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Abstract

This paper investigates simultaneous preference and metric learning from a crowd
of respondents. A set of items represented by d-dimensional feature vectors and
paired comparisons of the form “item i is preferable to item j” made by each
user is given. Our model jointly learns a distance metric that characterizes the
crowd’s general measure of item similarities along with a latent ideal point for
each user reflecting their individual preferences. This model has the flexibility to
capture individual preferences, while enjoying a metric learning sample cost that is
amortized over the crowd. We first study this problem in a noiseless, continuous
response setting (i.e., responses equal to differences of item distances) to understand
the fundamental limits of learning. Next, we establish prediction error guarantees
for noisy, binary measurements such as may be collected from human respondents,
and show how the sample complexity improves when the underlying metric is low-
rank. Finally, we establish recovery guarantees under assumptions on the response
distribution. We demonstrate the performance of our model on both simulated data
and on a dataset of color preference judgments across a large number of users.

1 Introduction

In many data-driven recommender systems (e.g., streaming services, online retail), multiple users
interact with a set of items (e.g., movies, products) that are common to all users. While each user has
their individual preferences over these items, there may exist shared structure in how users perceive
items when making preference judgments. This is a reasonable assumption, since collections of
users typically have shared perceptions of similarity between items regardless of their individual item
preferences [1–3]. In this work we develop and analyze models and algorithms for simultaneously
learning individual preferences and the common metric by which users make preference judgments.

Specifically, suppose there exists a known, fixed set X of n items, where each item i ∈ 1, . . . , n is
parameterized by a feature vector xi ∈ Rd. We model the crowd’s preference judgments between
items as corresponding to a common Mahalanobis distance metric dM (x,y) = ∥x− y∥M , where
∥x∥M :=

√
xTMx and M is a d×d positive semidefinite matrix to be learned. Measuring distances

with dM has the effect of reweighting individual features as well as capturing pairwise interactions
between features. To capture individual preferences amongst the items, we associate with each of
K users an ideal point uk ∈ Rd for k ∈ 1, . . . ,K such that user k prefers items that are closer to
uk than those items that are farther away, as measured by the common metric dM . The ideal point
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model is attractive since it can capture nonlinear notions of preference, and preference rankings are
determined simply by sorting item distances to each user point and can therefore be easily generalized
to items outside of X with known embedding features [4–7] . Furthermore, once a user’s point uk is
estimated, in some generative modeling applications it can then be used to synthesize an “ideal” item
for the user located exactly at uk, which by definition would be their most preferred item if it existed.

In order to learn the metric and ideal points, we issue a series of paired comparison queries to each user
in the form “do you prefer item i or item j?” Since such preferences directly correspond to distance
rankings in Rd, these comparisons provide a signal from which the user points {uk}Kk=1 and common
metric M can be estimated. The main contribution of this work is a series of identifiability, prediction,
and recovery guarantees to establish the first theoretical analysis of simultaneous preference and
metric learning from paired comparisons over multiple users. Our key observation is that by modeling
a shared metric between all users rather than learning separate metrics for each user, the sample
complexity is reduced from O(d2) paired comparisons per user to only O(d), which is the sample
cost otherwise required to learn each ideal point; in essence, when amortizing metric and preference
learning over multiple users, the metric comes for free. Our specific contributions include:

• Necessary and sufficient conditions on the number of items and paired comparisons required for
exact preference and metric estimation over generic items, when noiseless differences of item
distances are known exactly. These results characterize the fundamental limits of our problem
in an idealized setting, and demonstrate the benefit of amortized learning over multiple users.
Furthermore, when specialized to K = 1 our results significantly advance the existing theory of
identifiability for single-user simultaneous metric and preference learning [7].

• Prediction guarantees when learning from noisy, one-bit paired comparisons (rather than exact
distance comparisons). We present prediction error bounds for two convex algorithms that learn full-
rank and low-rank metrics respectively, and again illustrate the sample cost benefits of amortization.

• Recovery guarantees on the metric and ideal points when learning from noisy, binary labels under
assumptions on the response distribution. Furthermore, we empirically validate the recovery
performance of our multi-user learning algorithms on both synthetic datasets as well as on real
psychometrics data studying individual and collective color preferences and perception.

Summary of related work: Metric and preference learning are both extensively studied problems
(see [8] and [9] for surveys of each). A common paradigm in metric learning is that by observing
distance comparisons, one can learn a linear [10–12], kernelized [13, 14], or deep metric [15, 16] and
use it for downstream tasks such as classification. Similarly, it is common in preference learning to use
comparisons to learn a ranking or to identify a most preferred item [5,6, 17–19]. An important family
of these algorithms reduces preference learning to identifying an ideal point for a fixed metric [5, 20].
The closest work to ours is [7], who perform metric and preference learning simultaneously from
paired comparisons in the single-user case and propose an alternating minimization algorithm that
achieves empirical success. However, that work leaves open the question of theoretical guarantees
for the simultaneous learning problem, which we address here. A core challenge when establishing
such guarantees is that the data are a function of multiple latent parameters (i.e., unknown metric
and ideal point(s)) that interact with each other in a nonlinear manner, which complicates standard
generalization and identifiability arguments. To this end, we introduce new theoretical tools and
advance the techniques of [12] who showed theoretical guarantees for learning a Mahalanobis metric
from triplet queries. We survey additional related work more extensively in Appendix B.

Notation: Let [K] := 1 . . .K. Unless specified otherwise, ∥·∥ denotes the ℓ2 norm when acting on a
vector, and the operator norm induced by the ℓ2 norm when acting on a matrix. Let ei denote the ith
standard basis vector, 1 the vector of all ones, 0a,b the a× b matrix of all zeros (or 0 if the dimensions
are clear), and I the identity matrix, where the dimensionality is inferred from context. For a
symmetric d× d matrix A, let vec∗(A) := [A1,1,A1,2, . . . ,A1,d,A2,2,A2,3, . . . ,A2,d, . . .Ad,d]

T

denote the vectorized upper triangular portion of A, which is a D-length vector where D :=
d(d+ 1)/2. Let u⊗S v := vec∗(uvT ) denote the unique entries of the Kronecker product between
vectors u,v ∈ Rd, and let ⊙ denote the Hadamard (or element-wise) product between two matrices.

2 Identifiability from unquantized measurements

In this section, we characterize the fundamental limits on the number of items and paired comparisons
per user required to identify M and {uk}Kk=1 exactly. In order to understand the fundamental

2



hardness of this problem, we begin by presenting identifiability guarantees under the idealized case
where we receive exact, noiseless difference of distance measurements1, before deriving similar
results in the case of noisy realizations of the sign of these differences in the following sections.

We formally define our model as follows: if user k responds that they prefer item i to item j, then
∥xi − uk∥M < ∥xj − uk∥M . Equivalently, by defining

δ
(k)
i,j := ∥xi − uk∥2M − ∥xj − uk∥2M = xT

i Mxi − xT
j Mxj − 2uT

kM(xi − xj), (1)

user k prefers item i over item j if δ(k)i,j < 0 (otherwise j is preferred). In this section, we assume that

δ
(k)
i,j is measured exactly, and refer to this measurement type as an unquantized paired comparison.

Let mk denote the number of unquantized paired comparisons answered by user k and let mT :=∑K
k=1mk denote the total number of comparisons made across all users.

It is not immediately clear if recovery of both M and {uk}Kk=1 is possible from such measurements,
which depend quadratically on the item vectors. In particular, one can conceive of pathological
examples where these parameters are not identifiable (i.e., there exists no unique solution). For
instance, suppose d = n, M = αI for a scalar α > 0, xi = ei for i ∈ [n], and for each user
uk = βk1 for a scalar βk. Then one can show that δ(k)i,j = 0 for all i, j, k, and therefore α, β1, . . . , βK
are unidentifiable from any set of paired comparisons over X . In what follows, we derive necessary
and sufficient conditions on the number and geometry of items, number of measurements per user,
and interactions between measurements and users in order for the latent parameters to be identifiable.

Note that eq. (1) includes a nonlinear interaction between M and uk; however, by defining vk :=
−2Muk (which we refer to as user k’s “pseudo-ideal point,” reflecting the component of uk in the
column space of M ) eq. (1) becomes linear in M and vk:

δ
(k)
i,j = xT

i Mxi − xT
j Mxj + (xi − xj)

Tvk. (2)

If M is full-rank and the system of equations admits unique solutions for M and {vk}Kk=1, then
uk can be recovered exactly from vk.2 In other words, the non-convex eq. (1) can be solved in two
stages by first solving a linear relaxation (2) in terms of M and vk, and then solving for uk. Note
that since M is symmetric, we may write xT

i Mxi = ⟨vec∗(2M − I ⊙M),xi ⊗S xi⟩. Defining
ν(M) := vec∗(2M − I ⊙M), from which M can be determined, we have

δ
(k)
i,j =

[
(xi ⊗S xi − xj ⊗S xj)

T (xi − xj)
T
] [ν(M)

vk

]
.

By concatenating all user measurements in a single linear system, we can directly show conditions
for identifiability of M and {vk}Kk=1 by characterizing when the system admits a unique solution. To
do so, we define a class of matrices that will encode the item indices in each pair queried to each user:
Definition 2.1. A a× b matrix S is a selection matrix if for every i ∈ [a], there exist distinct indices
pi, qi ∈ [b] such that S[i, pi] = 1, S[i, qi] = −1, and S[i, j] = 0 for j ∈ [b] \ {pi, qi}.

In Appendix C, we characterize several theoretical properties of selection matrices, which will be
useful in proving the results that follow.

For each user k, we represent their queried pairs by amk×n selection matrix denoted Sk, where each
row selects a pair of items corresponding to its nonzero entries. Letting X := [x1, . . . ,xn] ∈ Rd×n,
X⊗ := [x1 ⊗S x1, . . . ,xn ⊗S xn] ∈ RD×n, and δk ∈ Rmk denote the vector of unquantized
measurement values for user k, we can write the entire linear system over all users as a set of mT

equations with D + dK variables to be recovered:

Γ


ν(M)
v1

...
vK

 =

 δ1
...

δK

 where Γ :=


S1X

T
⊗ S1X

T 0m1,d · · · 0m1,d

S2X
T
⊗ 0m2,d S2X

T · · · 0m2,d

...
...

...
...

...
SKXT

⊗ 0mK ,d 0mK ,d · · · SKXT

 . (3)

1We use the term “measurement” interchangeably with “paired comparison.”
2If M were rank deficient, only the component of uk in the row space of M affects δ(k)i,j . In this case, there

is an equivalence class of user points that accurately model their responses. We then take uk to be the minimum
norm solution, i.e., uk = − 1

2
M†vk. This generalizes Proposition 1 of [7] for the multiple user case.
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From this linear system, it is clear that ν(M) (and hence M ) and {vk}Kk=1 (and hence {uk}Kk=1,
if M is full-rank) can be recovered exactly if and only if Γ has full column rank. In the following
sections, we present necessary and sufficient conditions for this to occur.

2.1 Necessary conditions for identifiability

To build intuition, note that the metric M has D degrees of freedom and each of the K pseudo-ideal
points vk has d degrees of freedom. Hence, there must be at least mT ≥ D +Kd measurements in
total (i.e., rows of Γ) to have any hope of identifying M and {vk}Kk=1. When amortized over the K
users, this corresponds to each user providing at least d+ D/K measurements on average. In general,
d of these measurements are responsible for identifying each user’s own pseudo-ideal point (since vk

is purely a function of user k’s responses), while the remaining D/K contribute towards a collective
set of D measurements needed to identify the common metric. While these D measurements must be
linearly independent from each other and from those used to learn the ideal points, a degree of overlap
is acceptable in the additional d measurements each user provides, as the vk’s are independent of one
another. We formalize this intuition in the following proposition, where we let ST := [ST

1 , . . . ,S
T
K ]T

denote the concatenation of all user selection matrices.

Proposition 2.1. If Γ has full column rank, then
∑K

k=1mk ≥ D + dK and the following must hold:

(a) for all k ∈ [K], rank(SkX
T ) = d, and therefore rank(Sk) ≥ d and mk ≥ d

(b)
∑K

k=1 rank(Sk

[
XT

⊗ XT
]
) ≥ D + dK, and therefore

∑K
k=1 rank(Sk) ≥ D + dK

(c) rank(ST

[
XT

⊗ XT
]
) = D+d, and therefore rank(ST ) ≥ D+d, rank(

[
XT

⊗ XT
]
) =

D + d, and n ≥ D + d+ 1

If
∑K

k=1mk = D + dK exactly, then (a) and (b) are equivalent to mk ≥ d ∀ k and each user’s
selection matrix having full row rank. (c) implies that the number of required items n scales as Ω(d2);
in higher dimensional feature spaces, this scaling could present a challenge since it might be difficult
in practice to collect such a large number of items for querying. Finally, note that the conditions in
Proposition 2.1 are not sufficient for identifiability: in Appendix C.6, we present a counterexample
where these necessary properties are fulfilled, yet the system is not invertible.

2.2 Sufficient condition for identifiability

Next, we present a class of pair selection schemes that are sufficient for parameter identifiability
and match the item and measurement count lower bounds in Proposition 2.1. This result leverages
the idea that as long the the d measurements each user provides to learn their ideal point do not
“overlap” with the D measurements collectively provided to learn the metric, then the set of mT total
measurements is sufficiently rich to ensure a unique solution. First, we define a property of certain
selection matrices where each pair introduces at least one new item that has not yet been selected:

Definition 2.2. An m × n selection matrix S is incremental if for all i ∈ [m], at least one of the
following is true, where pi and qi are as defined in Definition 2.1: (a) for all j < i, S[j, pi] = 0; (b)
for all j < i, S[j, qi] = 0.

We now present a class of invertible measurement schemes that builds on the definition of incremental-
ity. For simplicity assume thatmT = D+dK exactly, which is the lower bound from Proposition 2.1.
Additionally, assume without loss of generality that each mk > d; if instead there existed a user k∗
such that mk∗ = d exactly, one can show under the necessary conditions in Proposition 2.1 that the
system would separate into two subproblems where first the metric would need to be learned from
the other K − 1 users, and then vk∗ is solved for directly from user k∗’s measurements.

Proposition 2.2. Let K ≥ 1, and suppose mk > d ∀ k ∈ [K], mT = D + dK, and n ≥ D + d+ 1.
Suppose that for each k ∈ [K], there exists a d× n selection matrix S

(1)
k and mk − d× n selection

matrix S
(2)
k such that Sk = [ (S(1)

k )T (S
(2)
k )T ]

T , and that the following are true:

(a) For all k ∈ [K], rank(S(1)
k ) = d
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(b) Defining the D × n selection matrix S(2) as S(2) := [ (S(2)
1 )T ··· (S

(2)
K )T ]

T , there exists a

D ×D permutation P such that for each k ∈ [K],
[

S
(1)
k

PS(2)

]
is incremental

Additionally, suppose each item xi is sampled i.i.d. from a distribution pX that is absolutely continu-
ous with respect to the Lebesgue measure. Then with probability 1, Γ has full column rank.

Remark 2.3. In Appendix C.6 we construct a pair selection scheme that satisfies the conditions3

in Proposition 2.2 while only using the minimum number of measurements and items, with mk =
d+D/K (and therefore mT = D+ dK) and n = D+ d+1. Importantly, this construction confirms
that the lower bounds on the number of measurements and items in Proposition 2.1 are in fact tight.
Since D = O(d2), if K = Ω(d) then only mk = O(d) measurements are required per user. This
scaling demonstrates the benefit of amortizing metric learning across multiple users, since in the
single user case D + d = Ω(d2) measurements would be required.

2.3 Single user case

In the case of a single user (K = 1), it is straightforward to show that the necessary and sufficient
selection conditions in Proposition 2.1 and Proposition 2.2 respectively are equivalent, and simplify
to the condition that rank(S) ≥ D + d (where we drop the subscript on S1). In a typical use case, a
practitioner is unlikely to explicitly select pair indices that result in S being full-rank, and instead
would select pairs uniformly at random from the set of

(
n
2

)
unique item pairs. By proving a tail bound

on the number of random comparisons required for S to be full-rank, we have with high probability
that randomly selected pairs are sufficient for metric and preference identifiability in the single user
case. We summarize these results in the following corollary:

Corollary 2.3.1. When K = 1, if Γ is full column rank then rank(S) ≥ D + d. Conversely, for
a fixed S satisfying rank(S) ≥ D + d, if each xi is sampled i.i.d. according to a distribution pX
that is absolutely continuous with respect to the Lebesgue measure then Γ is full column rank with
probability 1. If each pair is selected independently and uniformly at random with n = Ω(D+d) and
mT = Ω(D + d), then if xi is drawn i.i.d. from pX , Γ has full column rank with high probability.

Importantly, the required item and sample complexity for randomly selected pairs matches the lower
bounds in Proposition 2.1 up to a constant. As we describe in Appendix C.7, we conjecture that a
similar result holds for the multiuser case (K > 1), which is left to future work.

3 Prediction and generalization from binary labels

In practice, we do not have access to exact difference of distance measurements. Instead, paired
comparisons are one-bit measurements (given by the user preferring one item over the other) that are
sometimes noisy due to inconsistent user behavior or from model deviations. In this case, rather than
simply solving a linear system, we must optimize a loss function that penalizes incorrect response
predictions while enforcing the structure of our model. In this section, we apply a different set of
tools from statistical learning theory to characterize the sample complexity of randomly selected
paired comparisons under a general noise model, optimized under a general class of loss functions.

We assume that each pair p is sampled uniformly with replacement from the set of
(
n
2

)
pairs, and

the user k queried at each iteration is independently and uniformly sampled from the set of K users.
For a pair p = (i, j) given to user k, we observe a (possibly noisy) binary response y(k)p where
y
(k)
p = −1 indicates that user k prefers item i to j, and y(k)p = 1 indicates that j is preferred. Let
S := {(p, k, y(k)p )}p=(i,j) be an i.i.d. joint dataset over pairs p, selected users k, and responses y(k)p ,
where |S| denotes the number of such data points. We wish to learn M and vectors {uk}Kk=1 that

3We note that these conditions are not exhaustive: in Appendix C.6 we construct an example where Γ is
full column rank, yet the conditions in Proposition 2.2 are not met. A general set of matching necessary and
sufficient identifiability conditions on {Sk}Kk=1 has remained elusive; towards this end, in Appendix C.7 we
describe a more comprehensive set of conditions that we conjecture are sufficient for identifiability.
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predict the responses in S: given a convex, L-Lipschitz loss ℓ : R → R≥0,
4 we wish to solve

min
M ,{uk}K

k=1

1

|S|
∑
S
ℓ
(
y(k)p

(
∥uk − xi∥2M − ∥uk − xj∥2M

))
s.t. M ⪰ 0, ∥M∥F ≤ λF , ∥uk∥2 ≤ λu ∀ k ∈ [K], |δ(k)i,j | ≤ γ ∀ i, j, k

(4)

where λF , λu, γ > 0 are hyperparameters and δ(k)p is defined as in eq. (1). The constraint M ⪰ 0
ensures that M defines a metric, the Frobenius and ℓ2 norm constraints prevent overfitting, and the
constraint on δ(k)p is a technical point to avoid pathological cases stemming from coherent x vectors.

The above optimization is non-convex due to the interaction between the M and u terms. Instead, as
in Section 2 we define vk := −2Muk and solve the relaxation5

min
M,{vk}Kk=1

R̂(M , {vk}Kk=1) s.t. M ⪰ 0, ∥M∥F ≤ λF , ∥vk∥2 ≤ λv ∀ k ∈ [K], |δ(k)i,j | ≤ γ ∀ i, j, k

where R̂(M , {vk}Kk=1) :=
1

|S|
∑
S

ℓ
(
y(k)
p

(
xT

i Mxi − xT
j Mxj + vT

k (xi − xj)
))

.
(5)

The quantity R̂(M , {vk}Kk=1) is the empirical risk, given dataset S . The empirical risk is an unbiased
estimate of the true risk given by

R(M , {vk}Kk=1) := E
[
ℓ
(
y(k)p

(
xT
i Mxi − xT

j Mxj + vT
k (xi − xj)

))]
,

where the expectation is with respect to a random draw of p = (i, j), k, and y(k)p conditioned on the
choice of p and k. Let M̂ and {v̂k}Kk=1 denote the minimizers of the empirical risk optimization
in eq. (5), and let M∗ and {v∗

k}Kk=1 minimize the true risk, subject to the same constraints. The
following theorem bounds the excess risk of the empirical optimum R(M̂ , {v̂k}Kk=1) relative to the
optimal true risk R(M∗, {v∗

k}Kk=1).
Theorem 3.1. Suppose ∥xi∥2 ≤ 1 for all i ∈ [n]. With probability at least 1− δ,

R(M̂ , {v̂k}Kk=1)−R(M∗, {v∗
k}Kk=1) ≤

√
256L2(λ2F +Kλ2v)

|S|
log(d2 + d+ 1)

+

√
128L2(λ2F +Kλ2v)

3|S|
log(d2 + d+ 1) +

√
8L2γ2 log( 2δ )

|S|
.

