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Abstract

State-of-the-art reinforcement learning (RL) algorithms typically use random sam-
pling (e.g., ✏-greedy) for exploration, but this method fails on hard exploration tasks
like Montezuma’s Revenge. To address the challenge of exploration, prior works
incentivize exploration by rewarding the agent when it visits novel states. Such
intrinsic rewards (also called exploration bonus or curiosity) often lead to excellent
performance on hard exploration tasks. However, on easy exploration tasks, the
agent gets distracted by intrinsic rewards and performs unnecessary exploration
even when sufficient task (also called extrinsic) reward is available. Consequently,
such an overly curious agent performs worse than an agent trained with only task
reward. Such inconsistency in performance across tasks prevents the widespread
use of intrinsic rewards with RL algorithms. We propose a principled constrained
optimization procedure called Extrinsic-Intrinsic Policy Optimization (EIPO) that
automatically tunes the importance of the intrinsic reward: it suppresses the intrin-
sic reward when exploration is unnecessary and increases it when exploration is
required. The results is superior exploration that does not require manual tuning
in balancing the intrinsic reward against the task reward. Consistent performance
gains across sixty-one ATARI games validate our claim. The code is available at
https://github.com/Improbable-AI/eipo.

1 Introduction

The goal of reinforcement learning (RL) [1] is to find a mapping from states to actions (i.e., a
policy) that maximizes reward. At every learning iteration, an agent is faced with a question: has the
maximum possible reward been achieved? In many practical problems, the maximum achievable
reward is unknown. Even when the maximum achievable reward is known, if the current policy
is sub-optimal then the agent is faced with another question: would spending time improving its
current strategy lead to higher rewards (exploitation), or should it attempt a different strategy in
the hope of discovering potentially higher reward (exploration)? Pre-mature exploitation is akin to
getting stuck in a local-optima and precludes the agent from exploring. Too much exploration on the
other hand can be distracting, and prevent the agent from perfecting a good strategy. Resolving the
exploration-exploitation dilemma [1] is therefore essential for data/time efficient policy learning.

In simple decision making problems where actions do not affect the state (e.g. bandits or contextual
bandits [2]), provably optimal algorithms for balancing exploration against exploitation are known [3,
2]. However, in the general settings where RL is used, such algorithms are unknown. In the absence
of methods that work well in both theory and practice, state-of-the-art RL algorithms rely on heuristic
exploration strategies such as adding noise to actions or random sampling of sub-optimal actions
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Figure 1: (a) At the start of training all locations are novel for the agent (green triangle), and therefore
the pink circles representing intrinsic rewards are evenly distributed across the map. The blue circles
represent sources of extrinsic reward or task-reward. Here intrinsic rewards can distract the agent, as
the sum of extrinsic and intrinsic rewards can be increased by moving along the bottom corridor. (b)
This type of distraction is a possible reason why an intrinsic reward method does not consistently
outperform a method trained using only extrinsic rewards across ATARI games. Intrinsic rewards
help in some games where the task or extrinsic reward is sparse (e.g., Montezuma’s revenge), but
hurt in other games such as James Bond. Our proposed method, EIPO, intelligently uses intrinsic
rewards when needed and consistently matches the best-performing algorithm amongst extrinsic and
extrinsic+intrinsic methods.

(e.g., ✏-greedy). However, such strategies fail in sparse reward scenarios where infrequent rewards
hinder policy improvement. One such task is the notorious ATARI game, Montezuma’s Revenge [4].

Sparse reward problems can be solved by supplementing the task reward (or extrinsic reward rE) with
a dense exploration bonus (or intrinsic reward rI ) generated by the agent itself [4–8]. Intrinsic rewards
encourage the agent to visit novel states, which increases the chance of encountering states with task
reward. Many prior works [4, 8, 9] show that jointly optimizing for intrinsic and extrinsic reward
(i.e., rE + �rI , where � � 0 is a hyperparameter) instead of only optimizing for extrinsic reward
(i.e., � = 0) improves performance on sparse reward tasks such as Montezuma’s revenge [4, 9, 10].

However, a recent study found that using intrinsic rewards does not consistently outperform simple
exploration strategies such as ✏-greedy across ATARI games [11]. This is because the mixed objective
(rE + �rI ) is biased for |�| > 0, and optimizing it does not necessarily yield the optimal policy with
respect to the extrinsic reward alone [12]. Fig. 1a illustrates this problem using a toy example. Here
the green triangle is the agent and the blue/pink circles denote the location of extrinsic and intrinsic
rewards, respectively. At the start of training, all states are novel and provide a source of intrinsic
reward (i.e., pink circles). This makes accumulating intrinsic rewards easy, which the agent may
exploit to optimize its objective of maximizing the sum of intrinsic and extrinsic rewards. However,
such optimization can result in a local maxima: the agent might move rightwards along the bottom
corridor, essentially distracting the agent from the blue task rewards at the top. In this example,
since it is not hard to find the task reward, better performance is obtained if only the extrinsic reward
(� = 0) is maximized. The trouble, however, is that in most environments one doesn’t know a priori
how to optimally trade off intrinsic and extrinsic rewards (i.e., choose �).

