
A Appendix424

A.1 Full derivation425

We present the complete derivation of the objective function in each subproblem defined in Section426

3.2. We start by clarifying notation:427

Notations428

• JE(⇡) = Es0,a0,···⇠⇡

hP1
t=0 �

trEt

i
, s0 ⇠ ⇢0, at ⇠ ⇡(a|st), st+1 ⇠ T (st+1|st, at) 8t > 0429

• JE+I(⇡) = E⇡

hP1
t=0 �

t(rEt + rIt)
i

430

• V ⇡
E (st) := E⇡

hP1
t=0 �

trEt |s0 = st
i

431

• V ⇡
E+I(st) := E⇡

hP1
t=0 �

t(rEt + rIt)|s0 = st
i

432

• V ⇡,↵
E+I(st) := E⇡

hP1
t=0 �

t((1 + ↵)rEt + rIt)|s0 = st
i

433

Max-stage objective U⇡E
max. We show that the objective (LHS) can be approximated by the RHS434

shown below435

max
⇡E+I

J↵
E+I(⇡E+I)� ↵JE(⇡E) ⇡ max

⇡E+I

E⇡E

h⇡E+I(a|s)
⇡E(a|s)

U⇡E
max(s, a)

i
(12)

subject to Es⇠⇡E

h
DKL(⇡E(.|s)||⇡E+I(.|s))

i
 �,

where � denotes a constant KL-divergence threshold. We can then expand the LHS as the follows:436

J↵
E+I(⇡E+I)� ↵JE(⇡E)

= �↵JE(⇡E) + J↵
E+I(⇡E+I)

= �↵Es0⇠⇢0

h 1X

t=0

�tV E
⇡E

(st)
i
+ E⇡E+I

h 1X

t=0

�t((1 + ↵)rEt + rIt)
i

= E⇡E+I

h
� ↵V ⇡E

E (s0) +
1X

t=0

�t((1 + ↵)rEt + rIt)
i

For brevity, let rt = (1 + ↵)rEt + rIt and ↵V ⇡E
E (st) = Vt. Expanding the left-hand of Eq. 12:437

�V0 +
1X

t=0

�trt = (r0 +���V1 � V0) + �(r1 +���V2 ���V1) + �2(r2 +���V3 ���V2) + · · ·

=
1X

t=0

�t(rt + �Vt+1 � Vt)

=
1X

t=0

�t((1 + ↵)rEt + rIt + �↵V ⇡E
E (st+1)� ↵V ⇡E (st))

=
1X

t=0

�tU⇡E
max(st, at)

13

To facilitate the following derivation, we rewrite the objective J↵
E+I(⇡E+I)� ↵JE(⇡E):438

J↵
E+I(⇡E+I)� ↵JE(⇡E) = E⇡E+I

h 1X

t=0

�U⇡E
max(st, at)

i
(13)

=
1X

t=0

X

s2S
�P (st = s|⇢0,⇡E+I)

X

a2A
⇡E+I(a|s)U⇡E

max(st, at) (14)

=
X

s2S
d⇡E+I ,�
⇢0

(s)
X

a2A
⇡E+I(a|s)U⇡E

max(st, at) (15)

= E⇡E+I

h
U⇡E
max(st, at)

i
(16)

where d⇡E+I ,�
⇢0 is the discounted state visitation frequency of policy ⇡E+I with the initial state439

distribution ⇢0 and discount factor �, defined as:440

d⇡E+I ,�
⇢0

(s) =
1X

t=0

�tP (st = s|⇢0,⇡E+I)

Note that for brevity, we write Es⇠d
⇡E+I ,�
⇢0 ,a⇠⇡

h
.
i

as E⇡E+I

h
.
i

instead. To get rid of the dependency441

on samples from ⇡E+I , we use the local approximation [12, 13] shown below:442

L↵
E+I(⇡E+I) = ↵JE(⇡E) +

X

s2S
d⇡E ,�
⇢0

(s)
X

a2A
⇡E+I(a|s)U⇡E

max(st, at). (17)

