤ − 1

2

(
cFc

2
rη

16
− 3ηc2r

)
E[ιM ]ε2 +

1

2

(
cFc

2
rη

16
+ 3ηc2r

)M−1∑
m=1

P(x̃ιm ∈ R3)ε
2

− 1

16η
E

[
ιM−1∑
i=0

∥xi+1 − xi∥2
]

+
2cη
η

E

M−1∑
m=1

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm)

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2
 .

We want to show that
ιM−1∑
i=0

∥xi+1 − xi∥2

≥ 1

4

M−1∑
m=1

 (ιm+1 − ιm) ∧K

K

ιm−1∑
i=I(0,t(ιm),s(ιm))

∥xi+1 − xi∥2

+
(ιm+1 − ιm) ∧KT

KT

I(0,t(ιm),s(ιm))−1∑
i=I(0,0,s(ιm))

∥xi+1 − xi∥2
 .

To prove this inequality, we fix i′ ∈ [ιM − 1] ∪ {0} and show that the coefficient of ∥xi′+1 − xi′∥2
of the left hand side is greater than or equal to the one of the right hand side. At first, the coefficient
of ∥xi′+1 − xi′∥2 of the left hand side is trivially 1. Next we consider the right hand side. Let
s′ be the natural number that satisfies I(0, 0, s′) ≤ i′ < I(0, 0, s′ + 1). Also, t′ be the natural
number that satisfies I(0, t′, s′) ≤ i′ < I(0, t′ + 1, s′). We define m1 := {m ∈ N|I(0, t′, s′) ≤
ιm < I(0, t′ + 1, s′)} and m2 := {m ∈ N|I(0, 0, s′) ≤ ιm < I(0, 0, s′ + 1)}. We can see that the
coefficient of ∥xi′+1 − xi′∥2 in the right hand side is

1

4

(
M−1∑
m=1

(ιm+1 − ιm) ∧K

K
1I(0,t(ιm),s(ιm))≤i′≤ιm−1

+

M−1∑
m=1

(ιm+1 − ιm) ∧KT

KT
1I(0,0,s(ιm))≤i′≤I(0,t(ιm),s(ιm))−1

)

≤ 1

4

( ∑
m∈m1

(ιm+1 − ιm) ∧K

K
+
∑

m∈m2

(ιm+1 − ιm) ∧KT

KT

)

=
1

4

1 +
∑

m∈m1\{max{m1}}

(ιm+1 − ιm) ∧K

K
+ 1 +

∑
m∈m2\{max{m2}}

(ιm+1 − ιm) ∧KT

KT


≤ 1.

Here, for the first inequality we used the facts that (i) I(0, t(ιm), s(ιm)) ≤ i′ ≤ ιm− 1) implies m ∈
m1 and (ii) I(0, 0, s(ιm) ≤ i′ ≤ I(0, t(ιm), s(ιm))−1 implies m ∈m2. To show (i), note that ιm <
I(0, t′, s′) implies ιm−1 < i′ and ιm ≥ I(0, t′+1, s′) implies I(0, t(ιm), s(ιm)) ≥ I(0, t′+1, s′) >
i′. Similarly, to show (ii), observe that ιm < I(0, 0, s′) implies i′ > ιm > I(0, t(ιm), s(ιm)) − 1
and ιm ≥ I(0, 0, s′ + 1) implies i′ < I(0, 0, s′ + 1) ≤ I(0, 0, s(ιm)). For the last inequality we
used

∑
m∈m1\{max{m1}}(ιm+1 − ιm) ≤ K and

∑
m∈m2\{max{m2}}(ιm+1 − ιm) ≤ KT .
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We choose cη ≤ 1/128. Then, we obtain

f(x∗)− f(x̃0) ≤ E[f(xιM )− f(x0)] + ηr2

≤ −
(
cFc

2
rη

32
− 3c2rη

)
E[ιM ]ε2 + (

cFc
2
rη

32
+ 3c2rη)

M−1∑
m=1

P(x̃ιm ∈ R3)ε
2.

Here, for the first inequality, we used E[f(xιM )] ≥ f(x∗) and E[f(x0)] ≤ f(x̃0)+⟨∇f(x̃0),E[x0−
x̃0]⟩ + (L/2)∥x0 − x̃0∥2 = f(x̃0) + η2Lr2/2 ≤ f(x̃0) + ηr2 by the smoothness of f . For the
second inequality, we used the above bounds with the definition of cη for E[f(xιM )− f(x0)]. This
finishes the proof.

Proof of Theorem 4.4

Now, we choose S ≥ 48(f(x0)− f(x∗))/(c
2
rηKTε2) = Θ̃((f(x0)− f(x∗))/(ηKTε2). Note that

E[ιM ] ≥ KTS/8 ≥ 6(f(x0)− f(x∗))/(c
2
rηε

2).

Suppose that P(x̃ιm ∈ R3) ≤ 3/4 for every m ∈ [M − 1]. Then, since cFc2rη/32− 3c2rη− (3/4)×
(cFc

2
rη/32 + 3c2rη) ≥ 1/4(cF/32− 21)c2rη ≥ c2rη/4 under cF ≥ 32× 22, we have

f(x∗)− f(x0) ≤ −
c2rη

4
E[ιM ]ε2

and thus

E[ιM ] ≤ 4(f(x0)− f(x∗))

c2rηε
2

from Proposition B.5. This contradicts the previous lower bound of E[ιM ]. Therefore, we conclude
that there exists m ∈ [M − 1] such that P(x̃im ∈ R3) > 3/4. Remember that Ei is the event that
x̃i′ /∈ R3 for all i′ ≤ i. This implies P(E∁

ιM−1
) > 3/4, and thus P(EιM−1

) ≤ 1/4.

Finally, we bound P(EKTS). From the definition of M , we have E[ιM−1] < KTS/8. Thus, from
Markov’s inequality, it holds that P(ιM−1 ≥ KTS) ≤ 1/8.

This yields

P(EKTS) = P(EKTS |ιM−1 ≥ KTS)P(ιM−1 ≥ KTS) + P(EKTS |ιM−1 < KTS)P(ιM−1 < KTS)

≤ 1× 1

8
+ P(EιM−1

)

≤ 1/2.

This finishes the proof.
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