(6)

Remark 3.2. To put this result in context, suppose ∥M∗∥F = d so that the average squared magnitude
of each entry is a constant, in which case we can set λF = d. Similarly, if each entry of vk is
dimensionless, then ∥vk∥2 ∝

√
d and so we can set λv =

√
d. We then have that the excess risk

in eq. (6) is Õ
(√

d2+Kd
|S|

)
where Õ suppresses logarithmic factors, implying a sample complexity

of d2 +Kd measurements across all users, and therefore an average of d + d2/K measurements
per user. If K = Ω(d), this is equivalent to Õ(d) measurements per user, which corresponds to the
parametric rate required per user in order to estimate their pseudo-ideal point vk. Similar to the case
of unquantized measurements, the O(d2) sample cost of estimating the metric from noisy one-bit
comparisons has been amortized across all users, demonstrating the benefit of learning multiple user
preferences simultaneously when the users share a common metric.

3.1 Low-rank modeling

In many settings, the metric M may be low-rank with rank r < d [8, 12]. In this case, M only
has dr degrees of freedom rather than d2 degrees as in the full-rank case. Therefore if K = Ω(d),
we intuitively expect the sample cost of learning the metric to be amortized to a cost of O(r)

4We restrict ourselves to the case where the loss is a function of y(k)
p

(
∥uk − xi∥2M − ∥uk − xj∥2M

)
.

5Specifically we may choose λv = 2λFλu, resulting in a constraint set containing the solution to (4). To
see this, let M∗, {u∗

k}Kk=1 be the solution to (4) and define v∗
k = −2M∗u∗

k. Then ∥v∗
k∥2 = 2∥M∗u∗

k∥2 ≤
2∥M∗∥∥u∗

k∥2 ≤ 2∥M∗∥F ∥u∗
k∥2 ≤ 2λFλu.

6



measurements per user. Furthermore, as each vk is contained in the r-dimensional column space
of M , we also expect a sample complexity of O(r) to learn each user’s pseudo-ideal point. Hence,
we expect the amortized sample cost per user to be O(r) in the low-rank setting, which can be a
significant improvement over O(d) in the full-rank setting when r ≪ d.

Algorithmically, ideally one would constrain the M̂ and {v̂k}Kk=1 that minimize the empirical
risk such that rank(M) = r and vk ∈ colsp(M); unfortunately, such constraints are not convex.
Towards a convex algorithm, note that since vk ∈ colsp(M), rank([M , v1, ··· , vK ]) = rank(M) =
r. Thus, it is sufficient to constrain the rank of [M , v1, ··· , vK ]. We relax this constraint to a convex
constraint on the nuclear norm ∥[M v1 ··· vK ]∥∗, and solve a similar optimization problem to eq. (5):

min
M ,{vk}K

k=1

R̂(M , {vk}Kk=1) s.t. M ⪰ 0, ∥[M v1 · · · vK ]∥∗ ≤ λ∗, |δ(k)i,j | ≤ γ ∀ i, j, k. (7)

We again let M∗ and {v∗
k}Kk=1 minimize the true risk R(M , {vk}Kk=1), subject to the same con-

straints. The following theorem bounds the excess risk over this constraint set:
Theorem 3.3. Suppose ∥xi∥2 ≤ 1 for all i ∈ [n]. With probability at least 1− δ,

R(M̂ , {v̂k}Kk=1)−R(M∗, {v∗
k}Kk=1) ≤2L

√
2λ2

∗ log(2d+K)

|S|

[(
8 +

4min(d, n)

K

)
∥X∥2
n

+
16√
K

]

+
8Lλ∗

3|S| log(2d+K) +

√
8L2γ2 log(2/δ)

|S| .

To put this result in context, suppose that the items xi and ideal points uk are sampled i.i.d. from
N (0, 1dI). With this item distribution it is straightforward to show that with high probability,
∥X∥2 = O(nd ) (see [21]). For a given r < d let M = d√

r
LLT , where L is a d × r matrix with

orthonormal columns sampled uniformly from the Grassmanian. With this choice of scaling we have
∥M∥F = d, so that each element of M is dimensionless on average. Furthermore, recalling that
vk = −2Muk, with this choice of scaling E[∥vk∥22] ∝ d and so each entry of vk on average is
dimensionless. To choose a setting for λ∗ recall that [M ,v1, . . .vK ] has rank r and therefore

∥[M v1 · · · vK ]∥∗ ≤
√
r∥[M v1 · · · vK ]∥F ≤

√
r(d2 +K max

k∈[K]
∥vk∥22),

which one can show is O(
√
r(d2 + dK logK)) with high probability and so we set λ∗ =

O
(√

r(d2 + dK logK)
)

. With these term scalings, we have the following corollary:

Corollary 3.3.1. Let n ≥ d, xi,uk ∼ N (0, 1dI) and M = d√
r
LLT , where L is a d× r matrix with

orthonormal columns. If K = Ω(d2), then in the same setting as Theorem 3.3 with high probability

R(M̂ , {v̂k}Kk=1)−R(M∗, {v∗
k}Kk=1) = Õ

(√
dr +Kr

|S|

)
.

Remark 3.4. The scaling |S| = O(dr+Kr) matches our intuition thatO(dr) collective measurements
should be made across all users to account for the dr degrees of freedom in M , in addition to O(r)
measurements per user to resolve their own pseudo-ideal point’s r degrees of freedom. If K = Ω(d),
then each user answering O(r) queries is sufficient to amortize the cost of learning the metric with
the same order of measurements per user as is required for their ideal point. Although Corollary 3.3.1
requires the even stronger condition that K = Ω(d2), we believe this is an artifact of our analysis and
that K = Ω(d) should suffice.6 Even so, a Ω(d2) user count scaling might be reasonable in practice
since recommender systems typically operate over large populations of users.

6The required user scaling of K = Ω(d2) implies that Corollary 3.3.1 only recovers an amortized scaling of
O(r) measurements per user if the user count is very large. Nevertheless, the original statement of Theorem 3.3
does apply for any user count, and in this case the only drawback to not invoking K = Ω(d2) is that the
amortized scaling is larger than O(r + dr/K) measurements per user. We believe this scaling can in fact be
tightened to O(r + dr/K) measurements per user for all user counts K (not just K = Ω(d2)), which we leave
to future work. See the proof of Corollary 3.3.1 for additional discussion.
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4 Recovery guarantees

The results in the previous section give guarantees on the generalization error of a learned metric
and ideal points when predicting pair responses over X , but do not bound the recovery error of the
learned parameters M̂ , {v̂k}Kk=1 with respect to M∗ and {v∗

k}Kk=1. Yet, in some settings such as data
generated from human responses [22,23] it may be reasonable to assume that a true M∗ and {v∗

k}Kk=1
do exist that generate the observed data (rather than serving only as a model) and that practitioners
may wish to estimate and interpret these latent variables, in which case accurate recovery is critical.
Unfortunately, for an arbitrary noise model and loss function, recovering M∗ and {v∗

k}Kk=1 exactly
is generally impossible if the model is not identifiable. However, we now show that with a small
amount of additional structure, one can ensure that M̂ and {v̂k}Kk=1 accurately approximate M∗

and {v∗
k}Kk=1 if a sufficient number of one-bit comparisons are collected.

We assume a model akin to that of [12] for the case of triplet metric learning. Let f : R → [0, 1]
be a strictly monotonically increasing link function satisfying f(x) = 1 − f(−x); for example,
f(x) = (1 + e−x)−1 is the logistic link and f(x) = Φ(x) is the probit link where Φ(·) denotes the
CDF of a standard normal distribution. Defining δp(M ,v) := xT

i Mxi − xT
j Mxj + vT (xi − xj)

for p = (i, j), we assume that P(y(k)p = −1) = f (−δp(M∗,v∗
k)) for some M∗ ⪰ 0 and v∗

k ∈
colsp(M∗). This naturally reflects the idea that some queries are easier to answer (and thus less
noisy) than others. For instance, if δ(k)ij ≪ 0 such as may occur when xi very nearly equals user

k’s ideal point, we may assume that user k almost always prefers item i to j and so f(−δ(k)ij ) → 1
(since f is monotonic). Furthermore, we assume that eq. (5) is optimized with the negative log-
likelihood loss ℓf induced by f : ℓf (yp, p;M ,v) := − log(f(ypδp(M ,vk))). In Appendix E, we
show that we may lower bound the excess risk of M̂ , {v̂k}Kk=1 by the squared error between the
unquantized measurements corresponding to M̂ , {v̂k}Kk=1 and M∗, {v∗

k}Kk=1. We then utilize tools
from Section 2 combined with the results in Section 3 to arrive at the following recovery guarantee.
Theorem 4.1. Fix a strictly monotonic link function f satisfying f(x) = 1− f(−x). Suppose for a
given item set X with n ≥ D + d+ 1 and ∥xi∥ ≤ 1 ∀ i ∈ [n] that the pairs and users in dataset S
are sampled independently and uniformly at random, and that user responses are sampled according
to P(y(k)p = −1) = f (−δp(M∗,v∗

k)) where M∗, {v∗
k}Kk=1 satisfy the constraints in (5). Let M̂ ,

{v̂k}Kk=1 be the solution to (5) solved using loss ℓf . Then with probability at least 1− δ,

1

n
σmin

(
J [XT

⊗ ,XT ]
)2(

∥M̂ −M∗∥2F +
1

K

K∑
k=1

∥v̂k − v∗
k∥

2

)
≤

4

C2
f

√
L2(λ2

F +Kλ2
v)

|S| log(d2 + d+ 1) +

√
8L2(λ2

F +Kλ2
v)

3C2
f |S|

log(d2 + d+ 1) +
1

C2
f

√
L2γ2 log( 2

δ
)

2|S| ,

where Cf = minz:|z|≤γ f
′(z) and J := In − 1

n1n1
T
n is the centering matrix. Furthermore, if

X is constructed by sampling each item i.i.d. from a distribution pX with support on the unit
ball that is absolutely continuous with respect to the Lebesgue measure, then with probability 1,
σmin

(
J [XT

⊗,X
T ]
)
> 0.

Remark 4.2. The key conclusion from this result is that since σmin

(
J [XT

⊗,X
T ]
)
> 0 almost surely,

the recovery error of M̂ , {v̂k}Kk=1 with respect to M∗, {v∗
k}Kk=1 is upper bounded by a decreasing

function of the number of data points, |S|. In other words, the metric and pseudo-ideal points are
identifiable from one-bit paired comparisons under an assumed response distribution. As discussed in
Section 2, the ideal points {u∗

k}Kk=1 are then also identifiable as long as M∗ is full-rank. We present
an analogous result for the case of a low-rank metric in Appendix E, and leave to future work a study
of the scaling of σmin

(
J [XT

⊗,X
T ]
)

with respect to d and n.

5 Experimental results

Below we analyze the performance of the empirical risk minimizers given in eqs. (5) and (7) on both
simulated and real-world data,7 with further details deferred to Appendix F.

7Code available at https://github.com/gregcanal/multiuser-metric-preference
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Simulated experiments: We first simulate data in a similar setting to Cor. 3.3.1 where xi,uk ∼
N (0, 1dI) and M∗ = d√

r
LLT where L ∈ Rd×r is a random orthogonal matrix. To construct the

training dataset, we query a fixed number of randomly selected pairs per user and evaluate prediction
accuracy on a held-out test set, where all responses are generated according to a logistic link function
(injecting response noise). We evaluate the prediction accuracy of the Frobenius norm regularized
optimization in eq. (5) (referred to as Frobenius metric), designed for full-rank matrix recovery, as
well as the nuclear norm regularized optimization in eq. (7) (referred to as Nuclear full), designed for
low-rank metrics. We also compare against several ablation methods that modify the constraint sets in
(5) and (7): Nuclear metric, where ∥M∥∗ and ∥vk∥2 are constrained; Nuclear split, where ∥M∥∗
and ∥[v1, · · · ,vK ]∥∗ are constrained; and PSD only, where only M ⪰ 0 is enforced. We also
compare against Nuclear full, single, which is equivalent to Nuclear full when applied separately to
each user (learning a unique metric and ideal point), where test accuracy is averaged over all users.
To compare performance under a best-case hyperparameter setting, we tune each method’s respective
constraints using oracle knowledge of M∗ and {u∗

k}Kk=1. Finally, we also evaluate prediction
accuracy when the ground-truth parameters are known exactly (i.e., M = M∗,vk = −2M∗u∗

k),
which we call Oracle. This accuracy gives the “best case” performance, and reflects the inherent
response noise in the generated data.

To test a low-rank setting, we set d = 10, r = 1, n = 100, and K = 10. We observe that Nuclear
full outperforms the baseline methods in terms of test accuracy, and is closely followed by Nuclear
split (Fig. 1a). Interestingly Nuclear metric, which also enforces a nuclear norm constraint on M ,
does not perform as well, possibly because it does not encourage the pseudo-ideal points to lie in the
same low-rank subspace. While Nuclear metric does demonstrate slightly improved metric recovery
(Fig. 1b), Nuclear full and Nuclear split recover higher quality metrics for lower query counts
(which is the typical operating regime for human-in-the-loop systems) and exhibit significantly better
ideal point recovery (Fig. 1c), illustrating the importance of proper subspace alignment between
the pseudo-ideal points. To this end, unlike Nuclear split, Nuclear full explicitly encourages the
pseudo-ideal points to align with the column space of M , which may explain its slight advantage.
Finally, we note that Nuclear full, single results in the worst prediction accuracy, demonstrating the
benefit of a common metric model when the underlying metric is in fact shared. While the single
user case is not the focus of this work, in Appendix F.4 we compare the performance of Nuclear full,
single against the methods proposed in [7], which only considers the single user case.

Color dataset: We also study the performance of our model on a dataset of pairwise color preferences
across multiple respondents (K = 48) [24]. In this setting, each color (n = 37) is represented as a
3-dimensional vector in CIELAB color space (lightness, red vs. green, blue vs. yellow), which was
designed as a uniform space for how humans perceive color [25]. Each respondent was asked to order
pairs of color by preference, as described in [26, Sec. 3.1]. Since all 2

(
37
2

)
possible pairs (including

each pair reversal) were queried for each respondent, we may simulate random pair sampling exactly.

As there are only d = 3 features, we constrain the Frobenius norm of the metric and optimize eq. (5)
using the hinge loss. Varying the number of pairs queried per user, we plot prediction accuracy
on a held-out test set (Learned M, crowd in Fig. 1d). As CIELAB is designed to be perceptually
uniform, we compare against a solution to eq. (5) that fixes M = I and only learns the points
{vk}48k=1 (Identity M in Fig. 1d). This method leads to markedly lower prediction accuracy than
simultaneously learning the metric and ideal points; this result suggests that although people’s
perception of color is uniform in this space, their preferences are not. We also compare against
a baseline that solves the same optimization as eq. (5) separately for each individual respondent
(learning a unique metric and ideal point per user), with prediction accuracy averaged over all
respondents (Learned M, single in Fig. 1d). Although learning individual metrics appears to result in
better prediction after many queries, in the low-query regime (< 20 pairs per user) learning a common
metric across all users results in slightly improved performance (see Appendix F for zoomed plot).
As d = 3 is small relative to the number of queries given to each user, the success of individual metric
learning is not unexpected; however, collecting O(d2) samples per user is generally infeasible for
larger d unlike collective metric learning which benefits from crowd amortization. Finally, learning
a single metric common to all users allows for insights into the crowd’s general measure of color
similarity. As can be seen in Fig. 1e, the learned metric is dominated by the “lightness” feature,
indicating that people’s preferences correspond most strongly to a color’s lightness. As an external
validation, this is consistent with the findings of Fig. 1 of [24].
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Figure 1: (a-c) Normally distributed items with d = 10, r = 1, n = 100 and K = 10. Error
bars indicate ±1 standard error about the sample mean. For visual clarity, PSD only and Nuclear
full, single baselines are omitted from (b-c) due to poor performance. (d) Average color preference
prediction accuracy, where error bars indicate 2.5% and 97.5% percentiles. (e) Estimated color
preference metric. For (a-e), random train/test splitting was repeated over 30 trials.

6 Discussion

The main contribution of this work is a model for multi-user simultaneous metric and preference
learning consisting of a shared metric that captures the crowd’s common perceptions between items,
as well as user-specific ideal points that characterize individual preferences. Our core result is that
when querying paired comparisons over a large number of users, the sample cost of metric learning
is distributed over the crowd, with the total number of queries per user scaling with the rank of the
underlying metric.

One interesting avenue for future work is to study more flexible metric models, since as with
any Mahalanobis metric model it may not be the case that linear weightings of quadratic feature
combinations provide enough flexibility to adequately model certain preference judgements. While it
may be possible to generalize the linear metric results studied here to a more general Hilbert space,
another avenue to increase model flexibility is to acquire a richer set of features in the item set, which
would typically involve increasing the ambient dimension. In this setting, an important consideration
would be to ameliorate the requirement that the number of items scales as Ω(d2). While this condition
is necessary for identifiability if the metric is full-rank, we believe that the item count should only
need to scale as Ω(dr) if the metric has rank r < d (see Appendix C.3 for additional discussion).
Furthermore, in the case of metric learning from triplet queries it is known that only Ω(r) items
are required for metric recovery in the low-rank case [12]. This suggests a potential strategy of
supplementing paired comparisons with triplet queries to reduce the number of required items.
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A Broader impacts

With the deployment of the ideal point model with a learned metric comes all of the challenges,
impacts, and considerations associated with preference learning and recommender systems, such as if
the deployed recommender system produces preference estimates and item recommendations that are
aligned with the values and goals of the users and society as a whole, and if the item features are
selected in a way that is diverse enough to adequately model all users and items. Therefore, we limit
our broader impacts discussion to the challenges specific to our model.

As with any statistical model, the utility of our common metric ideal point model is limited by
the accuracy to which it captures the patterns observed in the response data. The most immediate
question about our model is the appropriateness of the assumption that a single metric is shared
among all users. Such a model can prove useful in practice since it directly allows for shared structure
between users and shared information between their measurements, and furthermore allows for a
direct interpretation of preference at the crowd level, as we demonstrate with color preference data in
Section 5. However, with this model comes the implicit assumption that users are homogeneous in
their preference judgements. In many recommender systems the assumption of a common preference
metric will likely be violated, due to heterogeneous user bases and subpopulations of users.

In general, there are almost certainly individual differences between each user’s notion of item
similarity and preference, and hence recovery of a single crowd metric should not necessarily be
taken to mean that it describes each individual exactly. Although our model does provide a degree of
individual flexibility through its use of ideal points (rather than treating the entire crowd’s responses
as coming from a single user), the result of a common metric violation may be that the learned
population metric will fit to the behavior of the majority, or may fail to capture some aspect of each
individual user’s preference judgements. Our model could certainly be applied individually to each
user, such that they each learn their own metric: however, as we demonstrate in our theoretical
and empirical results, there is a fundamental sample complexity tradeoff in that to learn individual
metrics, many more samples are needed per user, unlike the case of a common metric model where
measurements are amortized.

The impacts of such a mismatch on an individual or subpopulation can range from inconvenient,
such as in getting poor recommendations for online shopping or streaming services, to actively
harmful, such as in receiving poor recommendations for a major decision (e.g., medical) that would
otherwise suit the population majority. To prevent such cases, before deploying a common metric
model it is important to not only average performance across the entire population (which will
reflect the majority), but also evaluate worst-case performance on any given user or subpopulation.
Such considerations are especially important if the common metric is not only used for predicting
preferences between items, but also used to make inferences about a population by directly examining
the metric entries (as we demonstrate for color preferences in Section 5). If the metric only applies to
the majority or the population in the aggregate, then such inferences about feature preferences may
not be accurate for individual users or subpopulations.