A common practice is to conduct an extensive hyperparameter search to find the best �, as different
values of � are best suited for different tasks (see Fig. 4). Furthermore, as the agent progresses on
a task, the best exploration-exploitation trade-off can vary, and a constant � may not be optimal
throughout training. In initial stages of training exploration might be preferred. Once the agent is
able to obtain some task reward, it might prefer exploiting these rewards instead of exploring further.
The exact dynamics of the exploration-exploitation trade-off is task-dependent, and per-task tuning is
tedious, undesirable, and often computationally infeasible. Consequently, prior works use a fixed �

during training, which our experiments reveal is sub-optimal.

We present an optimization strategy that alleviates the need to manually tune the relative importance
of extrinsic and intrinsic rewards as training progresses. Our method leverages the bias of intrinsic
rewards when it is useful for exploration and mitigates this bias when it does not help accumulate
higher extrinsic rewards. This is achieved using an extrinsic optimality constraint that forces the
extrinsic rewards earned after optimizing the mixed objective to be equal to the extrinsic rewards
accumulated by the optimal policy that maximizes extrinsic rewards only. Enforcing the extrinsic

optimality constraint in general settings is intractable because the optimal extrinsic reward is unknown.
We devise a practical algorithm called Extrinsic-Intrinsic Policy Optimization (EIPO), which uses
an approximation to solve this constrained optimization problem (Section 3).
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While in principle we can apply EIPO to any intrinsic reward method, we evaluate performance
using state-of-the-art random network distillation (RND) [9]. Fig. 1b presents teaser results on two
ATARI games: (i) Montezuma’s Revenge - where joint optimization with RND (red) substantially
outperforms a PPO policy [13] optimized with only extrinsic rewards (black); (ii) James Bond -
where PPO substantially outperforms RND. These results reinforce the notion that bias introduced
by intrinsic rewards helps in some games, but hurts in others. Our algorithm EIPO (blue) matches
the best algorithm in both games, showing that it can leverage intrinsic rewards as needed. Results
across 61 ATARI games reinforce this finding. Additionally, in some games EIPO outperforms
multiple strong baselines with and without intrinsic rewards, indicating that our method can not only
mitigate the potential performance decreases caused by intrinsic reward bias, but can also improve
performance beyond the current state-of-the-art.

2 Preliminaries

We consider a discrete-time Markov Decision Process (MDP) consisting of a state space S , an action
space A, and an extrinsic reward function RE : S ⇥ A ! R. We distinguish the extrinsic and
intrinsic reward components by E and I , respectively. The extrinsic reward function RE refers to
the actual task objective (e.g., game score). The agent starts from an initial state s0 sampled from
the initial state distribution ⇢0 : S ! R. At each timestep t, the agent perceives a state st from the
environment, takes action at sampled from the policy ⇡, receives extrinsic reward r

E
t = RE(st, at),

and moves to the next state st+1 according to the transition function T (st+1|st, at). The agent’s
goal is to use interactions with the environment to find the optimal policy ⇡ such that the extrinsic
objective value JE(⇡) is maximized:

max
⇡

JE(⇡), where JE(⇡) = Es0,a0,···⇠⇡

h 1X

t=0

�
t
r
E
t

i
(Extrinsic objective), (1)

s0 ⇠ ⇢0, at ⇠ ⇡(a|st), st+1 ⇠ T (st+1|st, at) 8t > 0

where � denotes a discount factor. For brevity, we abbreviate Es0,a0,···⇠⇡

h
.

i
as E⇡

h
.

i
unless specified.

Intrinsic reward based exploration strategies[4, 8, 9] attempt to encourage exploration by providing
“intrinsic rewards" (or “exploration bonuses") that incentivize the agent to visit unseen states. Using
the intrinsic reward function RI : S ⇥A! R, the optimization objective becomes:

max
⇡2⇧

JE+I(⇡), where JE+I(⇡) = E⇡

⇥ 1X

t=0

�
t(rEt + �r

I
t )
⇤

(Mixed objective), (2)

where � denotes the intrinsic reward scaling coefficient. We abbreviate the intrinsic reward at
timestep t as rIt = RI(st, at). State-of-the-art intrinsic reward based exploration strategies [9, 14]
often optimize the objective in Eq. 2 using Proximal Policy Optimization (PPO) [13].