The discounted state visitation frequency of ⇡E+I is replaced with that of ⇡E . This local approxima-443

tion is useful because if we can find a ⇡0 such that L↵
E+I(⇡0) = J↵

E+I(⇡0), the local approximation444

matches the target in the first order: r⇡E+IL
↵
E+I(⇡E+I)|⇡E+I=⇡0 = r⇡E+IJ↵

E+I(⇡E+I)|⇡E+I=⇡0 .445

This implies that if L↵
E+I(⇡E+I) is improved, J↵

E+I(⇡E+I)|⇡E+I=⇡0 will be improved as well. Schul-446

man et al. [12] suggested that this local approximation is valid when E⇡E

h
DKL(⇡E ||⇡E+I)

i
 �,447

where ✏ is a predefined threshold. Rewriting the objective in Equation 13 using local approximation448

(Equation 17) leads to the desired objective:449

J↵
E+I(⇡E+I)� ↵JE(⇡E) ⇡ L↵

E+I(⇡E+I)� ↵JE(⇡E) (18)

=
X

s2S
d⇡E ,�
⇢0

(s)
X

a2A
⇡E+I(a|s)U⇡E

max(st, at) (19)

=
X

s2S
d⇡E ,�
⇢0

(s)
X

a2A

⇡E+I(a|s)
⇡E(a|s)

U⇡E
max(st, at) (Importance sampling)

(20)

= E⇡E

h⇡E+I(a|s)
⇡E(a|s)

U⇡E
max(s, a)

i
(21)

subject to Es⇠⇡E

h
DKL(⇡E(.|s)||⇡E+I(.|s))

i
 �,

Note that to make use of the approximation proposed in [12, 13], we make the assumption that in the450

beginning of the max-stage, ⇡E = ⇡E+I . Under this assumption, ⇡E serves as ⇡0 (see above). This451

enables updating ⇡E+I using the local approximation. We leave relaxing this assumption as future452

work.453

Min-stage objective U⇡E+I

min . We show that the objective (LHS) can be approximated by the RHS454

shown below455

max
⇡E

↵JE(⇡E)� J↵
E+I(⇡E+I) ⇡ max

⇡E

E⇡E+I

h ⇡E(a|s)
⇡E+I(a|s)

U⇡E+I

min (s, a)
i

(22)

subject to Es⇠⇡E+I

h
DKL(⇡E+I(.|s)||⇡E(.|s))

i
 �.

14

The derivation for the min-stage is quite similar to that of the max-stage. Thus we only outline the456

key elements:457

↵JE(⇡E)� J↵
E+I(⇡E+I) = �J↵

E+I(⇡E+I) + ↵JE(⇡E) (23)

= �Es0

h
V ⇡E+I ,↵
E+I (s0)

i
+ ↵E⇡E

h 1X

t=0

�trEt

i
(24)

= E⇡E

h
� V ⇡E+I ,↵

E+I (s0) +
1X

t=0

�t↵rEt

i
(25)

= E⇡E

h 1X

t=0

�t(↵rEt + �V ⇡E+I ,↵
E+I (st+1)� V ⇡E+I ,↵

E+I (st))
i

(26)

= E⇡E

h 1X

t=0

�t↵rEt + �V ⇡E+I ,↵
E+I (st+1)� V ⇡E+I ,↵

E+I (st)
i
. (27)

Since we empirically find that V ⇡E+I ,↵
E+I is hard to fit under a continually changing ↵, we replace458

V ⇡E+I ,↵
E+I with V ⇡E+I

E+I in Equation 27, and rewrite the objective as:459

↵JE(⇡E)� J↵
E+I(⇡E+I) ⇡ E⇡E

h 1X

t=0

�t↵rEt + �V ⇡E+I

E+I (st+1)� V ⇡E+I

E+I (st)
i

(28)

= E⇡E

h 1X

t=0

�tU⇡E+I

min (st, at)
i

(29)

= E⇡E

h
U⇡E+I

min (st, at)
i

(Rewriting by d⇡E ,�
⇢0

)
(30)

⇡ E⇡E+I

h ⇡E(a|s)
⇡E+I(a|s)