Beyond considering the effects of skewed modeling of individual users or subpopulations, it is
important to consider potentially harmful effects of a common metric preference model when arriving
at item rankings. While the item set examples discussed here include non-human objects such as
movies and products, more generally the term “item” may be used in an abstract sense to include
people, such as when building recommender systems for an admissions or hiring committee to select
between job or school applicants (see [7] for a preference learning example on graduate school
admissions data). In this context, the “users” may be a separate population (such as an admissions
committee) that is making preference judgements about individual candidates (i.e., the “items”). In
such cases, it is critical that extra precautions be taken and considerations be made for any possible
biases that may be present across the population of users and reflected in the common metric. For
example, if a majority of an admissions committee shared certain implicit biases when making
preference decisions between candidates, such biases may be learned in a common metric. On the
other hand, the existence of a common metric potentially allows for interpretation and insight into
the features by which a committee is making its decisions, possibly allowing for intervention and
bias mitigation if it is observed that the committee population is sharing a bias with regard to certain
candidate features. While our model could be applied to each individual to avoid the challenges
described above, there is a fundamental tradeoff in the sample complexity cost per user required to
obtain individual models, which our results elucidate.
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B Related work

Metric learning has received considerable attention and classical techniques are nicely summarized
in the monographs [8, 27]. Efficient algorithms exist for a variety of data sources such as class
labels [10, 11] and triplet comparisons [12]. Classical metric learning techniques focus on learning
linear (Mahalanobis) metrics parametrized by a positive (semi-)definite matrix. In the case of learning
linear metrics from triplet observations, [12, 28] establish tight generalization error guarantees. In
practice, to handle increasingly complex learning problems, it is common to leverage more expressive,
nonlinear metrics that are parametrized by kernels or deep neural networks and we refer the reader
to [13–15] for a survey of nonlinear metric learning techniques. The core idea of many kernelized
metric learning algorithms is that one can use Kernelized-PCA to reduce the nonlinear metric learning
problem over n items to learning a linear metric in Rn via a kernel trick on the empirical Gram
matrix. The downside to this approach is that the learned metric need not apply to new items other
than those contained in the original n.

To circumvent this issue, works such as [16] have proposed deep metric learning. Intuitively, in the
linear case one may factor a metric M as M = LLT and could instead learn a matrix L ∈ Rd×r.
In the case of deep metric learning, the same principle applies except that L is replaced with a map
L : Rd → Rr given by a deep neural network such that the final metric is d(x, y) = ∥L(x)−L(y)∥2.
While the theory of nonlinear metric learning is less mature, [29,30] provide generalization guarantees
for deep metric learning using neural tangent kernel and Rademacher analyses respectively. Finally,
metric learning is a closely related to the problem of ordinal embedding: [17, 31, 32] propose active
sampling techniques for ordinal embedding whereas [33] establishes learning guarantees for passive
algorithms.

Preference learning from paired comparisons is a well-studied problem spanning machine learning,
psychology, and social sciences, and we refer the reader to [9] for a comprehensive summary of
approaches and problem statements. Researchers have proposed a multitude of models ranging
from classical techniques such as the Bradley-Terry model [34, 35], Plackett-Luce model [36, 37],
and Thurstone model [38] to more modern approaches such as preference learning via Siamese
networks [39] to fit the myriad of tailored applications of preference learning. In the linear setting,
[7, 40–42] among others propose passive learning algorithms whereas [5, 6, 17–19, 43] propose
adaptive sampling procedures. [20] perform localization from paired comparisons, and [44] employ a
Gaussian process approach for learning pairwise preferences from multiple users.

The ideal point model we consider here is well-established in the single user setting [4–7], and differs
fundamentally from models of preference based only on inner products. In the inner product or
“attribute” model of preference, items with larger values of ⟨u,x⟩ are preferred, in which case an
item’s preference can be modified simply by scaling its magnitude. On the other hand, the ideal
point (i.e., distance-based) model accounts for item magnitude, and it has been demonstrated that
distance-based models can more accurately model user preferences [45].

C Proofs and additional results for identifiability from unquantized
measurements

C.1 Properties of selection matrices

In this section, we present several theoretical properties of selection matrices (see Definition 2.1) that
will be useful for proving the results that follow. We begin with a lemma upper bounding the rank of
selection matrices:

Lemma C.1. Let n ≥ 2. For any m× n selection matrix S, rank(S) ≤ min(m,n− 1).

Proof. Since S has m rows, rank(S) ≤ m. By construction, for any selection matrix S note that
1n ∈ ker(S), where 1n is the vector of all ones in Rn. To see this, for any z ∈ Rn the ith element
of Sz is given by z[pi] − z[qi], and so the ith element of S1n is 1 − 1 = 0 and hence Sz = 0.
Therefore, dim(ker(S)) ≥ 1 and so rank(S) ≤ n− 1.

We use this result to show a property of full row rank selection matrices that will be useful for their
construction and analysis:
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Lemma C.2. Let S be an m × n selection matrix with n ≥ m + 1, where for each i ∈ [m] the
nonzero indices of the ith row are given by distinct pi, qi ∈ [n] such that S[i, pi] = 1, S[i, qi] = −1.
If rank(S) = m, then for every subset I ⊆ [m] of row indices, there exists i∗ ∈ I such that
S[j, pi∗ ] = 0 for all j ∈ I \ {i∗}, or S[j, qi∗ ] = 0 for all j ∈ I \ {i∗}.

Proof. Let I ⊆ [m] be given, and suppose by contradiction that no such i∗ exists, i.e., no measurement
in I introduces a new item unseen by any other measurements in I . Let S(I) be the |I| × n selection
matrix consisting of the rows in S listed in I . Since S is full row rank, its rows are linearly
independent, implying that the rows in S(I) are also linearly independent and therefore S(I) has rank
|I|.

Let c ≤ n be the number of columns that S(I) is supported on (i.e., have at least one nonzero entry).
By our contradictory assumption, every item measured in S(I) is measured in at least two rows in I ,
and therefore each of these c columns must have at least 2 nonzero entries. This implies that S(I) has
at least 2c nonzero entries in total. Since each measurement adds exactly 2 nonzero entries to S(I),
this means that there are least 2c/2 = c measurements and so |I| ≥ c.

Now consider the |I|×cmatrix S̃(I) consisting of S(I) with its zero columns removed. rank(S̃(I)) =

rank(S(I)) since S̃(I) and S(I) have the same column space. Since S̃(I) is itself a |I| × c selection
matrix, we know from Lemma C.1 that rank(S̃(I)) ≤ min(|I|, c − 1). Since we know |I| ≥ c,
min(|I|, c− 1) = c− 1, implying rank(S̃(I)) ≤ c− 1. But this is a contradiction since we already
know rank(S̃(I)) = rank(S(I)) = |I| ≥ c.

Intuitively, Lemma C.2 says that if S is full row rank, then every subset of rows contains a row that is
supported on a column that is zero for all other rows in the subset, i.e., at least one row measures a
new item unmeasured by any other row in the subset. This property is related to a selection matrix
being incremental (see Definition 2.2) as follows:
Lemma C.3. Let S be an m × n selection matrix with n ≥ m + 1, where for each i ∈ [m] the
nonzero indices of the ith row are given by distinct pi, qi ∈ [n] such that S[i, pi] = 1, S[i, qi] = −1.
Suppose for every subset I ⊆ [m] of row indices, there exists i∗ ∈ I such that S[j, pi∗ ] = 0 for all
j ∈ I \ {i∗}, or S[j, qi∗ ] = 0 for all j ∈ I \ {i∗}. Then there exists an m×m permutation matrix
P such that PS is incremental.

Proof. We will construct a sequence of row indices such that permuting the rows of S in the sequence
order results in an incremental matrix. Let Im := [m]. By assumption, there exists an index im ∈ Im
such that S[j, pim ] = 0 for all j ∈ [m] \ {im} or S[j, qim ] = 0 for all j ∈ [m] \ {im}. Now let
1 < m′ ≤ m be given, and suppose by induction that there exists a set of distinct indices {ik}mk=m′

such that for all m′ ≤ k ≤ m, S[j, pik ] = 0 for all j ∈ [m] \ {iℓ}mℓ=k or S[j, qik ] = 0 for all
j ∈ [m] \ {iℓ}mℓ=k (we have shown the case of m′ = m above). Let Im′−1 := [m] \ {ik}mk=m′ .
Then by assumption, there exists an index im′−1 ∈ Im′−1 such that S[j, pim′−1

] = 0 for all
j ∈ [m] \ {ik}mk=m′−1 or S[j, qim′−1

] = 0 for all j ∈ [m] \ {ik}mk=m′−1. Therefore, combined with
the fact that im′−1 ∈ [m] \ {ik}mk=m′ along with the inductive assumption on {ik}mk=m′ , {ik}mk=m′−1

constitutes an index set where for all m′ − 1 ≤ k ≤ m, S[j, pik ] = 0 for all j ∈ [m] \ {iℓ}mℓ=k or
S[j, qik ] = 0 for all j ∈ [m] \ {iℓ}mℓ=k.

Taking m′ = 2, we have proved by induction the existence of an index set {i1, . . . , im} that is a
permutation of [m] such that for any k ∈ [m], S[j, pik ] = 0 for all j ∈ [m] \ {iℓ}mℓ=k or S[j, qik ] = 0

for all j ∈ [m]\{iℓ}mℓ=k. By construction, [m]\{iℓ}mℓ=k = {iℓ}k−1
ℓ=1 , so equivalently for any k ∈ [m],

S[ij , pik ] = 0 for all j < k or S[ij , qik ] = 0 for all j < k.

We can then explicitly construct the m×m permutation matrix P as

P [k, ℓ] =

{
1 ℓ = ik
0 otherwise.

Let S′ = PS, p′k = pik and q′k = qik . p′k, q
′
k are the nonzero column indices of the kth row in

the permuted selection matrix S′, since for any ℓ ∈ [n], S′[k, ℓ] = S[ik, ℓ]. We then have for any
k ∈ [m], S′[j, p′k] = S[ij , pik ] = 0 for all j < k or S′[j, q′k] = S[ij , qik ] = 0 for all j < k, and
hence S′ is incremental.
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Furthermore, if a selection matrix S (more specifically, a permutation thereof) is incremental, then it
is also full-rank:
Lemma C.4. Let S be an m × n selection matrix with n ≥ m + 1, and suppose there exists an
m×m permutation matrix P such that PS is incremental. Then S is full-rank with rank(S) = m.

Proof. Denoting the ith row of PS by si, since PS is incremental for all i ∈ [m] there exists a j
such that si[j] ̸= 0 and sℓ[j] = 0 for all ℓ < i. Hence, for all i ∈ [m], si does not lie in the span
of {sℓ}ℓ<i. Starting at i = 2, this implies that s1 and s2 are linearly independent. Let m′ < m be
given, and assume by induction that {sℓ}ℓ≤m′ are linearly independent. Since by assumption sm′+1

does not lie in the span of {sℓ}ℓ≤m′ , the entire set {sℓ}ℓ≤m′+1 is linearly independent. Taking
m′ = m − 1, we have by induction that the rows of PS (i.e., {sℓ}ℓ≤m) are linearly independent,
and since these rows are just a permutation of the rows in S, the m rows in S are also linearly
independent and so rank(S) = m.

We summarize the above lemmas in the following corollary:
Corollary C.4.1. Let S be an m× n selection matrix with n ≥ m+ 1, where for each i ∈ [m] the
nonzero indices of the ith row are given by distinct pi, qi ∈ [n] such that S[i, pi] = 1, S[i, qi] = −1.
Then the following are equivalent:

(a) rank(S) = m.

(b) For every subset I ⊆ [m] of row indices, there exists i∗ ∈ I such that S[j, pi∗ ] = 0 for all
j ∈ I \ {i∗}, or S[j, qi∗ ] = 0 for all j ∈ I \ {i∗}.

(c) There exists an m×m permutation matrix P such that PS is incremental.

Proof. By Lemma C.2, (a) =⇒ (b). By Lemma C.3, (b) =⇒ (c). By Lemma C.4, (c) =⇒ (a).
Combining these implications, (a) ⇐⇒ (b) ⇐⇒ (c).

Another useful corollary lower bounds the number of columns a selection matrix must be supported
on, depending on its rank:
Corollary C.4.2. Let S be a rank r, m× n selection matrix with m ≥ r and n ≥ r + 1. Then at
least r + 1 columns of S have at least one nonzero entry.

Proof. Since rank(S) = r, there exists an index set of r linearly independent rows of S, which we
denote by I ⊆ [m]. Let S′ be the r× n submatrix of S consisting of the rows indexed by I: since its
rows are linearly independent, rank(S′) = r. From Corollary C.4.1, there exists a permutation P of
the rows in S′ such that PS′ is incremental. Since the first row of PS′ introduces two items and
the remaining r − 1 rows each introduce at least one new item, PS′ must be supported on at least
2 + (r − 1) = r + 1 columns. Since the rows in PS′ are contained in S, S must also be supported
on at least r + 1 columns.

When studying random selection matrices in Appendix C.2, it will be useful to understand a particular
graph constructed from the rows of a selection matrix S. For p, q ∈ [n] and p ̸= q, let s(p,q) denote a
vector in Rn given by

s(p,q)[j] =


1 j = p

−1 j = q

0 otherwise.

(8)

Consider a set of r vectors S := {si}ri=1 ⊂ Rn in the form given by eq. (8). We can construct a
graph GS = (VS , ES) from this set as follows: VS = [r] denotes the vertices of this graph (with
vertex i ∈ [r] corresponding to row si), and ES denotes the edge set. We define the connectivity of
GS by an r × r adjacency matrix AS , where

AS [i, j] =

{
1 ∃k ∈ [n] s.t. si[k] ̸= 0 ∧ sj [k] ̸= 0

0 otherwise.

In other words, vectors si and sj are adjacent on GS if they have overlapping support. We say that
vertices i and j are linked on G if A[i, j] = 1, or if there exists a finite sequence of distinct indices
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{kℓ}Tℓ=1 ⊆ [r] \ {i, j} such that A[i, k1] = A[k1, k2] = · · · = A[kT−1, kT ] = A[kT , j] = 1. Denote
the set of linked vertex pairs by

CS = {(i, j) : i, j ∈ [r], i, j linked on GS}.
We start with a lemma concerning the span of S in how it relates to connectivity on GS :
Lemma C.5. Let S := {si}ri=1 denote a set of linearly independent vectors in Rn in the form eq. (8),
with n ≥ r + 1. For given p, q ∈ [n] with p ̸= q, if s(p,q) ∈ span({si}ri=1) then there exists a linked
vertex pair (ip, iq) ∈ CS such that sip [p] ̸= 0 and siq [q] ̸= 0.

Proof. If s(p,q) ∈ span({si}ri=1), there exist scalars {βi}ri=1 not all equal to zero such that s(p,q) =∑r
i=1 βisi, i.e.,

1 =

r∑
i=1

βisi[p] (9)

−1 =

r∑
i=1

βisi[q] (10)

0 =

r∑
i=1

βisi[j] j ̸= p, q. (11)

From eq. (9), we know there exists a ip ∈ [r] such that βip ̸= 0 and sip [p] ̸= 0: otherwise, βisi[p] = 0
for all i ∈ [r] which would result in the summation in eq. (9) being 0. Let j1 denote the other index
supported by sip , i.e., j1 ̸= p and sip [j1] ̸= 0. If j1 = q, then there trivially exists iq = ip such that
siq [q] = sip [j1] ̸= 0. Clearly this choice of (ip, iq) is linked on GS since ip = iq , which would give
us the desired result.

Now suppose j1 ̸= q. Recalling that j1 ̸= p as well, from eq. (11) we have

0 =

r∑
i=1

βisi[j1]

= βip︸︷︷︸
̸=0

sip [j1]︸ ︷︷ ︸
̸=0

+
∑

i∈[r]\{ip}

βisi[j1], (12)

which implies that there exists i1 ∈ [r] \ {ip} such that βi1 ̸= 0 and si1 [j1] ̸= 0; otherwise,
βisi[j1] = 0 for all i ∈ [r] \ {ip} which would result in a contradiction in eq. (12). Note that (i1, ip)
are linked on GS , since they are both supported on index j1.

Now, suppose by induction that for a given 1 ≤ T ≤ r− 1 there exist distinct vertices {i1 . . . , iT } ∈
[r] \ {ip} and distinct item indices {j1, . . . , jT } ∈ [n] \ {p, q} such that sip [j1] ̸= 0, sik [jk] ̸= 0
and sik [jk+1] ̸= 0 for k < T − 1, siT [jT ] ̸= 0, (ip, iT ) are linked on GS , and βik ̸= 0 for k ∈ [T ].
Above we have shown the existence of such sets for the the base case of T = 1.

Let jT+1 be the other item index supported on siT , i.e., jT+1 ̸= jT and siT [jT+1] ̸= 0. If jT+1 = q,
then we can set iq = iT and we have found an iq linked to ip on GS (since iT = iq is linked to ip
on GS by inductive assumption) and siq [q] = siT [jT+1] ̸= 0. Otherwise, since {sik}Tk=1 ∪ {sip}
are T + 1 linearly independent vectors in the form eq. (8), from Corollary C.4.2 we have that
{sik}Tk=1 ∪ {sip} are collectively supported on at least T + 2 indices in [n]. Hence, if jT+1 ̸= q,
then we must have jT+1 ∈ [n] \ ({p, q} ∪ {jk}Tk=1). From eq. (11), we then have

0 =

r∑
i=1

βisi[jT+1]

= βip�����:0
sip [jT+1] +

T−1∑
k=1

βik�����:0
sik [jT+1] + βiT︸︷︷︸

̸=0

siT [jT+1]︸ ︷︷ ︸
̸=0

+
∑

i∈[r]\(ip∪{ik}T
k=1)

βisi[jT+1],

= βiT︸︷︷︸
̸=0

siT [jT+1]︸ ︷︷ ︸
̸=0

+
∑

i∈[r]\(ip∪{ik}T
k=1)

βisi[jT+1], (13)
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which implies that there exists iT+1 ∈ [r]\ (ip∪{ik}Tk=1) such that βiT+1
̸= 0 and siT+1

[jT+1] ̸= 0;
otherwise, βisiT+1

[jT+1] = 0 for all [r] \ (ip ∪ {ik}Tk=1), which would result in a contradiction
in eq. (13). Note that if T = r − 1, the existence of such an iT+1 is impossible since in that case
[r] \ (ip ∪ {ik}Tk=1) = ∅; hence, if T = r − 1, it must be the case that jT+1 = q as described above.

If T < r − 1 and jT+1 ̸= q, then such an iT+1 ∈ [r] \ (ip ∪ {ik}Tk=1) exists. Note that iT+1 and
ip are linked on GS , since iT+1 and iT share an item (i.e., jT+1) and iT and ip are linked on GS

by inductive assumption. Hence, we have constructed sets {ik}T+1
i=1 and {jk}T+1

i=1 that fulfill the
inductive assumption for T ′ = T + 1.

Therefore, there must exist a 1 ≤ T ∗ ≤ r − 1 such that jT∗+1 = q, in which case we can take
iq = iT∗ and thus have identified an iq that is linked to ip on GS (since iT∗ = iq is linked to ip on
GS) and satisfies siq [q] = siT∗ [jT∗+1] ̸= 0.

C.2 Characterizing random selection matrices

In this section, we explore how many measurements and items are required for a randomly constructed
selection matrix to have full-rank.

To answer this question, first we establish a fundamental result concerning how many item pairs
sampled uniformly at random are required (on average or with high probability) in order for a
selection matrix to be of a certain rank. We start by bounding the probability that, for an existing
selection matrix S with rank r, an additional row s constructed by selecting two items uniformly at
random lies within the row space of S. This is equivalent to the probability that the concatenation of
s with S is a rank r + 1 matrix; bounding this probability will then allow us to bound the number of
such appended rows needed to increase the rank of S to some desired value greater than r.

Lemma C.6. Suppose S is an m× n selection matrix with rank r ≤ min(m,n− 1). Let s ∈ Rn

be constructed by sampling two integers, p and q, uniformly and without replacement from [n] (and
statistically independent of S) and setting s = s(p,q). Then

2r

n(n− 1)
≤ P(s ∈ rowsp(S) | S) ≤ (r + 1)r

n(n− 1)
. (14)

We defer the proof of Lemma C.6 to the end of the section.