3 Mitigating the Bias of Intrinsic Rewards

Simply maximizing the sum of intrinsic and extrinsic rewards does not guarantee a policy that
also maximizes extrinsic rewards: argmax⇡E+I2⇧ JE+I(⇡E+I) 6= argmax⇡E2⇧ JE(⇡E). At
convergence the optimal policy ⇡

⇤
E+I = argmax⇡E+I

JE+I(⇡E+I) could be suboptimal w.r.t. JE ,
which measures the agent’s task performance. Because the agent’s performance is measured using
extrinsic reward only, we propose enforcing an extrinsic optimality constraint that ensures the optimal
“mixed" policy ⇡

⇤
E+I = argmax⇡E+I

JE+I(⇡E+I) leads to as much extrinsic reward as the optimal
“extrinsic" policy ⇡

⇤
E = argmax⇡E2⇧ JE(⇡E). The resulting optimization objective is:

max
⇡E+I2⇧

JE+I(⇡E+I) (3)

subject to JE(⇡E+I)�max
⇡E

JE(⇡E) = 0 (Extrinsic optimality constraint).

Solving this optimization problem can be viewed as proposing a policy ⇡E+I that maximizes JE+I ,
and then checking if the proposed ⇡E+I is feasible given the extrinsic optimality constraint.
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The constrained objective is difficult to optimize because evaluating the extrinsic optimality con-
straint requires JE(⇡⇤

E), which is unknown. To solve this optimization problem, we transform it
into an unconstrained min-max optimization problem using Lagrangian duality (Section 3.1). We
then describe an iterative algorithm for solving the min-max optimization by alternating between
minimization and maximization in Section 3.2, and we present implementation details in Section 3.3.

3.1 The Dual Objective: Unconstrained Min-Max Optimization Problem

The Lagrangian dual problem for the primal constrained optimization problem in Eq. 3 is:

min
↵2R+

h
max

⇡E+I2⇧
JE+I(⇡E+I) + ↵

�
JE(⇡E+I)� max

⇡E2⇧
JE(⇡E)

�i
, (4)

where ↵ 2 R+ is the Lagrangian multiplier. We rewrite Eq. 4 by merging JE+I(⇡) and JE(⇡):

J
↵
E+I(⇡E+I) := JE+I(⇡E+I) + ↵JE(⇡E+I) = E⇡E+I

h 1X

t=0

�
t
⇥
(1 + ↵)rE(st, at) + r

I(st, at)
⇤i
.

The re-written objective provides an intuitive interpretation of ↵: larger values correspond to increas-
ing the impetus on extrinsic rewards (i.e., exploitation). Substituting J

↵
E+I(⇡E+I) into Eq. 4 and

rearranging terms yields the following min-max problem:

min
↵2R+

h
max

⇡E+I2⇧
min
⇡E2⇧

J
↵
E+I(⇡E+I)� ↵JE(⇡E)

i
. (5)

3.2 Algorithm for Optimizing the Dual Objective

We now describe an algorithm for solving ⇡E , ⇡E+I , and ↵ in each of the sub-problems in Eq. 5.

Extrinsic policy ⇡E (min-stage). ⇡E is optimized via the minimization sub-problem, which can be
re-written as a maximization problem:

min
⇡E2⇧

J
↵
E+I(⇡E+I)� ↵JE(⇡E) ! max

⇡E2⇧
↵JE(⇡E)� J

↵
E+I(⇡E+I) (6)

The main challenge is that evaluating the objectives J↵
E+I(⇡E+I) and JE(⇡E) requires sampling

trajectories from both policies ⇡E+I and ⇡E . If one were to use an on-policy optimization method
such as PPO, this would require sampling trajectories from two separate policies at each iteration
during training, which would be data inefficient. Instead, if we assume that the two policies are
similar, then we can leverage results from prior work to use the trajectories from one policy (⇡E+I )
to approximate the return of the other policy (⇡E) [15, 16, 13].

First, using the performance difference lemma from [15], the objective ↵JE(⇡E)� J
↵
E+I(⇡E+I) can

be re-written (see Appendix A.1.3 for detailed derivation):

↵JE(⇡E)� J
↵
E+I(⇡E+I) = E⇡E

h 1X

t=0

�
t
U

⇡E+I

min (st, at)
i
. (7)

where U
⇡E+I

min (st, at) := ↵r
E
t + �V

⇡E+I

E+I (st+1)� V
⇡E+I

E+I (st),

V
⇡E+I

E+I (st) := E⇡E+I

h 1X

t=0

�
t(rEt + r

I
t )|s0 = st

i

Next, under the similarity assumption, a lower bound to the objective in Eq. 7 can be obtained [13]:

E⇡E

h 1X

t=0

�
t
U

⇡E+I

min (st, at)
i
� E⇡E+I

h 1X

t=0

�
t min

n
⇡E(at|st)

⇡E+I(at|st)
U

⇡E+I

min (st, at),

clip
✓

⇡E(at|st)
⇡E+I(at|st)

, 1� ✏, 1 + ✏

◆
U

⇡E+I

min (st, at)
oi (8)

where ✏ 2 [0, 1] denotes a threshold. Intuitively, this clipped objective (Eq. 8) penalizes the policy

⇡E that behaves differently from ⇡E+I because overly large or small
⇡E(at|st)

⇡E+I(at|st)
terms are clipped.