U⇡E+I

min (st, at)
i

(See Equations 16 to 21)

(31)

subject to Es⇠⇡E+I

h
DKL(⇡E+I(.|s)||⇡E(.|s))

i
 �,

↵ optimization Let g(↵) := max⇡E+I2⇧ min⇡E2⇧ J↵
E+I(⇡E+I)� ↵JE(⇡E). As ⇡E and ⇡E+I460

are not yet optimal during the training process, we solve min↵ g(↵) using stochastic gradient descent461

as shown below:462

↵ ↵� �r↵g(↵) (32)
= ↵� �r↵(J

↵
E+I(⇡E+I)� ↵JE(⇡E)) (33)

= ↵� �(JE(⇡E+I)� JE(⇡E)) (34)

⇡ ↵� �E⇡E

h⇡E+I(a|s)
⇡E(a|s)

A⇡E
E (s, a)

i
, (35)

subject to Es⇠⇡E

h
DKL(⇡E(.|s)||⇡E+I(.|s))

i
 �,

where � is the learning rate of ↵ and A⇡E
E (st, at) := rEt + �V ⇡E

E (st+1) � V ⇡E
E (st) denotes the463

extrinsic advantage of ⇡E .464

A.2 Implementation details465

A.2.1 Algorithm466

Clipped objective We use proximal policy optimization (PPO) [10] to optimize the constrained467

objectives in Equation 6 and Equation 9. The policies ⇡E and ⇡E+I are obtained by solving the468

following optimization problems with clipped objectives:469

• Max-stage:470

max
⇡E+I

E⇡E

h
min

n⇡E+I(a|s)
⇡E(a|s)

U⇡E
max(s, a), clip(

⇡E+I(a|s)
⇡E(a|s)

, 1� ✏, 1 + ✏)U⇡E
max(s, a)

oi
(36)

15

• Min-stage:471

max
⇡E

E⇡E+I

h
min

n ⇡E(a|s)
⇡E+I(a|s)

U⇡E+I

min (s, a), clip(
⇡E(a|s)

⇡E+I(a|s)
, 1� ✏, 1 + ✏)U⇡E+I

min (s, a)
oi

(37)

where ✏ denotes the clipping threshold for PPO. We will detail the choices of ✏ in the following472

paragraphs.473

Rearranging the expression for GAE To leverage generalized advantage estimation (GAE) [19],474

we rearrange U⇡E
max and U⇡E+I

min to relate them to the advantage functions. The advantage function475

A⇡E
E and A⇡E+I

E+I are defined as:476

A⇡E
E (st) = rEt + �V ⇡E

E (st+1)� V ⇡E
E (st) (38)

A⇡E+I

E+I (st) = rEt + rIt + �V ⇡E+I

E+I (st+1)� V ⇡E+I

E+I (st). (39)

As such, we can rewrite U⇡E
max and U⇡E+I

min as:477

U⇡E
max(st, at) = (1 + ↵)rEt + rIt + �↵V ⇡E

E (st+1)� ↵V ⇡E
E (st) (40)

= rEt + rIt + ↵A⇡E
E (st) (41)

U⇡E+I

min (st, at) = ↵rEt + �V ⇡E+I

E+I (st+1)� V ⇡E+I
E+I (st) (42)

= (↵� 1)rEt � rIt +A⇡E+I

E (st). (43)

Extrinsic reward normalization For each parallel worker, we maintain the running average of the478

extrinsic rewards r̄E . This value is updated in the following manner at each timestep t:479

r̄E �r̄E + rEt .

The extrinsic rewards are then rescaled by the standard deviation of r̄E across workers as shown480

below:481

rEt rEt /Var
h
r̄E

i
.