With the above result, we can work towards characterizing the probability that a selection matrix with
pairs sampled uniformly at random has a particular rank. To make our results as general as possible,
assume that we have a known “seed” m × n selection matrix S0 with rank r0 ≤ min(m,n − 2),
and that we append m randomly sampled rows to S0 where each row is constructed by sampling
two integers uniformly at random without replacement (and statistically independent from previous
measurements and S0) from [n]; denote these m rows as m × n selection matrix S. We are
interested in characterizing the probability that

[
S0

S

]
has rank r > r0. We are only interested in

r0 ≤ min(m,n− 2), since if r0 = n− 1 then from Lemma C.1 S0 already has the maximum rank
possible for a selection matrix with n columns, and so we cannot increase its rank with additional
random measurements.

Let si denote the ith row of S. We will take an approach similar in spirit to the coupon collector
problem by first defining a notion of a “failure” and “success” with regards to measuring new
rows. After having queried i − 1 random paired comparisons given by rows {sj}i−1

j=1, we say
that sampling a new selection row si “fails” if it lies in the span of the selection matrix thus
far, and “succeeds” if it lies outside this span. More precisely8, define failure event Ei = 0 if
si ∈ rowsp(S0) ∪ span({sj}i−1

j=1) and success event Ei = 1 otherwise. Clearly, dim(rowsp(S0) ∪
span({sj}ij=1)) = dim(rowsp(S0) ∪ span({sj}i−1

j=1)) + 1 if and only if Ei = 1. For i ≥ 1, let
Mi = min({k : dim(rowsp(S0) ∪ span({sj}kj=1)) = r0 + i}) = min({k :

∑k
j=1Ej = i}). Note

that for any i ≥ 1, EMi
= 1; otherwise, i =

∑Mi

j=1Ej =
∑Mi−1

j=1 Ej + 0 < i by definition of Mi,
which would be a contradiction. Mr−r0 for r > r0 is exactly the quantity we are interested in, since

8In the following statements concerning probability events, S0 is assumed to be fixed and known.
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it is the number of random measurements (beyond those already in r0) needed for r− r0 successes in
total, i.e., for the cumulative selection matrix

[
S0

S

]
to be rank r.

To analyze Mi for 1 ≤ i ≤ r − r0, let Ci =Mi −Mi−1 denote the number of measurements until
the first success after already having had i− 1 successes, where C1 =M1. Then

Mi = (Mi −Mi−1) + (Mi−1 −Mi−2) + (Mi−2 + · · ·+ (M2 −M1) +M1 =

i∑
j=1

Cj .

Given C1, . . . , Ci−1 (and hence Mi−1), we note by definition that for any c ≥ 1,

Ci > c ⇐⇒ Ej = 0 for all Mi−1 + 1 ≤ j ≤Mi−1 + c. (15)
Now suppose we condition on the event C1 = c1, . . . , Ci−1 = ci−1, which we denote for shorthand
by c1, . . . , ci−1. We have

P(Ci > c | c1, . . . , ci−1) = P

 Mi−1+c⋂
k=Mi−1+1

Ek = 0

∣∣∣∣∣∣ c1, . . . , ci−1

 (16)

=

Mi−1+c∏
k=Mi−1+1

P

Ek = 0

∣∣∣∣∣∣
k−1⋂

ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1

 , (17)

where eq. (16) follows from eq. (15). For a fixed k ∈ (Mi−1 + 1) . . . (Mi−1 + c) let

Sk =

{sℓ}k−1
ℓ=1 :

k−1⋂
ℓ=Mi−1+1

(Eℓ = 0), C1 = c1, . . . , Ci−1 = ci−1

 ,

i.e., Sk is the set of all possible row sets {sℓ}k−1
ℓ=1 that result in the events

⋂k−1
ℓ=Mi−1+1(Eℓ = 0), C1 =

c1, . . . , Ci−1 = ci−1 (recall that by definition these events are deterministic when conditioned on
{sℓ}k−1

ℓ=1 ). A natural result of this set definition is

{sℓ}k−1
ℓ=1 ̸∈ Sk =⇒ P

{sℓ}k−1
ℓ=1

∣∣∣∣∣∣
k−1⋂

ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1

 = 0, (18)

We then have

P

Ek = 0

∣∣∣∣∣∣
k−1⋂

ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1


=

∑
{sℓ}

k−1
ℓ=1

∈Sk

P(Ek = 0 | {sℓ}k−1
ℓ=1 ,

k−1⋂
ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1)P({sℓ}k−1
ℓ=1 |

k−1⋂
ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1) (19)

=
∑

{sℓ}
k−1
ℓ=1

∈Sk

P(Ek = 0 | {sℓ}k−1
ℓ=1 )P({sℓ}k−1

ℓ=1 |
k−1⋂

ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1) (20)

=
∑

{sℓ}
k−1
ℓ=1

∈Sk

P(sk ∈ rowsp(S0) ∪ span({sℓ}k−1
ℓ=1 ) | {sℓ}k−1

ℓ=1 )P({sℓ}k−1
ℓ=1 |

k−1⋂
ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1)

≤
(r0 + i)(r0 + i − 1)

n(n − 1)

∑
{sℓ}

k−1
ℓ=1

∈Sk

P({sℓ}k−1
ℓ=1 |

k−1⋂
ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1) (21)

=
(r0 + i)(r0 + i − 1)

n(n − 1)
(1) (22)

and so

P

Ek = 0

∣∣∣∣∣∣
k−1⋂

ℓ=Mi−1+1

(Eℓ = 0), C1 = c1, . . . , Ci−1 = ci−1

 ≤ (r0 + i)(r0 + i− 1)

n(n− 1)
.

In the above, eq. (19) is a result of eq. (18), eq. (20) is since

{sℓ}k−1
ℓ=1 ∈ Sk =⇒

k−1⋂
ℓ=Mi−1+1

(Eℓ = 0), c1, . . . , ci−1,
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eq. (21) is from Lemma C.6 combined with the fact that since {sℓ}k−1
ℓ=1 ∈ Sk, dim(rowsp(S0) ∪

span({sℓ}k−1
ℓ=1 )) = r0 + i− 1, and eq. (22) is from eq. (18).

Continuing from eq. (17), this implies

P(Ci > c | C1 = c1, . . . , Ci−1 = ci−1) ≤
( (r0 + i)(r0 + i− 1)

n(n− 1)

)c
,

and so P(Ci ≤ c | C1 = c1, . . . , Ci−1 = ci−1) ≥ 1−
(

(r0+i)(r0+i−1)
n(n−1)

)c

.

Now, consider a set of r − r0 independent random variables, B1, . . . , Br−r0 , with each Bi ∈
{1, 2, 3, . . . } distributed according to a geometric distribution with probability of success given by
pi = 1− (r0+i)(r0+i−1)

n(n−1) . We will relate the statistics of Bi to Ci in order to construct a tail bound
on Mr−r0 , our quantity of interest. Recalling the c.d.f. of geometric distributions, we have for
1 ≤ i ≤ r − r0,

P(Bi ≤ c | B1, . . . , Bi−1) = P(Bi ≤ c) = 1− (1− pi)
c = 1−

(
(r0 + i)(r0 + i− 1)

n(n− 1)

)c

,

and so P(Ci ≤ c | C1, . . . , Ci−1) ≥ P(Bi ≤ c) for all possible C1, . . . , Ci−1.

Let B :=
∑r−r0

i=1 Bi. [46] presents a tail bound for the sum of independent geometric random
variables, which we can apply to B. Let X =

∑j
i=1Xi be the sum of j independent geometric

random variables, each with parameter 0 < pi ≤ 1. Define µ := E[X] =
∑j

i=1
1
pi

. Then from [46],
for any λ ≥ 1,

P(X ≥ λµ) ≤ e1−λ.

In our case, Xi = Bi, j = r − r0, and

µ = E[B] =

r−r0∑
i=1

1

1− (r0+i)(r0+i−1)
n(n−1)

,

and so for any λ ≥ 1,
P(B ≥ λµ) ≤ e1−λ. (23)

To translate eq. (23) into a more interpretable tail bound, Let 0 < δ < 1 be given. If we choose
λ = 1 + ln 1

δ (noting that λ > 1), then

P
(
B ≥

(
1 + ln

1

δ

)(r−r0∑
i=1

1

1− (r0+i)(r0+i−1)
n(n−1)

))
≤ δ. (24)

If we can relate the statistics of B to those of Mr−r0 , then we can potentially apply eq. (24) to
construct a tail bound on Mr−r0 ; the following lemma will provide the link we need. In the following,
for a sequence {Xk}jk=i let Xi:j := {Xk}jk=i.

Lemma C.7. Let {Xi}ri=1 and {Yi}ri=1 be two sets of random positive integers (Xi, Yi ∈ N ∀i ∈ [r]),
where for u1:i−1 ∈ Ni−1, {Xi}ri=1 is characterized by the distribution

FXi|X1:i−1
(u | u1:i−1) := P(Xi ≤ u | X1:i−1 = u1:i−1)

and the {Yi}ri=1 are statistically independent, so that for any u1:i−1 ∈ Ni−1

P(Yi ≤ u | Y1:i−1 = u1:i−1) = P(Yi ≤ u) =: FYi(u).

Let X :=
∑r

i=1Xi and Y :=
∑r

i=1 Yi, with FX(x) := P(X ≤ x) and FY (y) := P(Y ≤ y).
Suppose for all i ∈ [r], u ∈ R, and u1:i−1 ∈ Ni−1, we have FXi|X1:i−1

(u | u1:i−1) ≥ FYi
(u). Then

FX(u) ≥ FY (u) for all u ∈ R and E[X] ≤ E[Y ].

We defer the proof of Lemma C.7 to the end of the section.

Corollary C.7.1. For all c ∈ R, P(Mr−r0 > c) ≤ P(B > c) and E[Mr−r0 ] ≤ E[B].
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Proof. {Bi}r−r0
i=1 are statistically independent, and we know P(Ci ≤ c | C1, . . . , Ci−1) ≥ P(Bi ≤ c)

for all c and all possible C1, . . . , Ci−1. Therefore by Lemma C.7, P(Mr−r0 ≤ c) ≥ P(B ≤ c) and
so P(Mr−r0 > c) ≤ P(B > c) and E[Mr−r0 ] ≤ E[B].

Combining Corollary C.7.1 with eq. (24), for any 0 < δ < 1 we have

P
(
Mr−r0 >

(
1 + ln

1

δ

)(r−r0∑
i=1

1

1− (r0+i)(r0+i−1)
n(n−1)

))
≤ P

(
B >

(
1 + ln

1

δ

)(r−r0∑
i=1

1

1− (r0+i)(r0+i−1)
n(n−1)

))
≤ δ

and

E[Mr−r0 ] ≤
r−r0∑
i=1

1

1− (r0+i)(r0+i−1)
n(n−1)

.

In other words, with probability at least 1 − δ,
(
1 + ln 1

δ

)(∑r−r0
i=1

1

1− (r0+i)(r0+i−1)

n(n−1)

)
additional

random measurements are sufficient to construct a rank r selection matrix from n items and a seed
matrix S0 of rank r0. We formalize the above facts in the following theorem:
Theorem C.8. Let S0 be a given m× n selection matrix with rank 1 ≤ r0 ≤ min(m,n− 2). Let
r0 < r ≤ n − 1 be given. Consider the following random sampling procedure: at sampling time
i ≥ 1, let si = s(p,q) ∈ Rn where p is sampled uniformly at random from [n], q is sampled uniformly
at random from [n] \ {p}, and where each si is sampled independently from sj for j ̸= i and from
S0. Let S be the selection matrix constructed by concatenating the vectors si into rows. Suppose
rows are appended to S until rank(

[
S0

S

]
) = r, at which point sampling halts. Let M be the total

number of rows in S resulting from this process. Then for any 0 < δ < 1,

P
(
M >

(
1 + ln

1

δ

)( r∑
i=r0+1

1

1− i(i−1)
n(n−1)

))
≤ δ

and

E[M ] ≤
r∑

i=r0+1

1

1− i(i−1)
n(n−1)

.

Proof of Lemma C.6: If r = n − 1, then by Lemma C.1 S already has maximal rank and so
its row space spans Rn. In this case, P(s ∈ rowsp(S) | S) = 1, and so the upper bound of the
inequality is tight at 1. The lower bound is satisfied since, as n ≥ 2 by definition of selection matrices,
2r/(n(n− 1)) = 2/n ≤ 1 ≤ P(s ∈ rowsp(S) | S) and so is true.

Otherwise, assume r ≤ n− 2. Since S is rank r, there exists a set of r linearly independent rows,
which we denote by {si}ri=1, such that rowsp(S) = span({si}ri=1). Without loss of generality, for
each si assume that pi < qi, where si[pi] = 1 and si[qi] = −1: this assumption does not affect the
span of {si}ri=1, since for p, q ∈ [n] with p ̸= q, s(p,q) = −s(q,p). In a slight abuse of notation, let
S \ {si}ri=1 denote the remaining rows in S. We therefore have

P(s ∈ rowsp(S) | S) = P(s ∈ span({si}ri=1) | S) = P(s ∈ span({si}ri=1) | {si}ri=1,S \ {si}ri=1)

= P(s ∈ span({si}ri=1) | {si}ri=1),

where the last equality follows from the fact that s is statistically independent of S.

Without loss of generality, suppose p < q. This does not affect our calculation of P(s ∈
span({si}ri=1) | {si}ri=1), since s(p,q) ∈ span({si}ri=1) ⇐⇒ s(q,p) ∈ span({si}ri=1), as
s(p,q) = −s(q,p). Therefore, we can calculate s(p,q) ∈ span({si}ri=1) directly by counting
which among the

(
n
2

)
equally likely pairs with p < q lies in the span of {si}ri=1. Precisely, let

Q := {(p, q) : p, q ∈ [n], p < q, s(p,q) ∈ span({si}ri=1})}. Then

P(s ∈ span({si}ri=1) | {si}ri=1) =
|Q|(
n
2

) .
With these preliminaries established, we can easily lower bound P(s ∈ span({si}ri=1) | {si}ri=1):
since si ∈ span({sj}rj=1) for each i ∈ [r], Q contains the item pairs indexing the support of each
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{sj}rj=1. Furthermore, since {si}ri=1 are linearly independent, they must be distinct (i.e., for every
i, j ∈ [r], si ̸= sj) and so Q contains at least r distinct item pairs, i.e., |Q| ≥ r. Hence,

P(s ∈ span({si}ri=1) | {si}ri=1) =
|Q|(
n
2

) ≥ r(
n
2

) =
2r

n(n− 1)
,

proving the lower bound in the inequality.

Letting S := {si}ri=1, we will upper bound |Q| by analyzing the graph GS (with the graph construc-
tion introduced in Appendix C.1) with linked vertex pairs CS . Let IS denote the set of distinct item
pairs corresponding to linked vertices on GS , i.e.,

IS := {(p, q) : p, q ∈ [n], p < q, ∃(ip, iq) ∈ CS , sip [p] ̸= 0, siq [q] ̸= 0}.

From Lemma C.5, (p, q) ∈ Q =⇒ (p, q) ∈ IS and so |Q| ≤ |IS | and

P(s ∈ span({si}ri=1) | {si}ri=1) =
|Q|(
n
2

) ≤ |IS |(
n
2

) . (25)

We can therefore upper bound P(s ∈ span({si}ri=1) | {si}ri=1) by upper bounding |IS |.
To proceed, without loss of generality that suppose GS has exactly c distinct subgraphs (c ∈ [r])
G1 = (V1, E1), . . . Gc = (Vc, Ec) where V1, . . . , Vc are a partition of [r], such that for every k and
every i, j ∈ Vk, vertices i and j are linked on GS (and hence Gk), and for every k, ℓ ∈ [c] with k ̸= ℓ
and every i ∈ Vk, j ∈ Vℓ, vertices i and j are not linked on GS . We next define item pairs according
to which subgraph they pertain to: let

Ik := {(p, q) : p, q ∈ [n], p < q, ∃(ip, iq) ∈ Vk s.t. sip [p] ̸= 0, siq [q] ̸= 0}. (26)

Note that for any given item pair (p, q) ∈ IS with corresponding row indices (ip, iq) ∈ CS such that
sip [p] ̸= 0 and siq [q] ̸= 0, there must exist k ∈ [c] such that ip, iq ∈ Vk. Hence, IS =

⋃c
k=1 Ik and

therefore

|IS | ≤
c∑

k=1

|Ik|. (27)

To calculate |Ik|, first define Nk to be the number of items supported by subgraph Gk:

Nk := {i : i ∈ [n], ∃j ∈ Vk s.t. sj [i] ̸= 0}.

Since all vertices in Vk are linked on Gk (by construction), |Ik| is exactly equal to all possible pair
permutations of items in Nk, i.e., |Ik| =

(|Nk|
2

)
. Let rk := |Vk| denote the number of vertices

in subgraph Gk, noting that
∑c

k=1 rk = r. For each k ∈ [c] we then have |Nk| = rk + 1: to
see this, consider the selection matrix SVk

constructed from the rows {si}i∈Vk
, and note that the

rows {si}i∈Vk
are linearly independent by construction (since {si}i∈Vk

⊆ {si}ri=1). Furthermore,
suppose without loss of generality that SVk

is incremental: since {si}i∈Vk
are linearly independent,

by Corollary C.4.1 we can always find a permutation of these rows such that the resulting matrix SVk

is incremental. We will show below that each row of SVk
introduces exactly one new item.

Let S(t)
Vk

denote the submatrix of SVk
consisting of the first t rows: note that each S

(t)
Vk

is also
incremental. Denote the tth row of SVk

by s(t). Suppose by contradiction that there exists 1 < i ≤ rk

such that s(i) introduces exactly two new items that are not supported in S
(i−1)
Vk

, and consider
any j < i. Since every row index in Vk is linked on Gk, there must exist at least one finite
sequence of distinct indices {kℓ}Tℓ=1 ⊆ [rk] \ {i, j} such that s(i) and s(k1) share an item, each
s(kℓ) shares an item with s(kℓ−1) for 1 < ℓ ≤ T , and s(kT ) shares an item with s(j). Note that
k1 > i, since s(i) cannot share an item directly with any row in S

(i−1)
Vk

(due to our contradictory
assumption). Let k∗ = maxℓ∈[T ] kℓ; we know from the above argument that k∗ ≥ k1 > i > j and so
k∗ > i, j, {kℓ}Tℓ=1 \ {k∗}. By definition of {kℓ}Tℓ=1, s(k

∗) shares an item with two distinct indices
ka, kb ∈ ({kℓ}Tℓ=1∪{i, j})\k∗: let pa be the item index shared with ka and pb denote the item index
shared with kb. Since k∗ > i, j, {kℓ}Tℓ=1 \ {k∗}, ka < k∗ and kb < k∗, and therefore both pa and pb
must appear in S

(k∗−1)
Vk

. However, this is a contradiction since S
(k∗)
Vk

is incremental meaning that
s(k

∗) must introduce at least one new item. Therefore, there cannot exist index 1 < i ≤ rk such that
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s(i) introduces exactly two new items that are not supported in S
(i−1)
Vk

. Hence, hence the first row of
SVk

introduces 2 new items and each subsequent row (rk − 1 additional rows in total) introduces
exactly one new item, resulting in 2+ rk − 1 = rk +1 supported columns in total, i.e., |Nk| = rk +1

and so |Ik| =
(|Nk|

2

)
=
(
rk+1

2

)
.

Therefore, by eq. (27),

|IS | ≤
c∑

k=1

(
rk + 1

2

)
=

1

2

c∑
k=1

(rk + 1)rk,

where we recall that
∑c

k=1 rk = r and c ∈ [r]. To get an upper bound on |IS | that only depends on r,
we can maximize this bound over the choice of {rk}ck=1 and c. We propose that c = 1 and hence
r1 = r maximizes this bound: consider any other c ∈ [r] and {rk}ck=1 such that

∑c
k=1 rk = r. We

have

(r + 1)r −
c∑

k=1

(rk + 1)rk = r2 + r −
c∑

k=1

(r2k + rk)

=
(
r2 −

c∑
k=1

r2k

)
+ r −

c∑
k=1

rk

= r2 −
c∑

k=1

r2k

≥ r2 −
c∑

k=1

r2k −
∑
k ̸=ℓ

rkrℓ

= r2 −

(
c∑

k=1

rk

)2

= 0.