More details are provided in Appendix A.2.
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Mixed policy ⇡E+I (max-stage). The sub-problem of solving for ⇡E+I is posed as

max
⇡E+I2⇧

J
↵
E+I(⇡E+I)� ↵JE(⇡E). (9)

We again rely on the approximation from [13] to derive a lower bound surrogate objective for
J
↵
E+I(⇡E+I)� ↵JE(⇡E) as follows (see Appendix A.1.2 for details):

J
↵
E+I(⇡E+I)� ↵JE(⇡E) � E⇡E

h 1X

t=0

�
t min

n
⇡E+I(at|st)
⇡E(at|st)

U
⇡E
max(st, at),

clip
✓
⇡E+I(at|st)
⇡E(at|st)

, 1� ✏, 1 + ✏

◆
U

⇡E
max(st, at)

oi
,

(10)

where U
⇡E
max and V

⇡E
E are defined as follows:

U
⇡E
max(st, at) := (1 + ↵)rEt + r

I
t + �↵V

⇡E
E (st+1)� ↵V

⇡E
E (st)

V
⇡E
E (st) := E⇡E

h 1X

t=0

�
t
r
E
t |s0 = st

i
.

Lagrangian multiplier ↵. We solve for ↵ by using gradient descent on the surrogate objective
derived above. Let g(↵) := max⇡E+I2⇧ min⇡E2⇧ J

↵
E+I(⇡E+I)� ↵JE(⇡E). Therefore, rg(↵) =

JE(⇡E+I)� JE(⇡E). We approximate rg(↵) using the lower bound surrogate objective:

JE(⇡E+I)� JE(⇡E) � L(⇡E ,⇡E+I) = E⇡E

h 1X

t=0

�
t min

n
⇡E+I(at|st)
⇡E(at|st)

A
⇡E (st, at),

clip
✓
⇡E+I(at|st)
⇡E(at|st)

, 1� ✏, 1 + ✏

◆
A

⇡E (st, at)
oi

,

(11)

where A
⇡E (st, at) = r

E
t + �V

⇡E
E (st+1)� V

⇡E
E (st) is the advantage of taking action at at state st,

and then following ⇡E for subsequent steps. We update ↵ using a step size � (Appendix A.1.4):

↵ ↵� �L(⇡E ,⇡E+I). (12)

Unlike prior works that use a fix trade off between extrinsic and intrinsic rewards, optimizing ↵

during training allows our method to automatically and dynamically tune the trade off.

3.3 Implementation

Min-max alternation schedule. We use an iterative optimization scheme that alternates between
solving for ⇡E by minimizing the objective in Eq. 6, and solving for ⇡E+I by maximizing the
objective in Eq. 9 (max_stage). We found that switching the optimization every iteration hinders
performance which is hypothesize is a result of insufficient training of each policy. Instead, we switch
between the two stages when the objective value does not improve anymore. Let J [i] be the objective
value J

↵
E+I(⇡E+I)� ↵JE(⇡E) at iteration i. The switching rule is:
⇢
J [i]� J [i� 1]  0 =) max_stage  False, if max_stage = True
J [i]� J [i� 1] � 0 =) max_stage  True, if max_stage = False,

where max_stage is a binary variable indicating whether the current stage is the max-stage. ↵ is
only updated when the max-stage is done using Eq. 12.

Parameter sharing. The policies ⇡E+I and ⇡E are parametrized by two separate multi-layer per-
ceptrons (MLP) with a shared CNN backbone. The value functions V ⇡E+I

E+I and V
⇡E
E are represented

in the same fashion, and share a CNN backbone with the policy networks. When working with
image inputs (e.g., ATARI), sharing the convolutional neural network (CNN) backbone between ⇡E

and ⇡E+I helps save memory, which is important when using GPUs (in our case, an NVIDIA RTX
3090Ti). If both policies share a backbone however, maximizing the objective (Eq. 9) with respect to
⇡E+I might interfere with JE(⇡E), and impede the performance of ⇡E . Similarly, minimizing the
objective (Eq. 6) with respect to ⇡E might modify J