Auxiliary objectives The auxiliary objectives for each stage are listed below:482

• Max-stage: We train the extrinsic policy ⇡E to maximize JE(⇡E) using PPO as shown below:483

max
⇡E

E⇡old
E

h
min

n ⇡E(a|s)
⇡old
E (a|s)

A
⇡old
E

E (s, a), clip(
⇡E(a|s)
⇡old
E (a|s)

, 1� ✏, 1 + ✏)A
⇡old
E

E (s, a)
oi

, (44)

where ⇡old
E denotes the extrinsic policy that collects trajectories at the current iteration.484

• Min-stage: We train the mixed policy ⇡E+I to maximize JE+I(⇡E+I) using PPO as shown below:485

max
⇡E+I

E⇡old
E+I

h
min

n⇡E+I(a|s)
⇡old
E+I(a|s)

A
⇡old
E+I

E+I (s, a), clip(
⇡E+I(a|s)
⇡old
E+I(a|s)

, 1� ✏, 1 + ✏)A
⇡old
E+I

E+I (s, a)
oi

, (45)

where ⇡old
E+I denotes the mixed policy that collects trajectories at the current iteration.486

Clipping the derivative of ↵ The derivative of ↵, �↵ (see Section 3.3), is clipped to be within487

(�✏↵, ✏↵), where ✏↵ is a non-negative constant.488

Codebase We implemented our method and each baseline on top of the rlpyt1 codebase. We489

thank Adam Stooke and the rlpyt team for their excellent work producing this codebase.490

Summary We outline the steps of our method in Algorithm 2.491

1https://github.com/astooke/rlpyt

16

Algorithm 2 Detailed Extrinsic-Intrinsic Policy Optimization (EIPO)

1: Initialize policies ⇡E+I and ⇡E and value functions V ⇡E+I

E+I and V ⇡E
E

2: Set max_stage[0] False, and J [0] 0
3: for i = 1 · · · do . i denotes iteration index
4: if max_stage[i - 1] then . Max-stage: rollout by ⇡E and update ⇡E+I

5: Collect trajectories ⌧E using ⇡E

6: Compute U⇡E
max(st, at) 8(st, at) 2 ⌧E using Eq. 40

7: Update ⇡E+I by Eq. 36 and ⇡E by Eq. 45
8: Update V ⇡E

E (see [19])
9: J [i] J↵

E+I(⇡E+I)� ↵JE(⇡E)
10: max_stage[i] J [i]� J [i� 1] 0
11: else . Min-stage: rollout by ⇡E+I and update ⇡E

12: Collect trajectories ⌧E+I using ⇡E+I

13: Compute U⇡E+I

min (st, at) 8(st, at) 2 ⌧E+I using Eq. 40
14: Update ⇡E by Eq. 36 and ⇡E+I by Eq. 44
15: Update V ⇡E+I

E+I (see [19])
16: J [i] J↵

E+I(⇡E+I)� ↵JE(⇡E)
17: max_stage[i] J [i]� J [i� 1] � 0
18: end if
19: if max_stage[i - 1] = True and max_stage[i] = False then
20: Update ↵ (Eq. 32) . Update when the max-stage is done
21: end if
22: end for

A.2.2 Models492

Network architecture Let Conv2D(ic, oc, k, s, p) be a 2D convolutional neural network493

layer with ic input channels, oc output channels, kernel size k, stride size s, and padding p. Let494

LSTM(n, m) and MLP(n, m) be a long-short term memory layer and a multi-layer perceptron (MLP)495

with n-dimensional inputs and m-dimensional outputs, respectively.496

For policies and value functions, the CNN backbone is implemented as two CNN layers,497

Conv2D(1, 16, 8, 4, 0) and Conv2D(16, 32, 4, 2, 1), followed by an LSTM layer,498

LSTM($CNN_OUTPUT_SIZE, 512). The policies ⇡E+I and ⇡E+I , and the value functions V ⇡E+I

E+I499

and V ⇡E+I

E+I have separate MLPs that take the LSTM outputs as inputs. Each policy MLP is MLP(512,500

|A|), and each value function MLP is MLP(512, 1).501

For the prediction networks and target networks in RND, we use a model architecture with three CNN502

layers followed by three MLP layers. The CNN layers are defined as follows: Conv2D(1, 32, 8, 4,503

0), Conv2D(32, 64, 4, 2, 0), and Conv2D(64, 64, 3, 1, 0), with LeakyReLU activations504

in between each layer. The MLP layers are defined as follows: MLP(7*7*64, 512), MLP(512,505