Hence, for any c ∈ [r] and {rk}ck=1 such that
∑c

k=1 rk = r,

1

2

c∑
k=1

(rk + 1)rk ≤ 1

2
(r + 1)r,

and so |IS | ≤ 1
2 (r + 1)r. Recalling eq. (25), we therefore have

P(s ∈ span({si}ri=1) | {si}ri=1) ≤
1

2

(r + 1)r(
n
2

) =
(r + 1)r

n(n− 1)
.

Proof of Lemma C.7: Let X(i) :=
∑r

j=iXj and Y (i) :=
∑r

j=i Yj : note that X = X(1) and
Y = Y (1). Let

FX(i)|X1:i−1
(u | u1:i−1) = P(X(i) ≤ u | X1:i−1 = u1:i−1)

and
FY (i)(u) := P(Y (i) ≤ u).

We will prove by induction that FX(1)(u) ≥ FY (1)(u) for all u ∈ R, and therefore FX(u) ≥ FY (u).
Starting at i = r, we have by assumption that for all u ∈ R, and u1:r−1 ∈ Nr−1,

FX(r)|X1:r−1
(u | u1:r−1) = FXr|X1:r−1

(u | u1:r−1) ≥ FYr
(u) = FY (r)(u).

Now, let 1 ≤ m < r be given, and suppose by induction that for any u1:m ∈ Nm, we have

FX(m+1)|X1:m
(u | u1:m) ≥ FY (m+1)(u).

Expanding FX(m)|X1:m−1
(u | u1:m−1),

FX(m)|X1:m−1
(u | u1:m−1) =

= P(X(m) ≤ u | X1:m−1 = u1:m−1)
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= P
( r∑
j=m

Xj ≤ u | X1:m−1 = u1:m−1

)
= P

( r∑
j=m+1

Xj ≤ u−Xm | X1:m−1 = u1:m−1

)
=

∞∑
v=1

P
( r∑
j=m+1

Xj ≤ u−Xm | X1:m−1 = u1:m−1, Xm = v
)
P(Xm = v | X1:m−1 = u1:m−1)

=

∞∑
v=1

FX(m+1)|X1:m
(u− v | u1:m−1, v)(FXm|X1:m−1

(v | u1:i−1)− FXm|X1:m−1
(v − 1 | u1:i−1)).

Similarly we have

FY (m)(u) = P(Y (m) ≤ u)

= P
( r∑
j=m

Yj ≤ u
)

= P
( r∑
j=m+1

Yj ≤ u− Ym

)
=

∞∑
v=1

P
( r∑
j=m+1

Yj ≤ u− Ym | Ym = v
)
P(Ym = v)

=

∞∑
v=1

P
( r∑
j=m+1

Yj ≤ u− v
)
P(Ym = v) (28)

=

∞∑
v=1

FY (m+1)(u− v)(FYm
(v)− FYm

(v − 1)),

where eq. (28) follows from the fact that {Yi}ri=1 are statistically independent. Therefore, letting
u1:m−1 ∈ Nm−1 be given,

FX(m)|X1:m−1
(u | u1:m−1)− FY (m)(u)

=

∞∑
v=1

FX(m+1)|X1:m
(u− v | u1:m−1, v)(FXm|X1:m−1

(v | u1:i−1)

− FXm|X1:m−1
(v − 1 | u1:i−1))− FY (m+1)(u− v)(FYm(v)− FYm(v − 1)

≥
∞∑
v=1

FY (m+1)(u− v)(FXm|X1:m−1
(v | u1:i−1)− FXm|X1:m−1

(v − 1 | u1:i−1))−

FY (m+1)(u− v)(FYm(v)− FYm(v − 1)) (29)

=

∞∑
v=1

FY (m+1)(u− v)(FXm|X1:m−1
(v | u1:i−1)− FYm(v))

−
∞∑
v=1

FY (m+1)(u− v)(FXm|X1:m−1
(v − 1 | u1:i−1)− FYm(v − 1))

=

∞∑
v=1

FY (m+1)(u− v)(FXm|X1:m−1
(v | u1:i−1)− FYm(v))

−
∞∑
z=0

FY (m+1)(u− z − 1)(FXm|X1:m−1
(z | u1:i−1)− FYm(z)) where z := v − 1

=

∞∑
v=1

(FY (m+1)(u− v)− FY (m+1)(u− v − 1))(FXm|X1:m−1
(v | u1:i−1)−

FYm(v))− FY (m+1)(u− 1)(FXm|X1:m−1
(0 | u1:i−1)− FYm(0))

=
∞∑
v=1

(FY (m+1)(u− v)− FY (m+1)(u− v − 1))(FXm|X1:m−1
(v | u1:i−1)− FYm(v)) (30)
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≥ 0 (31)

where eq. (29) is by inductive assumption, eq. (30) is because Xm, Ym are non-negative and so

FXm|X1:m−1
(0 | u1:i−1) = FYm|Y1:m−1

(0 | v1:i−1)) = 0,

and eq. (31) is due to the fact that FY (m+1)(u) is non-decreasing and hence for all v ≥ 1,

FY (m+1)(u− v)− FY (m+1)(u− v − 1) ≥ 0,

and by assumption we have

FXm|X1:m−1
(v | u1:i−1)− FYm(v) ≥ 0.

Taking m = 1, we have FX(1)(u)− FY (1)(u) ≥ 0 i.e., FX(u) ≥ FY (u).

Using the fact that E[X] =
∑∞

u=0 P(X > u) =
∑∞

u=0(1−FX(u)) and similarly E[Y ] =
∑∞

u=0(1−
FY (u)), we have

E[X] =

∞∑
u=0

(1− FX(u))

≤
∞∑
u=0

(1− FY (u))

= E[Y ].

C.3 Proof of Proposition 2.1 and additional discussion

If Γ has full column rank, then its D + dK columns are linearly independent and so rank(Γ) =

D+dK. Since the rank of Γ is upper bounded by its number of rows, we require
∑K

k=1mk ≥ D+dK.
Next we will show in turn that each condition in Proposition 2.1 is necessary for Γ to have full
column rank:

(a) In order for all D + dK columns in Γ to be linearly independent, it must be the case that for
each k ∈ [K], the columns corresponding to user k are linearly independent, given by

0m1,d

...
SkX

T

...
0mK ,d

 .

Clearly this is only possible if the d columns in SkX
T are linearly independent (since padding

by zeros does not affect linear independence of columns), i.e., rank(SkX
T ) = d. Since

rank(SkX
T ) ≤ rank(Sk), we require rank(Sk) ≥ d, which implies mk ≥ d since Sk has

mk rows.

(b) Since rank(Γ) = D+ dK, Γ must have D+ dK linearly independent rows. Observing eq. (3),
each user’s block of mk rows is given by[

SkX
T
⊗ 0mk,d · · · SkX

T · · · 0mk,d

]
, (32)

which has the same column space, and therefore the same rank, as Sk

[
XT

⊗ XT
]
. Therefore, the

number of linearly independent rows in eq. (32) is equal to the rank of Sk

[
XT

⊗ XT
]
, and so

the number of linearly independent rows in Γ is upper bounded by
∑K

k=1 rank(Sk

[
XT

⊗ XT
]
),

which for Γ with full column rank must be at least D + dK. Since rank(Sk

[
XT

⊗ XT
]
) ≤

rank(Sk), we have
∑K

k=1 rank(Sk

[
XT

⊗ XT
]
) ≤

∑K
k=1 rank(Sk) and therefore we also require∑K

k=1 rank(Sk) ≥ D + dK.

27



(c) Consider any η ∈ RD and v ∈ Rd. Recalling eq. (3), multiplying Γ by [ηT vT · · ·vT︸ ︷︷ ︸
K times

]T is

equivalent to

Γ


η
v
...
v

 =

 S1X
T
⊗η + S1X

Tv
...

SKXT
⊗η + SKXTv

 =

S1

...
SK

 [XT
⊗ XT

] [η
v

]
= ST

[
XT

⊗ XT
] [η

v

]
. (33)

By the rank-nullity theorem, ker(ST

[
XT

⊗ XT
]
) is trivial if and only if rank(ST

[
XT

⊗ XT
]
) =

D + d (recall that
[
XT

⊗ XT
]

has D + d columns). Therefore if rank(ST

[
XT

⊗ XT
]
) < D + d,

there exists a [ ηv ] ̸= 0 such that ST

[
XT

⊗ XT
]
[ ηv ] = 0 and therefore exists a nonzero vector in

RD+dK given by [ηT vT · · ·vT︸ ︷︷ ︸
K times

]T such that

Γ


η
v
...
v

 = 0,

which would imply that Γ is rank deficient. Therefore, we require rank(ST

[
XT

⊗ XT
]
) = D + d,

and since rank(ST

[
XT

⊗ XT
]
) ≤ min(rank(ST ), rank(

[
XT

⊗ XT
]
)) this implies rank(ST ) ≥

D + d and rank(
[
XT

⊗ XT
]
) ≥ D + d. Since ST is itself a selection matrix, by Lemma C.1 we

require n ≥ D + d+ 1 in order for rank(ST ) ≥ D + d.

In the setting where the metric M is low-rank with rank r < d, we conjecture that the required item
scaling grows as O(rd) rather than O(d2), which is a much gentler increase especially when r ≪ d.
Our intuition for this conjecture is as follows: the requirement for O(d2) items in the full-rank metric
case comes from part (c) above, which says that if a hypothetical single user existed that answered
the queries assigned to all users, then such a system would require O(d2) measurements due to
the O(d2) degrees of freedom in the metric. Due to properties of selection matrices, we require
the same or greater order of items as measurements since intuitively one new item is required per
independent measurement (see Lemma C.1). If M is rank r < d, there are only dr degrees of
freedom in M , and hence we believe that part (c) above would only require O(dr) independent
measurements for the hypothetical single user and therefore only O(dr) items. Concretely, by
rewriting the unquantized measurements in eq. (2) as a matrix inner product between [M v1 ... vK ]
and a corresponding measurement matrix only depending on the items (see eq. (40) in the proof of
Theorem 3.1 for an example of this technique), and using low-rank matrix recovery techniques such
as those described in [47], we believe that one can show only O(dr) independent measurements are
required for the hypothetical single user and therefore only O(dr) items are required.

C.4 Proof of Proposition 2.2

We first permute the rows of Γ as follows (row permutations do not change matrix rank): first, define
Γ(1) as

Γ(1) :=


S

(1)
1 XT

⊗ S
(1)
1 XT 0d,d · · · 0d,d

S
(1)
2 XT

⊗ 0d,d S
(1)
2 XT · · · 0d,d

...
...

...
...

...
S

(1)
K XT

⊗ 0d,d 0d,d · · · S
(1)
K XT

 (34)

and Γ(2) as

Γ(2) := P


S

(2)
1 XT

⊗ S
(2)
1 XT 0m1−d,d · · · 0m1−d,d

S
(2)
2 XT

⊗ 0m2−d,d S
(2)
2 XT · · · 0m2−d,d

...
...

...
...

...
S

(2)
K XT

⊗ 0mK−d,d 0mK−d,d · · · S
(2)
K XT

 . (35)

28



Finally, define Γ̂ =

[
Γ(1)

Γ(2)

]
. Since Γ̂ is simply a permutation of the rows in Γ, rank(Γ̂) = rank(Γ).

Therefore, if we show that the D + dK rows in Γ̂ are linearly independent and hence rank(Γ̂) =
D + dK, we will have shown that rank(Γ) = D + dK and so Γ is full column rank.

We will start by examining the rows in Γ(1). For k ∈ [K], let Q(1)
k := S

(1)
k XT ; evaluating this

matrix product, the ith row of Q(1)
k is given by xpk,i

− xqk,i
, where pk,i indexes the +1 entry in the

ith row of S(1)
k and qk,i indexes the −1 entry in the ith row of S(1)

k . Since each xi is i.i.d. distributed
according to pX , and pX is absolutely continuous with respect to the Lebesgue measure, for any
i ̸= j we have that zi,j := xi − xj is distributed according to some distribution pZ (which does
not depend on i or j since xi is i.i.d. for all i) that is also absolutely continuous with respect to the
Lebesgue measure.

Inspecting the first row of Q(1)
k , we then have

P(xpk,1
− xqk,1

= 0) = PZ(z = 0) = 0,

where the last equality follows since µ({0}) = 0, where µ is the Lebesgue measure, and pZ is
absolutely continuous. Hence, with probability 1, xpk,1

−xqk,1
is nonzero and spans a 1-dimensional

subspace of Rd.

Let w be a vector orthogonal to xpk,1
− xqk,1

, and consider xpk,2
− xqk,2

, which is the second row
of Q(1)

k . Since by assumption S
(1)
k is incremental, at least one of pk,2 or qk,2 is not equal to pk,1 or

qk,1. Suppose that both pk,2, qk,2 ̸∈ {pk,1, qk,1}. Then

P(wT (xpk,2
− xqk,2

) = 0 | xpk,1
,xqk,1

) = PZ(w
Tz = 0 | xpk,1

,xqk,1
) = 0,

where the last equality follows from the fact that µ({wTz = 0 : z ∈ Rd}) = 0 and pZ is absolutely
continuous.

Now suppose that exactly one of pk,2 or qk,2 is not equal to pk,1 or qk,1. Without loss of generality,
suppose qk,2 is equal to pk,1 or qk,1 (the same argument holds if this were true for pk,2 instead). Then

P(wT (xpk,2
− xqk,2

) = 0 | xpk,1
,xqk,1

) = P(wTxpk,2
−wTxqk,2

= 0 | xpk,1
,xqk,1

,xqk,2
)

= PX(wTx− c = 0 | xpk,1
,xqk,1

,xqk,2
) where c is a constant.

= 0,

where the first equality follows from the fact that qk,2 ∈ {pk,1, qk,1}, the second equality follows
from the fact that when conditioned on xqk,2

, wTxqk,2
is a constant (which we denote by c) and that

xpk,2
is distributed as pX and is independent of other xj for j ̸= pk,2, and the final equality follows

from the fact that µ({wTx− c = 0 : x ∈ Rd}) = 0 and pX is absolutely continuous.

In either scenario, P(wT (xpk,2
− xqk,2

) = 0 | xpk,1
,xqk,1

) = 0. Hence, when conditioned on xpk,1

and xqk,1
, with probability 1 xpk,2

− xqk,2
includes a component orthogonal to xpk,1

− xqk,1
and

therefore does not lie in the span of xpk,1
− xqk,1

. Denote the first j rows of Q(1)
k as

Q
(1)
k [1 : j] =

(xpk,1
− xqk,1

)T

...
(xpk,j

− xqk,j
)T

 .
Then, from the above argument, P(rank(Q(1)

k [1 : 2]) = 2 | xpk,1
,xqk,1

) = 1. This is true for
any xpk,1

,xqk,1
satisfying xpk,1

− xqk,1
̸= 0, which we know occurs with probability 1, and so

marginalizing over this event we have P(rank(Q(1)
k [1 : 2]) = 2) = 1.

If d > 2, let 2 ≤ m < d be given, and suppose by induction that P(rank(Q(1)
k [1 : m]) = m) = 1.

The rows of Q(1)
k [1 : m] are constructed from vectors xi where i ∈ M and M := {pk,j}mj=1 ∪

{qk,j}mj=1.

Let w be a vector in the orthogonal subspace to rowsp(Q
(1)
k [1 : m]). Consider row m+ 1 of Q(1)

k ,
given by xpk,m+1

− xqk,m+1
. Since S

(1)
k is incremental, at least one of pk,m+1 or qk,m+1 is not in
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M . First suppose this is true for both pk,m+1 and qk,m+1. Then by similar arguments as above,

P(wT (xpk,m+1
− xqk,m+1

) = 0 | {xi}i∈M ) = PZ(w
Tz = 0 | {xi}i∈M ) = 0.

Now, instead suppose without loss of generality that only qk,m+1 ∈M (an identical argument holds
for pk,m+1 ∈M ). Then by similar arguments as above,

P(wT (xpk,m+1
− xqk,m+1

) = 0 | {xi}i∈M ) = P(wTxpk,m+1
−wTxqk,m+1

= 0 | xqk,m+1
, {xi}i∈M )

= PX(wTx− c = 0 | xqk,m+1
, {xi}i∈M ) where c is a constant.

= 0.

In either scenario, P(wT (xpk,m+1
− xqk,m+1

) = 0 | {xi}i∈M ) = 0. Hence, when conditioned on
{xi}i∈M , xpk,m+1

− xqk,m+1
includes a component orthogonal to the row space of Q(1)

k [1 : m] and
therefore does not lie in this row space. In other words,

P(rank(Q(1)
k [1 : m+ 1]) = m+ 1 | {xi}i∈M ) = 1.

This is true for any {xi}i∈M satisfying rank(Q
(1)
k [1 : m]) = m, which by inductive assumption is

true with probability 1 and so marginalizing over this event we have P(rank(Q(1)
k [1 : m + 1]) =

m+1) = 1. Taking m = d− 1, and noting that Q(1)
k [1 : d] = Q

(1)
k , P(rank(Q(1)

k ) = d) = 1. Since
this is true for all k ∈ [K], by the union bound we have

P
( ⋃
k∈[K]

(rank(Q
(1)
k ) < d)

)
≤
∑

k∈[K]

P(rank(Q(1)
k ) < d) ≤

∑
k∈[K]

0 = 0,

and therefore with probability 1, rank(Q(1)
k ) = d simultaneously for all k ∈ [K].

Consider the following matrix:

Q(1) :=


Q

(1)
1 0d,d · · · 0d,d

0d,d Q
(1)
2 · · · 0d,d

...
...

...
...

0d,d 0d,d · · · Q
(1)
K

 .
Each consecutive block of d rows in Q(1) is clearly orthogonal, and since with probability 1 each
Q

(1)
k is simultaneously full row rank, with probability 1 we have that Q(1) is full row rank (and hence

is invertible since it is square). Inspecting eq. (34), we can write Γ(1) =
[
R(1) Q(1)

]
where R(1) is

a Kd×D submatrix. Since Q(1) is rank Kd, the column space of Γ(1) is also of dimension at least
Kd and therefore Γ(1) is full row rank since it has Kd rows. In other words, we have shown that
with probability 1 the rows of Γ(1) are linearly independent. We will now show linear independence
for the remaining rows in Γ̂ (i.e., Γ(2)), which completes our proof. Specifically, we will proceed
through the remaining D measurements row by row, and inductively show how each cumulative set
of rows is linearly independent.

First, we define some additional notation: for any vector w ∈ RD+Kd, let ψk(w) be the subvector
limited to the column indices of Γ involving user k, i.e.,

ψk(w) :=

[
w[1 :D]

w[D+(k−1)d+1:D+kd]

]
.

Let ri denote the ith row of Γ(2), let ki ∈ [K] denote the user that this row corresponds to (i.e., ri
is supported on columns 1 : D and D+(ki−1)d+1:D+kid), and let ji,1, ji,2 denote the first and
second items selected at this measurement. We require this flexible definition of the user and items in
row ri, since the permutation P has arbitrarily scrambled the users that each row in Γ(2) corresponds
to. Finally, let

ϕ(x) =

[
x⊗S x

x

]
,
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which is a vector in RD+d. For any nonzero vector µ ∈ RD+d, µTϕ(x) is a nontrivial polynomial in
x. With this notation defined, for any vector w ∈ RD+Kd we see from eq. (35) that

wTri = ψki(w)T (ϕ(xji,1)− ϕ(xji,2)).

Next, we establish a fact about the orthogonal subspace to rowsp(Γ(1)). Let E0 := span({ei}Di=1)
where ei is the ith standard basis vector in RD+dK . It is a fact that for every w ∈ rowsp(Γ(1))⊥,
projE0

w ̸= 0. In other words, w has at least one nonzero element in its first D entries. Suppose this
were not true: then for some nonzero w′ ∈ RKd, we would have

w =

[
0
w′

]
.

Since w′ ∈ RKd and the rows of Q(1) are a basis for RKd (since Q(1) is invertible), we have
w′ = (Q(1))Tβ for some β ∈ RKd. Consider r = (Γ(1))Tβ, which is clearly in rowsp(Γ(1)).
Expanding Γ(1), we have

r =

[
(R(1))Tβ
(Q(1))Tβ

]
=

[
(R(1))Tβ

w′

]
,

and so
wTr = 0T (R(1))Tβ + (w′)Tw′ = ∥w′∥22 > 0,

where the last inequality follows since w′ ̸= 0. This is a contradiction since by definition, wTr = 0
for every r ∈ rowsp(Γ(1)).