↵
E+I and degrade the performance of ⇡E+I .
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Algorithm 1 Extrinsic-Intrinsic Policy Optimization (EIPO)

1: Initialize policies ⇡E+I and ⇡E , max_stage[0]  False, and J [0] 0
2: for i = 1 · · · do . i denotes iteration index
3: if max_stage[i - 1] then . Max-stage: rollout by ⇡E and update ⇡E+I

4: Collect trajectories ⌧E using ⇡E and compute U
⇡E
max(st, at) 8(st, at) 2 ⌧E

5: Update ⇡E+I by Eq. 10 and ⇡E by auxiliary objective (Section 3.3)
6: J [i] J

↵
E+I(⇡E+I)� ↵JE(⇡E)

7: max_stage[i] J [i]� J [i� 1]  0
8: else . Min-stage: rollout by ⇡E+I and update ⇡E

9: Collect trajectories ⌧E+I using ⇡E+I and compute U
⇡E+I

min (st, at) 8(st, at) 2 ⌧E+I

10: Update ⇡E by Eq. 8 and ⇡E+I by auxiliary objective (Section 3.3)
11: J [i] J

↵
E+I(⇡E+I)� ↵JE(⇡E)

12: max_stage[i] J [i]� J [i� 1] � 0
13: end if
14: if max_stage[i - 1] = True and max_stage[i] = False then
15: Update ↵ (Eq. 32) . Update when the max-stage is done
16: end if
17: end for

Interference can be avoided by introducing auxiliary objectives that prevent decreases in JE(⇡E)
and J

↵
E+I when optimizing for ⇡E+I ,⇡E , respectively. For example, when updating ⇡E+I in the

max-stage, max⇡E+I J
↵
E+I(⇡E+I)� ↵JE(⇡E), the auxiliary objective max⇡E JE(⇡E) can prevent

updates in the shared CNN backbone from decreasing J(⇡E). We incorporate the auxiliary objective
without additional hyperparameters (Appendix A.2.3). The overall objective is in Appendix A.2.4.

Extrinsic-Intrinsic Policy Optimization (EIPO) - the policy optimization algorithm we introduce
to solve Eq. 5, is outlined in Algorithm 1. Pseudo-code can be found in Algorithm 2, and full
implementation details including hyperparameters can be found in Appendix A.2.

4 Experiments

While EIPO is agnostic to the choice of intrinsic rewards, we mainly experiment with RND [9]
because it is the state-of-the-art intrinsic reward method. EIPO implemented with RND is termed
EIPO-RND and compared against several baselines below. All policies are learned using PPO [13].

• EO (Extrinsic only): The policy is trained using extrinsic rewards only: ⇡⇤ = argmax⇡2⇧ JE(⇡).
• RND (Random Network Distillation) [9]: The policy is trained using the sum of extrinsic rewards

(rEt ) and RND intrinsic rewards (�rIt ): ⇡⇤ = argmax⇡2⇧ JE+I(⇡). For ATARI experiments, we
chose a single value of � that worked best across games. Other methods below also use this �.

• EN (Ext-norm-RND): We found that a variant of RND where the extrinsic rewards are normalized
using running mean and standard deviation (Appendix A.2.2) outperforms the original RND
implementation, especially in games where RND performs worse than EO. Our method EIPO and
other baselines below are therefore implemented using Ext-norm-RND.

• DY (Decay-RND): Instead of having a fixed trade-off between exploration and exploitation
throughout training, dynamically adjusting exploration vs. exploitation can lead to better per-
formance. Without theoretical results describing how to make such adjustments, a commonly
used heuristic is to gradually transition from exploration to exploitation. One example is ✏-greedy
exploration [17], where ✏ is decayed over the course of training. Similarly, we propose a variant
of Ext-norm-RND where intrinsic rewards are progressively scaled down to eliminate exploration
bias over time. Intrinsic rewards r

I
t are scaled by �(i), where i denotes the iteration number.

The objective function turns into JE+I = E⇡

hP1
t=0 �

t(rEt + �(i)rIt )
i
, where �(i) is defined as

�(i) = clip(
i

I
(�max � �min),�min,�max). Here, �max and �min denote the predefined maximum

and minimum �(i), and I is the iteration after which decay is fixed. We follow the linear decay
schedule used to decay ✏-greedy exploration in DQN [17].