512), and MLP(512, 512), with ReLU activations in between each layer.506

A.2.3 Baselines507

• Decay-RND (DY): We propose a variant of Ext-norm-RND where intrinsic rewards are pro-508

gressively scaled down to eliminate exploration bias over time. Intrinsic rewards rIt are scaled509

by �(i), where i denotes the iteration number. The objective function turns into JE+I =510

E⇡

hP1
t=0 �

t(rEt + �(i)rIt)
i
, where �(i) is defined as �(i) = clip(

i

I
(�max � �min),�min,�max),511

where �max and �min denote the predefined maximum and minimum �(i), and I is the iteration512

after which decay is fixed. In all of our experiments, we split the entire training process into 3000513

iterations with equal number of frames and set �max = 1 and �min = 0.00001 and I = 3000.514

• Decoupled-RND (DC) [17]: We adapt the method proposed in [17] to Ext-norm-RND. Two policies515

⇡E+I and ⇡E are trained as follows:516

⇡⇤
E+I = argmax

⇡E+I

E⇡E+I

h 1X

t=0

�t(rEt + rIt)� DKL(⇡E ||⇡E+I)
i
, ⇡⇤

E = argmax
⇡E

E⇡I

h 1X

t=0

�trEt

i
.

17

Table 2: PPO Hyperparameters
Name Value

Num. parallel workers 128
Num. minibatches of PPO 4

Trajectory length of each worker 128
Learning rate of policy/value function 0.0001

Discount � 0.99
Value loss weight 1.0

Gradient norm bound 1.0
GAE � 0.95

Num. PPO epochs 4
Clipping ratio 0.1

Entropy loss weight 0.001
Max episode steps 27000

Table 3: RND Hyperparameters
Name Value

Drop probability 0.25
Intrinsic reward scaling � 1.0

Learning rate 0.0001

The exploration policy ⇡E+I collects trajectories for training ⇡E+I and ⇡E . ⇡E+I and ⇡E max-517

imize mixed and extrinsic objectives, respectively. The DKL(⇡E ||⇡E+I) term in the objective518

incentivizes ⇡I to perform differently from ⇡E . We train both ⇡E+I and ⇡E using PPO. In addition519

to policies, we train value functions V ⇡E+I

E+I and V ⇡E
E . Both policies and value functions share the520

same CNN backbone.521

Hyperparameters The hyperparameters for PPO, RND, and EIPO are listed in Table 2, Table 3,522

and Table 4, respectively.523

A.3 Environment details524

Pycolab525

• State space S: R3⇥84⇥84, 5⇥ 5 cropped top-down view of the agent’s surroundings, scaled526

to an 84⇥ 84 RGB image (see the code in the supplementary materials for details).527

• Action space A: {UP, DOWN, LEFT, RIGHT, NO ACTION}.528

• Extrinsic reward function RE : See section 4.1.529

Atari530

• State space S: R1⇥84⇥84, 84⇥ 84 gray images.531

• Action space A: Depends on the environment.532

• Extrinsic reward function RE : Depends on the environment.533

Table 4: EIPO Hyperparameters
Name Value

Initial ↵ 0.5
Step size � of ↵ 0.005

Clipping range of �↵ (�✏↵, ✏↵) 0.05

18

Table 5: Tuned � value for each environment
rE ⌧ �rI rE < �rI rE ⇡ �rI rE > �rI rE � �rI

Enduro 38800 600 388 50 0.1
Jamesbond 2000 50 23 0.25 0.1
StarGunner 600 15 6.33 0.1 0.05
TimePilot 500 15 5 0.25 0.1

YarsRevenge 3000 50 30 5 0.1
Venture 500 50 5 0.5 0.05

A.4 Evaluation details534

A.4.1 Probability of improvement535

We validate whether EIPO prevents the possible performance degradation introduced by intrinsic536

rewards, and consistently either improves or matches the performance of PPO in 61 Atari games. As537

our goal is to investigate if an algorithm generally performs better than PPO instead of the performance538

gain, we evaluate each algorithm using the “probability of improvement" metric suggested in [18].539