Let w be a vector in rowsp(Γ(1))⊥ not equal to the zero vector, and let J denote the item indices on
which each S

(1)
k is supported across all k ∈ [K], i.e.,

J = {j : j ∈ [n],∃k ∈ [K], i ∈ [d] s.t. S
(1)
k [i, j] ̸= 0}.

Consider the first row of Γ(2). By the incremental assumption, at least one of j1,1 or j1,2 is not found
in J . First suppose that both are not found in J . Then

P(wTr1 = 0 | {xi}i∈J) = P(ψk1
(w)T (ϕ(xj1,1)− ϕ(xj1,2)) = 0 | {xi}i∈J). (36)

As an aside, if xi,xj are i.i.d. distributed according to absolutely continuous distribution pX , then
the joint distribution pxi,xj

(xi,xj) = pX(xi)pX(xj) is also absolutely continuous. Also note that
for any µ ∈ RD+d,

µT (ϕ(xi)− ϕ(xj)) =
[
µT −µT

] [ϕ(xi)
ϕ(xj)

]
. (37)

Since
[
xi

xj

]
⊗S

[
xi

xj

]
contains all terms in xi ⊗S xi and xj ⊗S xj , ϕ([ xi

xj ]) contains ϕ(xi) and

ϕ(xj). Therefore, we can view eq. (37) as being a polynomial in [ xi
xj ]. If µ ̸= 0, then

[
µ
−µ

]
̸= 0 and

so µT (ϕ(xi)− ϕ(xj)) can be viewed as a nontrivial polynomial in [ xi
xj ]. Since pxi,xj is absolutely

continuous, for any nonzero µ we have

P(µT (ϕ(xi)− ϕ(xj)) = 0) = 0,

since the set of roots for a nontrivial polynomial is a set of Lebesgue measure 0.

Returning to eq. (36), we then have

P(wTr1 = 0 | {xi}i∈J) = P(ψk1
(w)T (ϕ(xj1,1)− ϕ(xj1,2)) = 0 | {xi}i∈J) = 0,

which follows from the fact that ψk1
(w) is nonzero: recall from the fact presented above that

projE0
(w) ̸= 0, so ψk(w) ̸= 0 for any k ∈ [K].

Now, instead suppose without loss of generality that j1,1 ̸∈ J and j1,2 ∈ J (an identical argument
holds for j1,1 ∈ J and j1,2 ̸∈ J). Then by similar arguments as above,

P(wTr1 = 0 | {xi}i∈J) = P(ψk1
(w)T (ϕ(xj1,1)− ϕ(xj1,2)) = 0 | {xi}i∈J)
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= P(ψk1(w)Tϕ(xj1,1)− ψk1(w)Tϕ(xj1,2) = 0 | xj1,2 ∪ {xi}i∈J)

= PX(ψk1
(w)Tϕ(x)− c = 0 | xj1,2 ∪ {xi}i∈J) where c is a constant.

= 0.

The last equality follows since ψk1
(w) ̸= 0 and so ψk1

(w)Tϕ(x)− c is a nontrivial polynomial in
x, along with the fact that pX is absolutely continuous.

In either scenario, P(wTr1 = 0 | {xi}i∈J) = 0. Hence, when conditioned on {xi}i∈J , r1 includes
a component orthogonal to rowsp(Γ(1)) and therefore does not lie in this row space. In other words,

P
(
rank

([
(Γ(1))T r1

])
= Kd+ 1 | {xi}i∈J

)
= 1.

This is true for any {xi}i∈J resulting in Γ(1) being full-rank, which we know occurs with probability
1 and so by marginalizing we have P

(
rank

([
(Γ(1))T r1

])
= Kd+ 1

)
= 1.

If d > 1, let m < D be given and suppose by induction that

P
(
rank

([
(Γ(1))T r1 · · · rm

])
= Kd+m

)
= 1.

Let w be a vector in (rowsp(Γ(1)) ∪ span({ri}mi=1))
⊥ not equal to the zero vector. Note that

w ∈ rowsp(Γ(1))⊥ as well, and so by the above, projE0
(w) ̸= 0 and so ψk(w) ̸= 0 for any

k ∈ [K]. Reusing notation, let

J = {j : j ∈ [n],∃k ∈ [K], i ∈ [d] s.t. S
(1)
k [i, j] ̸= 0} ∪ {j : j ∈ [n],∃i ∈ [m] j = ji,1 ∨ j = ji,2}

denote the set of all item indices in Γ̂ measured up through and including the mth measurement of
Γ(2). Consider row m+ 1 of Γ(2). By the incremental assumption, at least one of jm+1,1 or jm+1,2

is not found in J . First suppose that both are not found in J . Then

P(wTrm+1 = 0 | {xi}i∈J) = P(ψkm+1(w)T (ϕ(xjm+1,1)− ϕ(xjm+1,2)) = 0 | {xi}i∈J)

= 0,

due to a similar argument as above.

Now, instead suppose without loss of generality that jm+1,1 ̸∈ J and jm+1,2 ∈ J (an identical
argument holds for jm+1,1 ∈ J and jm+1,2 ̸∈ J). Then by similar arguments as above,

P(wTrm+1 = 0 | {xi}i∈J) = P(ψkm+1(w)T (ϕ(xjm+1,1)− ϕ(xjm+1,2)) = 0 | {xi}i∈J)

= P(ψkm+1
(w)Tϕ(xjm+1,1

)− ψkm+1
(w)Tϕ(xjm+1,2

) = 0 | xjm+1,2
∪ {xi}i∈J)

= PX(ψkm+1
(w)Tϕ(x)− c = 0 | xjm+1,2

∪ {xi}i∈J) where c is a constant.

= 0.

The last equality follows since ψkm+1
(w) ̸= 0 and so ψkm+1

(w)Tϕ(x)−c is a nontrivial polynomial
in x.

In either scenario, P(wTrm+1 = 0 | {xi}i∈J) = 0. Hence, when conditioned on {xi}i∈J , rm+1

includes a component orthogonal to rowsp(Γ(1)) ∪ span({ri}mi=1) and therefore does not lie in the
span of the previous rows. In other words,

P
(
rank

([
(Γ(1))T r1 · · · rm+1

])
= Kd+m+ 1 | {xi}i∈J

)
= 1.

This is true for any {xi}i∈J satisfying rank
([

(Γ(1))T r1 · · · rm
])

= Kd + m,
which by inductive assumption occurs with probability 1 and so by marginalizing we have
P
(
rank

([
(Γ(1))T r1 · · · rm+1

])
= Kd + m + 1

)
= 1. Taking m = D − 1, we have

with probability 1 that[
(Γ(1))T r1 · · · rD

]
=
[
(Γ(1))T (Γ(2))T

]
= Γ̂T

is full-rank, and so Γ has full column rank.
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C.5 Proof of results in the single user case

Necessary conditions: When K = 1, the three conditions in Proposition 2.1 are equivalent to
rank(S) ≥ D+ d: in the single user case, ST = S, and so (c) directly states that rank(S) ≥ D+ d.
(b) also translates to rank(S) ≥ D+ d when K = 1. The condition rank(S) ≥ d in (a) is subsumed
by rank(S) ≥ D + d.

Sufficient conditions: Suppose rank(S) ≥ D + d. By definition, there exists a set of D + d
linearly independent rows in S: denote the D + d× n submatrix of S defined by these rows as S′.
Since S′ is full row rank by construction, by Corollary C.4.1 there exists a permutation P such that
PS′ is incremental. Define S(1) as the first d rows of PS′, and S(2) as the remaining D rows of
PS′. Then [ S

(1)

S(2) ] satisfies the conditions of Proposition 2.2 and therefore if each xi is sampled i.i.d.
according to pX then PS′[XT

⊗ XT ] has full column rank with probability 1 — and therefore full
row rank since it is square. Since the rows of this matrix are simply a permuted subset of the rows
in S[XT

⊗ XT ], we also have that S[XT
⊗ XT ] has rank D + d and therefore full column rank with

probability 1.

Random construction: We will use the results of Appendix C.2 to choose a number of random
measurements and items such that a single-user selection matrix S has rank at least D + d with high
probability, to satisfy the conditions described above. Let failure probability 0 < δ < 1 be given,
and suppose S is constructed by drawing mT item index pairs uniformly and independent at random
among n items. After drawing a single measurement, S will immediately have rank 1. According
to Theorem C.8 with r0 = 1 and r = D + d, with probability at least 1 − δ the total number of
additional required measurements M is less than

(
1 + ln 1

δ

)(∑D+d
i=2

1

1− i(i−1)
n(n−1)

)
.

To make this quantity more manageable, note that 1

1− i(i−1)
n(n−1)

is an increasing function of i. Hence, if

we choose a constant U such that 1

1− (D+d)(D+d−1)
n(n−1)

≤ U , then for every 2 ≤ i ≤ D + d we also have
1

1− i(i−1)
n(n−1)

≤ U . To arrive at such a U , suppose that (n − 1)2 ≥ (1 + γ)(D + d)2 for some γ > 0,

i.e., n ≥
√
1 + γ(D + d) + 1. Then

(D + d)(D + d− 1)

n(n− 1)
≤ (D + d)2

(n− 1)2
≤ 1

1 + γ
,

and so
1

1− (D+d)(D+d−1)
n(n−1)

≤ 1

1− 1
1+γ

=
1 + γ

γ
,

and we can set U = 1+γ
γ . Therefore,

D+d∑
i=2

1

1− i(i−1)
n(n−1)

≤ 1 + γ

γ
(D + d− 1),

and so with probability at least 1 − δ, M <
(
1 + ln 1

δ

)
1+γ
γ (D + d − 1). To choose a convenient

value for γ, we can let γ = 1
2 (1 +

√
5), in which case γ+1

γ =
√
1 + γ = 1

2 (1 +
√
5) ≈ 1.62.

So, if n ≥ 1
2 (1 +

√
5)(D + d) + 1, and mT ≥

⌈
1
2 (1 +

√
5)
(
1 + ln 1

δ

)
(D + d− 1)

⌉
+ 1 random

measurements are taken, then with probability at least 1− δ, rank(S) ≥ D + d. Hence, with high
probability, n = Ω(D + d) and mT = Ω(D + d) random measurements result in a selection matrix
S with rank at least D + d. Once such a matrix with rank at least D + d is fixed after sampling, if
each xi is sampled i.i.d. according to pX then as described above Γ will be full column rank with
probability 1. Together, the process of independently sampling S and {xi}ni=1 results in Γ having
full column rank with high probability.

C.6 Constructions and counterexamples

Counterexample for necessary conditions being sufficient: Below we demonstrate a counterex-
ample where the conditions in Proposition 2.1 are met, but the system results in a Γ matrix that is
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not full column rank. In this example, d = 2 (and so D = 3), K = 3, mk = d +D/K = 3, and
n = D + d+ 1 = 6. Consider the selection matrices below:

S1 =

[
0 0 1 0 −1 0
1 0 0 0 0 −1
1 0 0 −1 0 0

]

S2 =

[
0 1 0 0 −1 0
1 0 −1 0 0 0
0 0 0 0 1 −1

]

S3 =

[
0 1 0 0 −1 0
1 0 −1 0 0 0
0 1 0 0 0 −1

]
.

By inspection, rank(Sk) = 3 ≥ d for each k,
∑

k rank(Sk) = 9 = D + dK, and rank(ST ) = 5 =
D + d. Yet, when we numerically sample xi ∼ N (0, I) and verify that rank(SkX

T ) = 2 = d,∑
k rank(Sk

[
XT

⊗ XT
]
) = D+ dK, and rank(ST

[
XT

⊗ XT
]
) = 5, we still find that Γ is rank

deficient. This counterexample illustrates that the conditions of Proposition 2.1 are not sufficient for
identifiability.

Incremental condition construction: Here we construct a selection matrix scheme that satisfies
the properties of Proposition 2.2 while only using the minimal number of measurements per user (i.e.,
mk = d+D/K) and items (i.e., n = D + d+ 1). For each k ∈ [K], let

S
(1)
k = d rows





1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −1 0 0
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1

0d,D


,

and define

S(2) = D rows




0D,d

1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −1 0 0
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1


.

By observation, for each k ∈ [K] we have

[
S

(1)
k

S(2)

]
= D + d rows





1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −1 0 0
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1


,

which by observation is incremental. Assuming for simplicity that D/K is an integer, for each k ∈ [K]

let S(2)
k be the submatrix defined by rows (k − 1)(D/K) + 1 through k(D/K) of S(2), i.e., each user

is allotted D/K nonoverlapping rows of S(2). Finally, for each k ∈ [K] let

Sk =

[
S

(1)
k

S
(2)
k

]
.

By observation each S
(1)
k has rank d, and by construction each

[
S

(1)
k

S(2)

]
is incremental, and therefore

the conditions of Proposition 2.2 are satisfied.
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Counterexample for incremental sufficiency conditions being exhaustive: Below we demon-
strate a counterexample where the matrix Γ is full column rank, yet the conditions in Proposition 2.2
are not met, demonstrating that they are not an exhaustive set of sufficiency conditions.

In this example, d = 2, K = 2, and n = 6, with selection matrices given by

S1 =

(1a)
(1b)
(1c)
(1d)

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0


S2 =

(2a)
(2b)
(2c)

[
1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

]
.

By observation, one cannot partition these selection matrices according to the conditions in Proposi-
tion 2.2. To see this, we can attempt to partition these selection matrices according to these conditions.
First note that rows (1a) and (2a) are equal, as well as rows (1c) and (2b), which implies that (1a,c) and
(2a,b) must belong to S

(1)
1 and S

(1)
2 respectively. Otherwise, there would exist at least one repeated

pair in the matrix
[
S

(1)
k

S(2)

]
for k = 1 or k = 2, which would violate condition (b) of Proposition 2.2.

Therefore, S(2) must consist of rows (1b), (1d), and (2c). While (1d) is surely incremental with
respect to S

(1)
1 , and (2c) is surely incremental with respect to S

(1)
2 , (1b) overlaps with both (1a) and

(1c) and therefore cannot possibly be incremental with respect to S
(1)
1 , and hence the conditions in

Proposition 2.2 are not met.

Yet, in simulation we find with normally distributed items that the Γ matrix resulting from the above
selection scheme is in fact full column rank.

C.7 Conjectured sufficiency conditions

We conjecture that a set of conditions similar to that of Proposition 2.2 are sufficient for identifiability
under items sampled according to a distribution that is absolutely continuous with respect to the
Lebesgue measure. We list these conditions below:

Conjectured sufficiency conditions: Let K ≥ 1, and suppose mk > d ∀ k ∈ [K], mT = D+dK,
and n ≥ D + d+ 1. Suppose that for each k ∈ [K], there exists a d× n selection matrix S

(1)
k and

mk − d× n selection matrix S
(2)
k such that Sk = [ (S(1)

k )T (S
(2)
k )T ]

T , and that the following are true:

(a) For all k ∈ [K], rank(S(1)
k ) = d

(b) Defining theD×n selection matrix S(2) as S(2) := [ (S(2)
1 )T ··· (S

(2)
K )T ]

T , for each k ∈ [K],[
S

(1)
k

S(2)

]
is full row rank

Intuitively, these conditions replace the permutation condition in Proposition 2.2 with a more general
condition concerning only the rank. In fact, due to Corollary C.4.1, condition (b) in Proposition 2.2
implies the second condition above. These conditions capture the intuition that each user is allocated
d independent measurements to identity their own pseudo-ideal point (condition (a) above), and
then collectively the set of users answers an additional D independent measurements to identify the
metric (condition (b) above). As long as the individual measurements do not “overlap” with the
collective measurements (captured by the rank condition in condition (b)), then the collective set of
measurements should be rich enough to identify the metric and all pseudo-ideal points, even if each
individual user has overlapping measurements in their S(1)

k selection matrices. Empirically, we find
that the above conditions appear to be sufficient for identifiability, at least with normally distributed
items.

Furthermore, the above conditions would provide a convenient avenue to study randomly selected
unquantized measurements among multiple users. As we demonstrated in Appendix C.5, we can use
Theorem C.8 to bound the number of measurements needed for a selection matrix to be full-rank.
We can apply these tools to the multiuser case as follows: first, sample on the order Ω(D) randomly
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selected pairs among Ω(D + d) items to construct a selection matrix S(2) that is rank D with high
probability. Then, using S(2) as a seed matrix in Theorem C.8, sample on the order of d additional
measurements per user in selection matrix S

(1)
k , so that for each individual user conditions (a-b)

above are satisfied with high probability. The key insight is that if the measurements in S(2) are
evenly distributed between users, and the number of samples taken in S(2) and each S

(1)
k is fixed

ahead of time (and non-adaptive), then the above sampling process is simply equivalent to sampling
pairs uniformly at random for each individual user. Yet, with high probability they should satisfy the
above conditions, which if are sufficient for identifiability should result in a measurement matrix Γ
that is full column rank.

D Proofs of prediction and generalization results

D.1 Proof of Theorem 3.1

We start by expanding the excess risk between the empirical and true optimizers:

R(M̂ , {v̂k}Kk=1)−R(M∗, {v∗
k}Kk=1)

= R(M̂ , {v̂k}Kk=1)− R̂(M̂ , {v̂k}Kk=1) + R̂(M̂ , {v̂k}Kk=1)

− R̂(M∗, {v∗
k}Kk=1) + R̂(M∗, {v∗

k}Kk=1)−R(M∗, {v∗
k}Kk=1)

≤ R(M̂ , {v̂k}Kk=1)− R̂(M̂ , {v̂k}Kk=1) + R̂(M∗, {v∗
k}Kk=1)−R(M∗, {v∗

k}Kk=1) (38)

≤ 2 sup
M ,{vk}K

k=1

|R̂(M , {vk}Kk=1)−R(M , {vk}Kk=1)|

≤ 2E

[
sup

M ,{vk}K
k=1

∣∣∣R̂(M , {vk}Kk=1)−R(M , {vk}Kk=1)
∣∣∣]+√8L2γ2 log(2/δ)

|S|
(39)

where (38) follows from the fact that M̂ , {vk} are the empirical risk minimizers, and (39) follows
from the Bounded differences inequality (also known as McDiarmid’s Inequality, see [48]) since for
two data points (p, k, yp) and (p′, k′, yp′) we have that

ℓ
(
yp(x

T
i Mxi − xT

j Mxj + (xi − xj)
Tvk)

)
− ℓ

(
yp′(xT

i′Mxi′ − xT
j′Mxj′ + (xi′ − xj′)

Tvk′)
)
≤ 2Lγ

by Lipschitz-ness of ℓ and the definition of γ in eq. (5). The expectation in eq. (39) is with respect
to the dataset S. Next, using symmetrization, contraction, and introducing Rademacher random
variables εp with P(εp = 1) = P(εp = −1) = 1/2 for all data points in S, we have that (with
expectations taken with respect to both {εp} and S)

E

[
sup

M,{vk}Kk=1

|R̂(M , {vk}Kk=1)−R(M , {vk}Kk=1)|

]

≤ 2L

|S| E

[
sup

M,{vk}Kk=1

∣∣∣∣∣∑
S

εpyp(x
T
i Mxi − xT

j Mxj + (xi − xj)
Tvk)

∣∣∣∣∣
]

=
2L

|S| E

[
sup

M,{vk}Kk=1

∣∣∣∣∣∑
S

εp(x
T
i Mxi − xT

j Mxj + (xi − xj)
Tvk)

∣∣∣∣∣
]

since P(εpyp = 1) = 1/2

=
2L

|S| E

[
sup

M,{vk}Kk=1

∣∣∣∣∣
〈∑

S

εp

[
xix

T
i − xjx

T
j 0 · · · xi − xj︸ ︷︷ ︸

column d + k

· · · 0
]
,
[
M v1 · · · vK

]〉∣∣∣∣∣
]

(40)

Cauchy-Schwarz
≤ 2L

|S| E

[
sup

M,{vk}Kk=1

∥∥∥∥∥∑
S

εp

[
xix

T
i − xjx

T
j 0 · · · xi − xj︸ ︷︷ ︸

column d + k

· · · 0
]∥∥∥∥∥

F

∥∥[M v1 · · · vK

]∥∥
F

]

=
2L

|S|

(
sup

M,{vk}Kk=1

∥∥[M v1 · · · vK

]∥∥
F

)
E

[∥∥∥∥∥∑
S

εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

]∥∥∥∥∥
2

]
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≤ 2L

|S|

√
λ2
F +Kλ2

v E

[∥∥∥∥∥∑
S

εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

]∥∥∥∥∥
2

]
. (41)

Next we employ Matrix Bernstein to bound

E

[∥∥∥∥∥∑
S
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

]∥∥∥∥∥
2

]
,

which is a sum of zero-mean random vectors in Rd2+d (recall that each εp ∈ {−1, 1} with equal
probability). First note that under the assumption ∥xi∥ ≤ B ∀ i, we have∥∥∥∥[vec(xix

T
i − xjx

T
j )

xi − xj

]∥∥∥∥2
2

= ∥xix
T
i − xjx

T
j ∥2F + ∥xi − xj∥22

≤ (∥xix
T
i ∥F + ∥xjx

T
j ∥F )2 + (∥xi∥2 + ∥xj∥2)2

≤ (∥xi∥22 + ∥xj∥22)2 + (∥xi∥2 + ∥xj∥2)2

≤ 4(B4 +B2),

and therefore ∥∥∥∥[vec(xix
T
i − xjx

T
j )

xi − xj

]∥∥∥∥
2

≤ 2B
√
B2 + 1 =: CB .