6



Extrinsic rewards

Distractor

Agent

Wall

(a) (b) (c)

Figure 2: (a) 2D navigation task with a similar distribution of extrinsic and intrinsic rewards as
Figure 1a. The gray triangle is the agent. The black dot is the goal that provides extrinsic reward.
Red dots are randomly placed along the bottom corridor at the start of every episode. Due to the
novelty of their locations, these dots serve as a source of intrinsic rewards. (b) RND is distracted by
the intrinsic rewards and fails to match EO optimized with only extrinsic rewards. Without intrinsic
rewards, EO is inferior to our method EIPO in terms of discovering a good path to the black goal.
This result indicates that EIPO is not distracted by intrinsic rewards, and uses them as necessary to
improve performance. (c) ↵ controls the importance of the extrinsic-intrinsic optimality constraint.
It decreases until the extrinsic return starts to rise between 0.5 and 1.0 million frames. Afterwards,
↵ also increases, showing that our method emphasizes intrinsic rewards at the start of training, and
capitalizes on extrinsic rewards once they are found.

• DC (Decoupled-RND) [18]: The primary assumption in EIPO is that ⇡E+I and ⇡E are similar
(Section 3.2). A recent work used this assumption in a different way to balance intrinsic and
extrinsic rewards [18]: they regularize the mixed policy to stay close to the extrinsic policy by
minimizing the Kullback–Leibler (KL) divergence DKL(⇡E ||⇡E+I). However, they do not impose
the extrinsic-optimality constraint, which is a key component in EIPO. Therefore, comparing
against this method called Decoupled-RND (DC) [18] will help separate the gains in performance
that come from making the similarity assumption versus the importance of extrinsic-optimality

constraint. We adapted DC to make use of Ext-norm-RND intrinsic rewards:

⇡
⇤
E+I = argmax

⇡E+I

E⇡E+I

h 1X

t=0

�
t(rEt + r

I
t )� DKL(⇡E ||⇡E+I)

i
, ⇡

⇤
E = argmax

⇡E

E⇡I

h 1X

t=0

�
t
r
E
t

i
.

4.1 Illustrative example

We exemplify the problem of intrinsic reward bias using a simple 2D navigation environment (Fig. 2a)
implemented using the Pycolab game engine [19]. The gray sprite denotes the agent, which observes
a 5⇥ 5 pixel view of its surroundings. For every timestep the agent spends at the (black) location
at the top of the map, an extrinsic reward of +1 is provided. The red circles are randomly placed in
the bottom corridor at the start of each episode. Because these circles randomly change location,
they induce RND intrinsic rewards throughout training. Because intrinsic rewards along the bottom
corridor are easier to obtain than the extrinsic reward, optimizing the mixed objective JE+I can
yield a policy that results in the agent exploring the bottom corridor (i.e., exploiting the intrinsic
reward) without ever discovering the extrinsic reward at the top. Fig. 2b plots the evolution of the
average extrinsic return during training for EO, RND, and EIPO-RND across 5 random seeds. We
find that EIPO-RND outperforms both RND and EO. RND gets distracted by the intrinsic rewards
(red blocks) and performs worse than the agent that optimizes only the extrinsic reward (EO). EO
performs slightly worse than EIPO-RND, possibly because in some runs the EO agent fails to reach
the goal without the guidance of intrinsic rewards.

To understand why EIPO-RND performs better, we plot the evolution of the parameter ↵ that trades-
off exploration against exploitation during training (Fig. 2c). Lower values of ↵ denote that the agent
is prioritizing intrinsic rewards (exploration) over extrinsic rewards (exploitation; see Section 3.1).
This plot shows that for the first ⇠ 0.5M steps, the value of ↵ decreases (Fig. 2c) indicating that the
agent is prioritizing exploration. Once the agent finds the extrinsic reward (between 0.5M � 1M
steps), the value of ↵ stabilizes which indicates that further prioritization of exploration is unnecessary.
After ⇠ 1M steps the value of ↵ increases as the agent prioritizes exploitation, and extrinsic return
increases (Fig. 2b). These plots show that EIPO is able to dynamically trade-off exploration against
exploitation during training. The dynamics of ↵ during training also support the intuition that EIPO
transitions from exploration to exploitation over the course of training.
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(a) (b) (c)

Figure 3: (a) EIPO-RND (ours) has a higher probability of improvement P (EIPO-RND > EO) over
EO than all other baselines. This suggests EIPO-RND is more likely to attain a higher score than
EO, compared to other methods. (b) Probability of improvement P (EIPO-RND > B) > 0.5 8B
indicates that EIPO-RND performs strictly better than the baselines in the majority of trials. (c) Each
colored curve denotes the evolution of ↵ in a specific game using EIPO. The variance in ↵ trajectories
across games reveals that different exploration-exploitation dynamics are best suited for different
games.
4.2 EIPO Redeems Intrinsic Rewards

To investigate if the benefits of EIPO carry over to more realistic settings, we conducted experiments
on ATARI games [20], the de-facto benchmark for exploration methods [4, 11]. Our goal is not to
maximize performance on ATARI, but to use ATARI as a proxy to anticipate performance of different
RL algorithms on a new and potentially real-world task. Because ATARI games vary in terms of task
objective and exploration difficulty, if an algorithm A consistently outperforms another algorithm B

on ATARI, it provides evidence that A may outperform B given a new task with unknown exploration
difficulty and task objective. If such an algorithm is found, the burden of cycling through exploration
algorithms to find the one best suited for a new task is alleviated.