We ran at least 5 random seeds for each method in each environment, collecting the median extrinsic540

returns within the last 100 episodes and calculating the probability of improvements P (X � PPO) 2541

with 95%-confidence interval against PPO for each algorithm X . The confidence interval is estimated542

using the bootstrapping method. The probability of improvement is defined as:543

P (X � Y) =
1

N2

NX

i=1

NX

j=1

S(xi, yj), S(xi, yj) =

⇢
1, xi � yj
0, xi < yj ,

where xi and yj denote the samples of median of extrinsic return trials of algorithms X and Y ,544

respectively.545

We also define strict probability of improvement to measure how an algorithm dominate others:546

P (X > Y) =
1

N2

NX

i=1

NX

j=1

S(xi, yj), S(xi, yj) =

8
<

:

1, xi > yj
1
2 , xi = yj
0, xi < yj ,

A.4.2 Normalized score547

In addition, we report the PPO-normalized score [18] to validate whether EIPO preserves the548

performance gain granted by RND when applicable. Let pX be the distribution of median extrinsic549

returns over the last 100 episodes of training for an algorithm X . Defining pPPO as the distribution of550

mean extrinsic returns in the last 100 episodes of training for PPO, and prand as the average extrinsic551

return of a random policy, then the PPO-normalized score of algorithm X is defined as:
pX � prand

pPPO � prand
.552

A.4.3 � tuning553

Table 5 lists the � values used in Section 4.5.554

A.5 RND-dominating games555

Table A.5 shows that the mean and median PPO-normalized score of each method with 95%-556

confidence interval in the set of games where RND performs better than PPO.557

The set of games where RND performs better than PPO are listed below:558

• AirRaid559

• Alien560

2Note that Agarwal et al. [18] define probability of improvements as P (X > Y) while we adapt it to
P (X � Y) as we measure the likelihood an algorithm X can match or exceed an algorithm Y .

19

Table 6: EIPO exhibits higher performance gains than RND in the games where RND is better than
PPO. Despite being slightly below RND in terms of median score, EIPO attains the highest median
among baselines other than RND.

Algorithm PPO-normalized score
Mean (CI) Median (CI)

RND 384.57 (85.57, 756.69) 1.22 (1.17, 1.26)
Ext-norm RND 427.08 (86.53, 851.52) 1.05 (1.02, 1.14)

Decay-RND 383.83 (84.19, 753.17) 1.04 (1.01, 1.11)
Decoupled-RND 1.54 (1.09, 2.12) 1.00 (0.96, 1.06)

EPIO-RND 435.56 (109.45, 874.88) 1.13 (1.06, 1.23)

• Assault561

• Asteroids562

• BankHeist563

• Berzerk564

• Bowling565

• Boxing566

• Breakout567

• Carnival568

• Centipede569

• ChopperCommand570

• DemonAttack571

• DoubleDunk572

• FishingDerby573

• Frostbite574

• Gopher575

• Hero576

• Kangaroo577

• KungFuMaster578

• MontezumaRevenge579

• MsPacman580

• Phoenix581

• Pooyan582

• Riverraid583

• RoadRunner584

• SpaceInvaders585

• Tutankham586

• UpNDown587

• Venture588

A.6 Scores for each Atari game589

The mean scores for each method on all Atari games are presented in Table 7.590

A.7 Complete learning curves591

We present the learning curves of each method in Figure 6, and the evolution of ↵ in EIPO in Figure 7592