We also have ∥∥∥∥∥E
[∑

S

(
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

])T (
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

])]∥∥∥∥∥
= E

[∑
S

[
vec(xix

T
i − xjx

T
j )

xi − xj

]T [
vec(xix

T
i − xjx

T
j )

xi − xj

]]

= E

[∑
S
(∥xix

T
i − xjx

T
j ∥2F + ∥xi − xj∥22)

]
≤ 4(B4 +B2)|S|
= C2

B |S|,

and∥∥∥∥∥E
[∑

S

(
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

])(
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

])T
]∥∥∥∥∥

=

∥∥∥∥∥E
[∑

S

[
vec(xix

T
i − xjx

T
j )

xi − xj

] [
vec(xix

T
i − xjx

T
j )

xi − xj

]T]∥∥∥∥∥
≤ E

[∥∥∥∥∥∑
S

[
vec(xix

T
i − xjx

T
j )

xi − xj

] [
vec(xix

T
i − xjx

T
j )

xi − xj

]T∥∥∥∥∥
]

by convexity of ∥·∥ and Jensen’s inequality

≤ E

[∑
S

∥∥∥∥∥
[
vec(xix

T
i − xjx

T
j )

xi − xj

] [
vec(xix

T
i − xjx

T
j )

xi − xj

]T∥∥∥∥∥
]

By the triangle inequality

≤ E

[∑
S

∥∥∥∥[vec(xix
T
i − xjx

T
j )

xi − xj

]∥∥∥∥2
2

]
≤ C2

B |S|,

and so

max

{∥∥∥∥∥E
[∑

S

(
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

])T (
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

])]∥∥∥∥∥,
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∥∥∥∥∥E
[∑

S

(
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

])(
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

])T
]∥∥∥∥∥
}

≤ C2
B |S|.

Therefore, by Theorem 6.1.1 of [49]

E

[∥∥∥∥∥∑
S
εp

[
vec(xix

T
i − xjx

T
j )

xi − xj

]∥∥∥∥∥
2

]
≤
√
2C2

B |S| log(d2 + d+ 1) +
CB

3
log(d2 + d+ 1).

Plugging into eq. (41) and then eq. (39), we have with probability greater than 1− δ,

R(M̂ , {v̂k}Kk=1)−R(M∗, {v∗
k}Kk=1)

≤ 4L
√
λ2F +Kλ2v

(√
2C2

B

|S|
log(d2 + d+ 1) +

CB

3|S|
log(d2 + d+ 1)

)
+

√
8L2γ2 log(2/δ)

|S|
.

Taking B = 1, we have the desired result.

D.2 Proof of Theorem 3.3

The proof is identical to that of Theorem 3.1 up until eq. (40), where instead of applying Cauchy-
Schwarz we apply the matrix Hölder’s inequality:

2L

|S|
E

[
sup

M ,{vk}K
k=1

∣∣∣∣∣
〈∑

S
εp

[
xix

T
i − xjx

T
j 0 · · · xi − xj︸ ︷︷ ︸

column d + k

· · · 0
]
, [M v1 · · · vK ]

〉∣∣∣∣∣
]

≤ 2L

|S|
E

[
sup

M ,{vk}K
k=1

∥∥∥∥∥∑
S
εp

[
xix

T
i − xjx

T
j 0 · · · xi − xj︸ ︷︷ ︸

column d + k

· · · 0
]∥∥∥∥∥∥[M v1 · · · vK ]∥∗

]

=
2L

|S|

(
sup

M ,{vk}K
k=1

∥[M v1 · · · vK ]∥∗

)
E

[∥∥∥∥∥∑
S
εp

[
xix

T
i − xjx

T
j 0 · · · xi − xj︸ ︷︷ ︸

column d + k

· · · 0
]∥∥∥∥∥
]

≤ 2Lλ∗
|S|

E

∥∥∥∥∥∥
∑
p∈S

εp

[
xix

T
i − xjx

T
j 0 · · · xi − xj︸ ︷︷ ︸

column d + k

· · · 0
]∥∥∥∥∥∥
 .

In a similar manner to Appendix D.1, we can apply Matrix Bernstein to bound E
[∥∥∥∑S εpZ

(k)
ij

∥∥∥],
where for conciseness we have defined

Z
(k)
ij :=

[
xix

T
i − xjx

T
j 0 · · · xi − xj︸ ︷︷ ︸

column d + k

· · · 0
]
.

First note that

∥εpZ(k)
ij ∥ ≤ ∥xix

T
i − xjx

T
j ∥+ ∥xi − xj∥

≤ ∥xix
T
i ∥+ ∥xjx

T
j ∥+ ∥xi∥+ ∥xj∥

= ∥xi∥22 + ∥xj∥22 + ∥xi∥2 + ∥xj∥2
≤ 2(B2 +B),

where we have used the fact that the operator norm of a vector is simply the ℓ2 norm,
along with the assumption that ∥xi∥2 ≤ B ∀ i for a constant B > 0 (taken to be 1 in
the theorem statement). We next bound the matrix variance of the sum

∑
S εpZ

(k)
ij , de-

fined as v := max{∥
∑

S E[εpZ(k)
ij (εpZ

(k)
ij )T ]∥, ∥

∑
S E[(εpZ(k)

ij )T εpZ
(k)
ij ]∥}, which is equal to

|S|max{∥E[Z(k)
ij (Z

(k)
ij )T ]∥, ∥E[(Z(k)

ij )TZ
(k)
ij ]∥} since εp ∈ {−1, 1} and each data point in S is

i.i.d.

Towards bounding v, we have the following technical lemma, proved later in this section:
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Lemma D.1. For k ∼ Unif([K]) and 1 ≤ i < j ≤ n such that (i, j) is chosen uniformly at random
from the set of

(
n
2

)
unique pairs,

E
[
Z

(k)
ij (Z

(k)
ij )T

]
=

2

n(n− 1)

[
X(nD −G)XT + nXXT − n2xxT

]
where G := XTX , D := diag([∥x1∥2, . . . , ∥xn∥2]), and x := 1

n

∑n
i=1 xi. Furthermore,

E
[
(Z

(k)
ij )TZ

(k)
ij

]
=

2

n(n− 1)

[
X(nD −G)XT n

K ·
∑n

ℓ=1(xℓ − x)Txℓ · xℓ1
T
K

n
K · 1K

∑n
ℓ=1(xℓ − x)Txℓ · xT

ℓ
n
K ·
(
∥X∥2F − n∥x∥2

)
IK

]
,

and

max{∥E[Z(k)
ij (Z

(k)
ij )T ]∥, ∥E[(Z(k)

ij )TZ
(k)
ij ]∥} ≤

(
4(B2 + 1) +

4min(d, n)

K

)
∥X∥2

n
+

16B3

√
K
.

Therefore, we have

v ≤ |S|
[(

4(B2 + 1) +
4min(d, n)

K

)
∥X∥2

n
+

16B3

√
K

]
.

Noting that Z(k)
ij is d× d+K, from Theorem 6.1.1 in [49],

E

[∥∥∥∥∥∑
S
εp

[
xix

T
i − xjx

T
j 0 · · · xi − xj︸ ︷︷ ︸

column d + k

· · · 0
]∥∥∥∥∥
]

= E

[∥∥∥∥∥∑
S
εpZ

(k)
ij

∥∥∥∥∥
]

≤
√
2v log(2d+K) +

2(B2 +B)

3
log(2d+K)

≤

√
2|S| log(2d+K)

[(
4(B2 + 1) +

4min(d, n)

K

)
∥X∥2
n

+
16B3

√
K

]
+

2(B2 +B)

3
log(2d+K),

and so, continuing where we left off at the proof of Theorem 3.1,

E

[
sup

M ,{vk}K
k=1

|R̂(M , {vk}Kk=1)−R(M , {vk}Kk=1)|

]

≤ 2L

√
2λ2∗ log(2d+K)

|S|

[(
4(B2 + 1) +

4min(d, n)

K

)
∥X∥2
n

+
16B3

√
K

]
+

4L(B2 +B)λ∗
3|S|

log(2d+K).

Combining this with the first part of the proof of Theorem 3.1 (which, as we mentioned is identical
here), with probability at least 1− δ

R(M̂ , {v̂k}Kk=1)−R(M∗, {v∗
k}Kk=1)

≤ 2L

√
2λ2∗ log(2d+K)

|S|

[(
4(B2 + 1) +

4min(d, n)

K

)
∥X∥2
n

+
16B3

√
K

]
+

4L(B2 +B)λ∗
3|S|

log(2d+K) +

√
8L2γ2 log(2/δ)

|S|
.

(42)

Taking B = 1, we have the desired result.

Proof of Lemma D.1: Break Z
(k)
i,j into submatrices

Aij := xix
T
i − xjx

T
j

and

B
(k)
ij :=

[
0 · · · xi − xj︸ ︷︷ ︸

column k

· · · 0
]
.
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We proceed by computing the expected products of all submatrix combinations. Throughout, we will
be summing over all

(
n
2

)
item pairs. To reduce constant factors to track, we will use the fact that∑n−1

i=1

∑n
j=i+1 Qij =

1
2

∑n
i=1

∑
j ̸=i Qij =

1
2

∑
i ̸=j Qij for matrices Qij satisfying Qij = Qji.

Step 1: Computing E
[
AT

ijAij

]
= E

[
AijA

T
ij

]
Note that the above equality holds by symmetry of Aij . Define Eij := eie

T
i − ejej , and note that

Aij = XEijX
T . Therefore

n−1∑
i=1

n∑
j=i+1

AT
ijAij =

1

2

∑
i ̸=j

AT
ijAij

=
1

2

∑
i ̸=j

XEijX
TXEijX

T

=
1

2
X

∑
i ̸=j

EijX
TXEij

XT

=
1

2
X

∑
i ̸=j

EijGEij

XT

=
1

2
X

∑
i ̸=j

∥xi∥2eieTi + ∥xj∥2ejeTj − xT
i xj(eie

T
j + eje

T
i )

XT

=
1

2
X

2(n− 1)D −
∑
i ̸=j

xT
i xj(eie

T
j + eje

T
i )

XT

= X (nD −G)XT .

As Aij does not depend on the random variable k,

E
[
AT

ijAij

]
=

1(
n
2

) n−1∑
i=1

n∑
j=i+1

AT
ijAij =

2

n(n− 1)
X (nD −G)XT .

Step 2: Computing E[AT
ijB

(k)
ij ]

AT
ijB

(k)
ij =

(
xix

T
i − xjx

T
j

) [0 · · · xi − xj︸ ︷︷ ︸
column k

· · · 0
]
.

Hence, the product is 0 for all columns except the kth. As we sum over all k ∈ [K] to compute the
expectation, the resulting submatrix is rank 1 with K copies of this same column. We therefore,
compute the expectation of this column first.

n−1∑
i=1

n∑
j=i+1

(
xix

T
i − xjx

T
j

)
(xi − xj) =

n−1∑
i=1

n∑
j=i+1

∥xi∥2xi + ∥xj∥2xj − xT
i xjxi − xT

i xjxj

=
1

2

∑
i

∑
j ̸=i

∥xi∥2xi + ∥xj∥2xj − xT
i xjxi − xT

i xjxj

= (n− 1)
∑
i

∥xi∥2xi −
∑
i

∑
j ̸=i

xT
i xjxi

= n
∑
i

∥xi∥2xi −
∑
i

∑
j

xT
i xjxi

= n
∑
i

∥xi∥2xi −
∑
i

∑
j

xix
T
i xj
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= n
∑
i

∥xi∥2xi −
∑
i

xix
T
i

∑
j

xj

= n
∑
i

∥xi∥2xi − n
∑
i

xT
i xxi

= n
∑
i

(
∥xi∥2 − xT

i x
)
xi

= n
∑
i

(xi − x)
T
xi · xi.

We therefore have

n−1∑
i=1

n∑
j=i+1

AT
ijB

(k)
ij =

0 · · · n
∑
i

(xi − x)
T
xi · xi︸ ︷︷ ︸

column k

· · · 0
 .

When we then sum over k and normalize by 1/K, and divide by the
(
n
2

)
unique pairs to finish the

expectation computation, we have

E[AT
ijB

(k)
ij ] =

n

K
(
n
2

) ∑
i

(xi − x)
T
xi · xi1

T
K =

2n

K · n · (n− 1)
·

n∑
ℓ=1

(xℓ − x)Txℓ · xℓ1
T
K ,

where the factor of 1K simply generates a matrix with K copies of this same column.

Step 3: Computing E[(B(k)
ij )TB

(k)
ij ]

(B
(k)
ij )TB

(k)
ij =


0T

...
(xi − xj)

T

...
0T

 [0 · · · xi − xj · · · 0]

Hence,

[(B
(k)
ij )TB

(k)
ij ]p,q =

{
∥xi − xj∥2 if p = q = k

0 otherwise
.

Since the non-zero entry in this matrix does not depend on k, E[(B(k)
ij )TB

(k)
ij ] is a equal to a constant

times the K-dimensional identity. To compute this constant, first we evaluate

n−1∑
i=1

n∑
j=i+1

∥xi − xj∥2 =

n−1∑
i=1

n∑
j=i+1

Gii +Gjj − 2Gij

=
1

2

∑
i

∑
j ̸=i

Gii +Gjj − 2Gij

= n · Tr(G)−
∑
i

∑
j

Gij

= n · Tr(G)−
∑
i

∑
j

xT
i xj

= n · Tr(G)−

(∑
i

xi

)T ∑
j

xj

= n∥X∥2F − n2∥x∥2

The first equality holds since for a Gram matrix G = XTX , we have that ∥xi − xj∥2 = Gii −
2Gij +Gjj . In the final equality, we have used the fact that Tr(G) = ∥X∥2F .
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By summing (B
(k)
ij )TB

(k)
ij over all users and unique pairs and then dividing by K and then

(
n
2

)
to

compute the expectation, we have:

E[(B(k)
ij )TB

(k)
ij ] =

1

K
(
n
2

) K∑
k=1

∑
i̸=j

(B
(k)
ij )TB

(k)
ij

=
2

K · n · (n− 1)
·
n−1∑
i=1

n∑
j=i+1

∥xi − xj∥2IK

=
2n

K · n · (n− 1)
·
(
∥X∥2F − n∥x∥2

)
IK .

Steps 1-3 establish the second claim regarding E
[
(Z

(k)
ij )TZ

(k)
ij

]
by noting that

E
[
(Z

(k)
ij )TZ

(k)
ij

]
=

[
E
[
AT

ijAij

]
E[AT

ijB
(k)
ij ]

E[(B(k)
ij )TAij ] E[(B(k)

ij )TB
(k)
ij ]

]
,

where we have used both the result of Step 2 and its transpose.

Step 4: Computing E[B(k)
ij (B

(k)
ij )T ]

B
(k)
ij (B

(k)
ij )T = [0 · · · xi − xj · · · 0]


0T

...
(xi − xj)

T

...
0T

 = (xi − xj)(xi − xj)
T .

We compute

n−1∑
i=1

n∑
j=i+1

(xi − xj)(xi − xj)
T =

1

2

∑
i

∑
j ̸=i

(xi − xj)(xi − xj)
T

= (n− 1)
∑
i

xix
T
i −

∑
i

∑
j ̸=i

xix
T
j

= n
∑
i

xix
T
i −

∑
i

∑
j

xix
T
j

= nXXT −
∑
i

xi

∑
j

xT
j

= nXXT − n2xxT .

Note that this expression does not depend on K, and so

E[B(k)
ij (B

(k)
ij )T ] =

1(
n
2

) n−1∑
i=1

n∑
j=i+1

(xi − xj)(xi − xj)
T =

2

n · (n− 1)

(
nXXT − n2xxT

)
.

Steps 1 and 4 establish the claim regarding E
[
Z

(k)
ij (Z

(k)
ij )T

]
by noting that

E
[
Z

(k)
ij (Z

(k)
ij )T

]
= E

[
AijA

T
ij

]
+ E[B(k)

ij (B
(k)
ij )T ].

To bound ∥E[Z(k)
ij (Z

(k)
ij )T ]∥, note that

E
[
Z

(k)
ij (Z

(k)
ij )T

]
=

2

n(n− 1)
X
[
nD −G+ nI − 11T

]
XT .
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We can expand the center term as

nD −G+ nI − 11T =

{
(n− 1)(∥xi∥2 + 1) i = j

−xT
i xj − 1 i ̸= j

.

From the Gershgorin Circle Theorem we then have

∥nD −G+ nI − 11T ∥ ≤ max
i

[(n− 1)(∥xi∥2 + 1) +
∑
j ̸=i

|⟨xi,xj⟩+ 1|]

≤ max
i

[(n− 1)(∥xi∥2 + 1) + n− 1 + ∥xi∥
∑
j ̸=i

∥xj∥]

≤ (n− 1)(B2 + 1) + n− 1 + (n− 1)B2

= 2(n− 1)(B2 + 1).

We then have ∥∥∥E [Z(k)
ij (Z

(k)
ij )T

]∥∥∥ ≤ 2

n(n− 1)
∥X∥2∥nD −G+ nI − 11T ∥

≤ 4(B2 + 1)

n
∥X∥2.

We take a slightly different approach in bounding
∥∥∥E [(Z(k)

ij )TZ
(k)
ij

]∥∥∥. First, we decompose

E
[
(Z

(k)
ij )TZ

(k)
ij

]
as

E
[
(Z

(k)
ij )TZ

(k)
ij

]
=

2

n(n− 1)

[
A B
BT C

]
,

where A = X(nD − G)XT , B = n
K ·

∑n
ℓ=1(xℓ − x)Txℓ · xℓ1

T
K , and C = n

K ·(
∥X∥2F − n∥x∥2

)
IK . By repeated applications of the triangle inequality,∥∥∥∥[ A B

BT C

]∥∥∥∥ ≤
∥∥∥∥[A 0

0 0

]∥∥∥∥+ ∥∥∥∥[0 B
0 0

]∥∥∥∥+ ∥∥∥∥[ 0 0
BT 0

]∥∥∥∥+ ∥∥∥∥[0 0
0 C

]∥∥∥∥
= ∥A∥+ 2∥B∥+ ∥C∥.

We bound each of these terms in turn. Noting that A = X(nD −G)XT and that

nD −G =

{
(n− 1)∥xi∥2 i = j

−xT
i xj i ̸= j

,

and so by applying the Gershgorin Circle Theorem as above we have

∥nD −G∥ ≤ max
i

[(n− 1)∥xi∥2 +
∑
j ̸=i

|⟨xi,xj⟩|]

≤ max
i

[(n− 1)∥xi∥2 + ∥xi∥
∑
j ̸=i

∥xj∥]

≤ (n− 1)B2 + (n− 1)B2

= 2(n− 1)B2,

and so
∥A∥ = ∥X(nD −G)XT ∥ ≤ ∥X∥2∥nD −G∥ ≤ 2(n− 1)B2∥X∥2.