We used a “probability of improvement" metric P (A > B) with a 95%-confidence interval (see
Appendix A.4.2; [21]) to judge if algorithm A consistently outperforms B across all ATARI games. If
P (A > B) > 0.5, it indicates that algorithm A outperforms B on a majority of games (i.e., consistent

improvement). Higher values of P (A > B) means greater consistency in performance improvement
of A over B. For the sake of completeness, we also report P (A � B) which represents a weaker
improvement metric that measures whether algorithm A matches or outperforms algorithm B. These
statistics are calculated using the median of extrinsic returns over the last hundred episodes for at
least 5 random seeds for each method and game. More details are provided in Appendix A.4.

Comparing Exploration with Intrinsic Rewards v/s Only Optimizing Extrinsic Rewards Re-
sults in Fig. 3a show that P (RND > EO) = 0.49 with confidence interval {0.46, 0.52}, where EO
denotes PPO optimized using extrinsic rewards only. These results indicate inconsistent performance
gains of RND over EO, an observation also made in prior works [11]. Ext-norm-RND (EN) fares
slightly better against EO, suggesting that normalizing extrinsic rewards helps the joint optimization
of intrinsic and extrinsic rewards. We find that P (EIPO-RND > EO) = 0.65 with confidence
interval {0.62, 0.67}, indicating that EIPO is able to successfully leverage intrinsic rewards for
exploration and is likely to outperform EO on new tasks. Like EIPO, Decoupled-RND assumes that
⇡E and ⇡E+I are similar, but Decoupled-RND is not any better than Ext-norm-RND when compared
against EO. This suggests that the similarity assumption on its own does not improve performance,
and that the extrinsic-optimality-constraint plays a key part in improving performance.

EIPO Strictly Outperforms Baseline Methods Results in Fig. 3b show that P (EIPO-RND >

B) > 0.5 across ATARI games in a statistically rigorous manner for all baseline algorithms B.
Experiments on the Open AI Gym MuJoCo benchmark follow the same trend: EIPO either matches
or outperforms the best algorithm amongst EO and RND (see Appendix 10). These results show that
EIPO is also applicable to tasks with continuous state and action spaces. Taken together, the results
in ATARI and MuJoCo benchmarks provide strong evidence that given a new task, EIPO has the
highest chance of achieving the best performance.

4.3 Does EIPO Outperform RND Tuned with Hyperparameter Search?

In results so far, RND used the intrinsic reward scaling coefficient � that performed best across
games. Our claim is that EIPO can automatically tune the weighting between intrinsic and extrinsic
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Figure 4: No choice of the intrinsic reward scaling coefficients � consistently yield performance
improvements over RND and EO, whereas our method EIPO-RND consistently outperforms RND
and EO without any tuning across environments. This indicates that our method is less susceptible to
�.

rewards. If this is indeed true, then EIPO should either match or outperform the version of RND
that uses the best � determined on a per-game basis through an exhaustive hyperparameter sweep.
Since an exhaustive sweep in each game is time consuming, we evaluate our hypothesis on a subset
of representative games: a few games where PPO optimized with only extrinsic rewards (EO)
outperforms RND, and a few games where RND outperforms EO (e.g., Venture and Montezeuma’s

Revenge).

For each game we searched over multiple values of � based on the relative difference in magnitudes
between intrinsic (rI ) and extrinsic (rE) rewards (see Appendix A.4.4 for details). The results
summarized in Fig. 4 show that no choice of � consistently improves RND performance. For instance,
r
E ⇡ �r

I substantially improves RND performance in Jamesbond, yet deteriorates performance in
YarsRevenge. We found that with RND, the relationship between the choice of � and final performance
is not intuitive. For example, although Jamesbond is regarded as an easy exploration game [4], the
agent that uses high intrinsic reward (i.e., rE < �r

I ) outperforms the agent with low intrinsic reward
(rE � �r

I ). EIPO overcomes these challenges and is able to automatically adjust the relative
importance of intrinsic rewards. It outperforms RND despite game-specific � tuning.