on all Atari games.593

20

PPO RND Ext-norm RND Decay-RND Decouple-RND Ours

Adventure 0.0 0.0 0.0 0.0 0.0 0.0
AirRaid 34693.2 42219.9 36462.4 36444.7 30356.4 50418.2
Alien 1891.0 2434.9 2152.1 2148.3 2386.9 2536.7
Amidar 1053.4 1037.0 736.4 909.5 987.1 901.3
Assault 8131.9 10592.2 10985.1 9504.3 8404.5 10771.1
Asterix 14313.0 14112.9 16872.5 20078.0 11292.2 12471.8
Asteroids 1360.9 1431.1 1433.8 1385.0 1426.7 1389.4
BankHeist 1336.3 1345.1 1339.0 1346.0 1334.8 1333.2
BattleZone 83826.0 47128.0 72117.0 61939.0 59461.7 87478.0
BeamRider 7278.7 7085.1 7460.0 7802.5 7215.4 7854.6
Berzerk 1113.8 1478.5 1459.0 1455.9 1196.4 1426.6
Bowling 17.4 14.6 26.0 32.6 19.0 52.3
Boxing 79.5 79.9 79.9 60.3 1.9 79.5
Breakout 565.7 658.6 570.6 545.7 479.3 529.5
Carnival 5019.3 5052.9 4513.4 4790.8 4964.7 5534.3
Centipede 5938.2 6444.4 6832.3 6860.0 6675.3 6460.8
ChopperCommand 8225.1 9465.9 8629.8 8559.0 6649.7 8008.4
CrazyClimber 151202.6 147676.5 135970.3 140333.9 138956.7 137036.7
DemonAttack 5678.8 7070.2 9039.0 6707.0 8990.1 9984.4
DoubleDunk -1.3 18.0 -1.1 -1.0 -1.0 -1.9
ElevatorAction 45703.7 9777.6 12121.4 19250.5 42557.3 48303.7
Enduro 1024.7 797.5 815.0 1095.9 677.7 1092.6
FishingDerby 35.3 47.8 28.9 36.3 36.7 37.5
Freeway 31.1 25.8 33.4 33.4 33.1 33.3
Frostbite 1011.3 3445.3 1731.4 3368.2 2115.2 5289.6
Gopher 5544.2 13035.8 2859.6 11034.9 9964.6 4928.8
Gravitar 1682.2 1089.8 1874.1 1437.0 1253.4 1921.1
Hero 29883.7 36850.3 26781.2 29842.4 33889.1 36101.3
IceHockey 6.0 4.4 8.7 6.9 9.9 10.4
Jamesbond 13415.9 3971.6 13474.4 12322.4 14995.6 15352.0
JourneyEscape -429.7 -1035.0 -663.7 -413.2 -327.8 -309.3
Kaboom 1883.5 1592.5 1866.6 1860.8 1830.7 1852.3
Kangaroo 6092.4 8058.9 8293.4 9361.9 12043.3 10150.8
Krull 9874.1 8199.4 9921.4 9832.0 9551.3 10006.2
KungFuMaster 47266.5 66954.2 48944.5 47403.2 45666.8 48329.4
MontezumaRevenge 0.2 2280.0 2500.0 2217.0 0.0 2485.0
MsPacman 4996.9 5326.6 5289.7 4792.5 4325.0 4767.4
NameThisGame 11127.7 10596.1 10300.7 11831.5 11918.0 11294.9
Phoenix 8265.0 10537.9 10922.9 11494.5 17960.8 16344.1
Pitfall 0.0 -2.7 -6.1 -0.6 -1.5 -0.3
Pong 20.9 20.9 20.9 20.9 20.9 20.9
Pooyan 5773.4 7535.8 5508.7 5430.9 4834.7 5924.6
PrivateEye 97.5 86.0 114.9 98.8 99.7 99.5
Qbert 23863.8 16530.9 22387.8 22443.3 22289.5 22750.7
Riverraid 10231.3 11073.6 11700.4 13365.7 13285.1 14978.4
RoadRunner 45922.6 46518.4 58777.7 44684.2 42694.3 58708.8
Robotank 37.4 24.9 38.5 40.1 40.7 40.9
Seaquest 1453.9 1128.6 1986.0 1426.6 1821.5 1838.3
Skiing -12243.3 -14780.8 -11594.8 -11093.5 -8986.6 -9238.4
Solaris 2357.7 2006.5 2120.9 2251.7 2751.0 2572.0
SpaceInvaders 1621.0 1871.4 1495.3 1692.0 1375.7 1637.6
StarGunner 21036.0 16394.9 16884.7 32325.8 42299.5 50798.5
Tennis -0.1 -4.7 4.6 -0.1 -8.2 -0.1
TimePilot 19544.5 9180.5 21409.4 20034.2 19223.8 21039.8
Tutankham 199.9 235.3 230.6 214.0 216.1 231.8
UpNDown 276884.8 317426.2 310520.6 266774.5 290323.4 294218.8
Venture 102.1 1149.7 1348.6 1451.8 1438.8 1146.3
VideoPinball 360562.5 327741.8 350534.3 406508.8 389578.5 392005.7
WizardOfWor 11912.8 9580.3 11845.2 11751.7 10732.7 12512.8
YarsRevenge 92555.9 73411.4 85851.9 77850.0 124983.6 149710.8
Zaxxon 14418.2 11801.9 11779.6 15085.5 16813.3 12713.3

Table 7: The mean scores of each method in 61 Atari games.

21

Figure 6: Game score for each baseline on 60 Atari games. Each curve represents the average score
across at least 5 random seeds. In all games, we either match or outperform PPO. In a large majority
of games, we either match or outperform RND. In a handful of games, our method does significantly
better than both PPO and RND (Star Gunner, Bowling, Yars Revenge, Phoenix, Seaquest).

22

Figure 7: The evolution of ↵ in EIPO on all 61 Atari environments. The variance in ↵ trajectories
across environments supports the hypothesis that decaying the intrinsic reward is difficult to hand-
tune, and may not always be the best strategy.

23

Figure 8: EIPO-ICM successfully matches ICM when it outperforms PPO, and closes the gap with
PPO when ICM underperforms. In Kaboom, the screen flashes a rapid sequence of bright colors
when the agent dies, causing ICM to generate high intrinsic reward at these states. Even in such
games where the intrinsic and extrinsic reward signals are misaligned, our method is able to close the
performance gap. In extreme cases where the intrinsic and extrinsic rewards are steeply misaligned
(Enduro), our methods inability to completely turn off the effects of intrinsic rewards results in subpar
performance. On the same environment however, we see that RND does perform well (Fig. 6). This
supports our view that extending our method to optimize between different intrinsic reward signals as
well as intrinsic and extrinsic rewards could be an interesting direction for future work.

A.8 ICM594

In addition to RND, we test our method on ICM [6] - another popular bonus-based exploration595

method. The learning curves on 6 Atari environments can be seen in Fig. 8.596

A.9 Related Work597

Our work is related to the paradigm of reward design. Meriçli et al. [20] uses genetic programming to598

optimize the reward function for robot soccer. Sorg et al. [21] learns a reward function for planning599

via gradient ascent on the expected return of a tree search planning algorithm (e.g., Monte Carlo600

Tree Search). Guo et al. [22] extends [21] using deep learning, improving tree search performance in601

Atari games. The work [23] learns a reward function to improve the performance of model-free RL602

algorithms by performing policy gradient updates on the reward function. Zheng et al. [24] takes a603

meta-learning approach to learn a reward function that improves an RL algorithm’s sample efficiency604

in unseen environments. Hu et al. [25] learns a weighting function that scales the given shaping605

rewards [26] at each state and action. These lines of work are complimentary to EIPO, which is606

agnostic to the choice of intrinsic reward and could be used in tandem with a learned reward function.607

24

	Introduction
	Preliminaries
	Mitigating the Bias of Intrinsic Rewards
	The Dual Objective: Unconstrained Min-Max Optimization Problem
	Algorithm for Optimizing the Dual Objective
	Implementation

	Experiments
	Illustrative example
	Does EIPO generally improve PPO performance?
	Does EIPO perform better than the baselines?
	Does EIPO preserve the performance gain of RND?
	Does EIPO outperform tuned RND?

	Discussion
	Appendix
	Full derivation
	Implementation details
	Algorithm
	Models
	Baselines

	Environment details
	Evaluation details
	Probability of improvement
	Normalized score
	 tuning

	RND-dominating games
	Scores for each Atari game
	Complete learning curves
	ICM
	Related Work