Dynamic adjustment of the Exploration-Exploitation trade-off during training improves perfor-
mance If the performance gain of EIPO solely resulted from automatically determining a constant
trade off between intrinsic and extrinsic rewards throughout training on a per-game basis, an exhaus-
tive hyperparameter search of � should suffice to match the performance of EIPO-RND. The fact
that EIPO-RND outperforms RND with different choices of � leads us to hypothesize that adjusting
the importance of intrinsic rewards over the course of training is important for performance. This
dynamic adjustment is controlled by the value of ↵ which is optimized during training (Section 3.2).
Fig. 3c shows the trajectory of ↵ during training across games. In most games ↵ increases over time,
indicating that the agent transitions from exploration to exploitation as training progresses. This
decay in exploration is critical for performance: the algorithm, Decay-RND (DY ) that implements
this intuition by uniformly decaying the importance of intrinsic rewards outperforms RND (Fig. 5
and Fig. 3a). However, in some games ↵ decreases over time indicating that more exploration is
required at the end of training. An example is the game Carnival where EIPO-RND shows a jump in
performance at the end of training, which is accompanied by a decrease in ↵ (see Appendix A.8).
These observations suggest that simple strategies that follow a fixed schedule to adjust the balance
between intrinsic and extrinsic rewards across tasks will perform worse than EIPO. The result that
P (EIPO-RND > DY) = 0.59 reported in Fig. 3b confirms our belief and establishes that dynamic,
game specific tuning of the exploration-exploitation trade-off is necessary for good performance.

4.4 Does EIPO improve over RND only in Easy Exploration Tasks?

The observation that EIPO-RND outperforms RND on most games might result from performance
improvements on the majority of easy exploration games, at the expense of worse performance on the
minority of hard exploration games. To mitigate this possibility, we evaluated performance on games
where RND outperforms EO as a proxy for hard exploration. The PPO-normalized scores [21] and
95% confidence intervals of various methods are reported in Table 1. EIPO-RND achieves slightly
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higher mean score than Ext-norm-RND, but lies within the confidence interval. This result suggests
that EIPO not only mitigates the bias introduced by intrinsic rewards in easy exploration tasks, but
either matches or improves performance in hard exploration tasks.

5 Discussion

Table 1: EIPO-RND is either at-part or outper-
forms RND in the games where RND is better
than EO (i.e., hard-exploration tasks).

Algorithm PPO-normalized score
Mean (CI)

RND 384.57 (85.57, 756.69)
Ext-norm RND 427.08 (86.53, 851.52)

Decay-RND 383.83 (84.19, 753.17)
Decoupled-RND 1.54 (1.09, 2.12)

EIPO-RND 435.56 (109.45, 874.88)

EIPO can be a drop-in replacement for any
RL algorithm. Due to inconsistent performance
across tasks and difficulties tuning intrinsic reward
scaling, bonus based exploration has not been
a part of standard state-of-the-art RL pipelines.
EIPO-RND mitigates these challenges, and out-
performs noisy networks [22] - an exploration
method that does not use intrinsic rewards, but
represents the best performing exploration strat-
egy across ATARI games when used with Q-
learning [17] (see Appendix A.9). The consistent
performance gains of EIPO-RND on ATARI and
MuJoCo benchmarks make it a strong contender to become the defacto RL exploration paradigm
going forward. Though we performed experiments with PPO, the EIPO objective (Eq. 3.1) is agnostic
to the particular choice of RL algorithm. As such, it can be used as a drop-in replacement in any RL
pipeline.

Limitations. Across all 61 ATARI games, we use the same initial value of ↵ and demonstrate that
per-task tuning of intrinsic reward importance can be avoided by optimizing ↵. However, it is possible
that the initial value of ↵ and learning step-size � depend on the choice of intrinsic reward function.
To see if this is the case, we tested EIPO with another intrinsic reward metric (ICM [8]) using the
same initial ↵ and step-size �. The preliminary results in Appendix A.10 show that performance
gains of EIPO-ICM over the baselines are less consistent than EIPO-RND. While one possibility
is that RND is a better intrinsic reward than ICM, the other possibility is that close dependencies
between EIPO hyperparameters and the choice of intrinsic reward function come into play. We
leave this analysis for future work. Finally, it’s worth noting that the performance benefits of EIPO
are limited by the quality of the underlying intrinsic reward function on individual tasks. Finding
better intrinsic rewards remains an exciting avenue of research, which we hope can be accelerated by
removing the need for manual tuning using EIPO.

Potential applications to reward shaping. Intrinsic rewards can be thought of as a specific instance
of reward shaping [23] – the practice of incorporating auxiliary reward terms to boost overall task
performance, which is key to the success of RL in many applications (see examples in [24, 25]).
Balancing auxiliary reward terms against the task reward is tedious and often necessitates extensive
hyperparameter sweeps. Because the EIPO formulation makes no assumptions specific to intrinsic
rewards, its success in balancing the RND auxiliary reward suggests it might also be applicable in
other reward shaping scenarios.
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