Next, we bound ∥B∥. First note that for any matrix of the form z1T
K where z ∈ RK ,

z1T
K =

z

∥z∥2
(∥z∥2

√
K)

1T
K√
K

and so ∥z1T
K∥ = ∥z∥2

√
K. Applying this result to B,

∥B∥ =

∥∥∥∥∥ nK ·
n∑

ℓ=1

(xℓ − x)Txℓ · xℓ1
T
K

∥∥∥∥∥
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=
n√
K

∥∥∥∥∥
n∑

ℓ=1

(xℓ − x)Txℓ · xℓ

∥∥∥∥∥
2

≤ n√
K

n∑
ℓ=1

|(xℓ − x)Txℓ| ∥xℓ∥2

≤ 2n2B3

√
K

.

Finally,

∥D∥ =
∥∥∥ n
K

·
(
∥X∥2F − n∥x∥2

)
IK

∥∥∥
=

n

K

∣∣∥X∥2F − n∥x∥2
∣∣

=
n

K

∣∣∥X∥2F − nxTx
∣∣

=
n

K

∣∣∣∣∣∣∥X∥2F − 1

n

(
n∑

i=1

xi

)T ( n∑
i=1

xi

)∣∣∣∣∣∣
=

n

K

∣∣∣∣∣∣∥X∥2F − 1

n

n∑
i=1

n∑
j=1

xT
i xj

∣∣∣∣∣∣
=

n

K

∣∣∣∣∥X∥2F − 1

n
1T
nG1n

∣∣∣∣
=

n

K

∣∣∣∣Tr(G)− 1

n
1T
nG1n

∣∣∣∣
=

n

K

∣∣∣∣Tr(G)− 1n√
n

T

G
1n√
n

∣∣∣∣
Let λi, i ∈ [n] denote the eigenvalues of G, sorted in decreasing order. Each λi ≥ 0 since G

is positive semidefinite by construction. We can then rewrite Tr(G) =
∑

i λi, and 1n√
n

T
G 1n√

n
≤

max∥x∥2=1 x
TGx = λ1, and so Tr(G)− 1n√

n

T
G 1n√

n
≥ Tr(G)− λ1 =

∑
i>1 λi ≤ 0, and so∣∣∣∣Tr(G)− 1n√

n

T

G
1n√
n

∣∣∣∣ = Tr(G)− 1n√
n

T

G
1n√
n
≤ Tr(G) = ∥X∥2F ,

where the final inequality follows since G is positive semidefinite. Therefore, ∥D∥ ≤ (n/K)∥X∥2F .

Combining these bounds, we have∥∥∥E [(Z(k)
ij )TZ

(k)
ij

]∥∥∥ ≤ 2

n(n− 1)
(∥A∥+ 2∥B∥+ ∥C∥)

≤ 2

n(n− 1)

(
2(n− 1)B2∥X∥2 + 4n2B3

√
K

+
n

K
∥X∥2F

)
=

4B2

n
∥X∥2 + 8B3n

(n− 1)
√
K

+
2n

K(n− 1)

∥X∥2F
n

≤ 4B2

n
∥X∥2 + 16B3

√
K

+
4

K

∥X∥2F
n

since n ≥ 2 =⇒ n/n−1 ≤ 2

≤
(
4B2 +

4min(d, n)

K

)
∥X∥2

n
+

16B3

√
K

since ∥X∥2F ≤ rank(X)∥X∥2 ≤ min(d, n)∥X∥2

Therefore,

max{∥E[Z(k)
ij (Z

(k)
ij )T ]∥, ∥E[(Z(k)

ij )TZ
(k)
ij ]∥} ≤

44



max

{
4(B2 + 1)

n
∥X∥2,

(
4B2 +

4min(d, n)

K

)
∥X∥2

n
+

16B3

√
K

}
≤
(
4(B2 + 1) +

4min(d, n)

K

)
∥X∥2

n
+

16B3

√
K
,

completing the proof.

As an aside, we believe that this analysis can be tightened. Specifically, we believe that the final
O(1/

√
K) term can be sharpened and that the maximum above should scale as ∥X∥2/n, which

would eliminate the requirement that K = Ω(d2) in Corollary 3.3.1.

D.3 Proof of Corollary 3.3.1

To prove the corollary, we will select values for the constants in Theorem 3.3 that hold with high
probability, based on our assumed item, user, and metric distribution. We will derive our result from
the extended version of Theorem 3.3 in eq. (42), which holds with probability at least 1 − δ for a
constant B such that ∥xi∥2 ≤ B for all i ∈ [n] and a specification of 0 < δ < 1.

To arrive at a setting forB, we can rewrite our item vectors as xi =
1√
d
ηi, where ηi are i.i.d. N (0, I),

and so ∥xi∥22 = 1
d∥ηi∥22. Since ∥ηi∥22 is a chi-squared random variable with d degrees of freedom,

from [50] we have that for any t > 0, P(∥ηi∥22 ≥ d+ 2
√
dt+ 2t) ≤ e−t, and therefore by the union

bound we have

P(max
i∈[n]

∥ηi∥22 ≥ d+ 2
√
dt+ 2t) ≤

∑
i∈[n]

P(∥ηi∥22 ≥ d+ 2
√
dt+ 2t) ≤ ne−t.

Setting t = log n
δ1

for any given 0 < δ1 < 1, we have with probability greater than 1 − δ1 that

maxi∈[n]∥ηi∥22 < d + 2
√
d log n

δ1
+ 2 log n

δ1
, which implies maxi∈[n]∥xi∥22 < 1 + 2

√
1
d log

n
δ1

+

2
d log

n
δ1

. To get a more interpretable bound, we note for n ≥ 3 that log n
δ > 1 and therefore with

probability at least 1− δ1, maxi∈[n]∥xi∥22 < 5 log n
δ1

. We can therefore set B =
√
5 log n

δ1
.

Towards a setting for γ as defined in eq. (7), let zi :=
√

d√
r
LTxi, in which case xT

i Mxi =

∥zi∥22. zi is normally distributed with E[zi] = 0 and Cov(zi) = E[zizT
i ] =

d√
r
LT E[xix

T
i ]L =

d√
r
LT
(
1
dI
)
L = 1√

r
Ir and therefore zi ∼ N (0, 1√

r
Ir) where we notated the identity as Ir as

a reminder that zi ∈ Rr. Reusing notation, if ηi ∼ N (0, Ir), we can write zi = r−
1
4ηi and so

∥zi∥22 = 1√
r
∥ηi∥22. By the same arguments as above, for a given 0 < δ2 < 1 we have with probability

at least 1−δ2 that maxi∈[n]∥ηi∥22 < 5r log n
δ2

and therefore maxi∈[n]∥zi∥22 < 5
√
r log n

δ2
. Applying

a similar argument to the user points, letting wk :=
√

d√
r
LTuk we have for a given 0 < δ3 < 1 that

with probability at least 1− δ3, maxk∈[K]∥wk∥22 < 5
√
r log K

δ3
. We then have:

max
i,j∈[n],k∈[K]

|δ(k)i,j | = max
i,j∈[n],k∈[K]

|xT
i Mxi − xT

j Mxj + (xi − xj)
Tvk|

= max
i,j∈[n],k∈[K]

|∥zi∥22 − ∥zj∥22 − 2(xi − xj)
T d√

r
LLTuk|

= max
i,j∈[n],k∈[K]

|∥zi∥22 − ∥zj∥22 − 2(zi − zj)
Twk|

≤ max
i,j∈[n],k∈[K]

∥zi∥22 + ∥zj∥22 + 2|(zi − zj)
Twk|

≤ 2max
i∈[n]

∥zi∥22 + 2 max
i,j∈[n],k∈[K]

|(zi − zj)
Twk|

≤ 2max
i∈[n]

∥zi∥22 + 2 max
i,j∈[n],k∈[K]

∥zi − zj∥2∥wk∥2

≤ 2max
i∈[n]

∥zi∥22 + 4 max
i∈[K]

∥zi∥2 max
k∈[K]

∥wk∥2.
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Taking a union bound over the events maxi∈[n]∥zi∥22 ≥ 5
√
r log n

δ2
and maxk∈[K]∥wk∥22 ≥

5
√
r log K

δ3
along with a failure of ∥xi∥2 ≤ B for all i ∈ [n], and setting δ1 = δ2 = δ3 =: δ

for convenience, we have with probability at least 1− 3δ that these failure events do not occur and so

max
i,j∈[n],k∈[K]

|δ(k)i,j | ≤ 2max
i∈[n]

∥zi∥22 + 4 max
i∈[K]

∥zi∥2 max
k∈[K]

∥wk∥2

≤ 10
√
r log

n

δ
+ 20

√
r log

n

δ
log

K

δ

≤ 30
√
r log

max{n,K}
δ

,

and so we can set γ = 30
√
r log max{n,K}

δ .

We next bound ∥X∥. For convenience, let x̃i :=
√
dxi such that x̃i ∼ N (0, Id), and X̃ :=

[x̃1, . . . , x̃n] =
√
dX , so that we have ∥X̃∥ =

√
d∥X∥. From [21], we know that for any t > 0,

P(∥X̃∥ ≥
√
n+

√
d+ t) < e−

t2

2 .

For any given 0 < δ4 < 1, let t =
√
2 log 1

δ4
in which case P(∥X̃∥ ≥

√
n +

√
d +

√
2 log 1

δ4
) <

δ4. Therefore, with probability at least 1 − δ4, ∥X∥ = 1√
d
∥X̃∥ ≤

√
n
d + 1 +

√
2
d log

1
δ4

≤√
3(nd + 1 + 2

d log
1
δ4
) since from Jensen’s inequality, for anym non-negative scalars a1, . . . , am we

have
∑

i

√
ai ≤

√
m
∑

i ai. Therefore, with probability at least 1−δ4, ∥X∥2 ≤ 3(nd +1+ 2
d log

1
δ4
).

Finally, we select a setting for λ∗. Note that by definition each vk lies in the column space of M ;
hence, [M ,v1, . . .vK ] is a rank r matrix. By norm equivalence, we have that

∥[M v1 · · · vK ]∥∗ ≤
√
r∥[M v1 · · · vK ]∥F

=

√
r(∥M∥2F +

∑
k

∥vk∥22)

=

√
r(d2 +

∑
k

∥vk∥22)

≤
√
r(d2 +K max

k∈[K]
∥vk∥22).

Note that ∥vk∥22 = ∥−2 d√
r
LLTuk∥22 = 4d2

r uT
kLLTLLTuk = 4d2

r uT
kLLTuk = 4 d√

r
∥wk∥22.

Recall that with probability at least 1−δ3, maxk∈[K]∥wk∥22 < 5
√
r log K

δ3
. Therefore with probability

at least 1− δ3, maxk∈[K]∥vk∥22 < 20d log K
δ3

, i.e.,

∥[M v1 · · · vK ]∥∗ ≤

√
r

(
d2 + 20dK log

K

δ3

)
,

and so we can set λ∗ =
√
r(d2 + 20dK log K

δ3
).

Taking a union bound over all of the event failures described above and taking δ1 = δ2 = δ3 = δ4 = δ
for simplicity, where δ is the same as as in Theorem 3.3, we have with probability greater than 1− 5δ,

R(M̂ , {v̂k}Kk=1)−R(M∗, {v∗
k}Kk=1)

≤ 2L

√
2λ2∗ log(2d+K)

|S|

[(
4(B2 + 1) +

4min(d, n)

K

)
∥X∥2
n

+
16B3

√
K

]
+

4L(B2 +B)λ∗
3|S|

log(2d+K) +

√
8L2γ2 log(2/δ)

|S|
,

(43)
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with the selection of λ∗, B, ∥X∥, and γ as described above. To arrive at an order of magnitude
statement for this expression, we begin with the term under the first square root:

2λ2
∗ log(2d + K)

|S|

[(
4(B

2
+ 1) +

4min(d, n)

K

) ∥X∥2

n
+

16B3

√
K

]

=
2r(d2 + 20dK log K

δ ) log(2d + K)

|S|

3

(
20 log

n

δ
+ 4 +

4min(d, n)

K

)(
1

d
+

1

n
+

2

dn
log

1

δ

)
+

16
(
5 log n

δ

) 3
2

√
K

 .

If K = Ω(d2) and n ≥ d, then

3

(
20 log

n

δ
+ 4 +

4min(d, n)

K

)(
1

d
+

1

n
+

2

dn
log

1

δ

)
+

16
(
5 log n

δ

) 3
2

√
K

≤ 6

d

(
20 log

n

δ
+ 4 +

4d

K

)(
1 + log

1

δ

)
+

16
(
5 log n

δ

) 3
2

√
K

= O

(
1

d

)
O

(
log n+

d

K
+ 1

)
+O

(
(log n)

3
2

√
K

)

= O

(
1

d

)
O

(
log n+

1

d
+ 1

)
+O

(
(log n)

3
2

d

)

= O

(
1

d

)[
O
(
log n+ (log n)

3
2 + 1

)]
where we have treated δ as a constant, and so in total the first square root term in eq. (43) scales as

O


√√√√[r(d+K log K

δ ) log(2d+K)

|S|

] [
log n+ (log n)

3
2 + 1

] .

We ignore the second term in eq. (43), since it decays faster than
√

1
|S| . Plugging in our selection for

γ, the third term in eq. (43) scales as√√√√7200L2r
(
log max{n,K}

δ

)2
log(2/δ)

|S|
= O

√r (logmax{n,K})2

|S|

 ,

where we have treated δ as a constant. By slightly loosening each term’s scaling and combining
terms, we have

R(M̂ , {v̂k}Kk=1)−R(M∗, {v∗
k}Kk=1)

= O


√√√√[r(d+K log K

δ ) log(2d+K)

|S|

] [
(log(max{n,K}))2 + (log n)

3
2 + 1

] .

Suppressing log terms, this equals

Õ

(√
rd+ rK

|S|

)
.

E Proofs and additional results for recovery guarantees

We can also demonstrate a recovery result in the low-rank setting.
Theorem E.1. Assume the data is gathered as in Theorem 4.1, where M∗, {v∗

k}Kk=1 satisfy the
constraints in (7), and that (7) is solved with loss ℓf . With probability at least 1− δ

1

n
σmin

(
J [XT

⊗,X
T ]
)2(∥M̂ −M∗∥2F +

1

K

K∑
k=1

∥v̂k − v∗
k∥

2

)
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≤ L

C2
f

√
λ2∗ log(2d+K)

2|S|

[(
8 +

4min(d, n)

K

)
∥X∥2
n

+
16√
K

]
+ (44)

2Lλ∗
3C2

f |S|
log(2d+K) +

L

C2
f

√
γ2 log(2/δ)

2|S|
. (45)

To prove both Theorems 4.1 and E.1, we begin with a helpful lemma that in conjunction with
Theorems 3.1 and 3.3 establishes the recovery upper bounds in Theorems 4.1 and E.1.
Lemma E.2. In the same settings as Theorems 4.1 and E.1, we have that

1

n
σmin

(
J [XT

⊗,X
T ]
)2(∥M̂ −M∗∥2F +

1

K

K∑
k=1

∥v̂k − v∗
k∥

2

)

≤ 1

4C2
f

(R(M , {vk}Kk=1)−R(M∗, {v∗
k}Kk=1)).

Proof of Lemma E.2. Recall that ℓf (yp, p;M ,v) = − log(f(ypδp(M ,vk))), and we have that
P(y(k)p = −1) = f (−δp(M∗,v∗

k)). Furthermore, recall that we have taken a uniform distribution
over pairs p and users k. Hence, it is straightforward to show that we may write the excess risk of any
metric M and points {vk}Kk=1 as

R(M , {vk}Kk=1)−R(M∗, {v∗
k}Kk=1) =

1

K
(
n
2

) ∑
i<j

K∑
k=1

KL(f (−δij(M∗,v∗
k)) ∥f (−δij(M ,vk))),

where KL(p ∥ q) = p log(p/q)+ (1− p) log((1− p)/(1− q)). Define ∆(M , {vk}Kk=1) ∈ R(
n
2)×K

such that [∆(M ,vk)]p,k = δp(M ,vk), where we slightly abuse notation to let p denote the row of
∆ corresponding to pair p. We have the following result (proved at the end of the section):

Proposition E.3. Let Cf := minx:|x|≤γ f
′(x). Then,

2C2
f

K
(
n
2

) ∥∥∆ (
M , {vk}Kk=1

)
−∆

(
M∗, {v∗

k}Kk=1

)∥∥2
F
≤ R(M , {vk}Kk=1)−R(M∗, {v∗

k}Kk=1).

Next, define S ∈ {0, 1}(
n
2)×n to be the complete selection matrix of all

(
n
2

)
unique pairs of items

such that the i, jth row is 1 in the ith column, −1 in the jth column, and 0 otherwise. Note that ∆(·, ·)
is linear in both terms. Therefore, we may factor∥∥∆ (M , {vk}Kk=1

)
−∆

(
M∗, {v∗

k}Kk=1

)∥∥2
F
=

K∑
k=1

∥∥∥∥S[XT
⊗,X

T ]

[
ν (M −M∗)

vk − v∗
k

]∥∥∥∥2 .
Hence, we may lower bound the above as

K∑
k=1

∥∥∥∥S[XT
⊗,X

T ]

[
ν (M −M∗)
vk − vk∗

]∥∥∥∥2

≥ σmin

(
S[XT

⊗,X
T ]
)2 K∑

k=1

∥∥∥∥[ν (M −M∗)
vk − v∗

k

]∥∥∥∥2

= σmin

(
S[XT

⊗,X
T ]
)2(

K∥ν(M −M∗)∥2 +
K∑

k=1

∥vk − v∗
k∥

2

)

≥ σmin

(
S[XT

⊗,X
T ]
)2(

K∥M −M∗∥2F +

K∑
k=1

∥vk − v∗
k∥

2

)
.

where σmin(A) denotes the smallest singular value of a matrix A and the final inequality follows
from the fact that for symmetric d× d matrix A,

∥ν(A)∥22 = ∥vec∗(2A− I ⊙A)∥22 =
∑
j≥i

((2− 1i=j)Ai,j)
2
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= 4
∑
j>i

A2
i,j +

∑
i

A2
i,i

≥ 2
∑
j>i

A2
i,j +

∑
i

A2
i,i

=
∑
i>j

A2
i,j +

∑
i<j

A2
i,j +

∑
i

A2
i,i

= ∥A∥2F .

Since n ≥ D + d + 1, surely the selection matrix of all possible paired comparisons S contains
the construction presented in Appendix C.6 which satisfies the conditions of Proposition 2.2, and
so S[XT

⊗,X
T ] is a tall matrix that is full column rank if the items xi are drawn i.i.d. according

to a distribution that is absolutely continuous with respect to the Lebesgue measure, in which case
σmin

(
S[XT

⊗,X
T ]
)2

> 0. To simply this expression even further, we have the following result
(proved at the end of the section):

Proposition E.4. For S ∈ R(
n
2)×n, S

T
S = nJ for J := In − 1

n1n1
T
n .

Therefore,

σmin

(
S[XT

⊗,X
T ]
)2

= nλmin

([
X⊗
X

]
J2[XT

⊗,X
T ]

)
= nσmin

(
J [XT

⊗,X
T ]
)2
.

Finally, note that,
2nC2

f

K
(
n
2

) ≥
4C2

f

Kn
.

The proof follows by rearranging terms.

Proof of Proposition E.3. By Lemma 5.2 of [12], for (y, z) ∈ (0, 1), KL(y||z) ≥ 2(y − z)2. Now,
let y = f(x) and z = f(x′), for a continuously differentiable function f . Then 2(y − z)2 ≥
2(mina f

′(a))2(x− x′)2 since f is monotonic. Applying this to the decomposition of the excess risk
alongside the definition of ∆(M ,vk) establishes the result.

Proof of Proposition E.4. Note that for S ∈ R(
n
2)×n, by construction the ith column corresponds to

item i and each row maps to a pair (e.g., (i, j)) of the possible
(
n
2

)
unique pairs such that exactly

2 elements are non-zero in each row, with a 1 in the column of one item in the pair and a −1 in
the other. Since S

T
S is a Gram matrix, it is sufficient to characterize the inner products between

any two columns of S. First, for the ith, note that i can be paired with n− 1 other items uniquely.
Hence, there are exactly n − 1 non-zero entries in each column all of which are 1 or −1. Hence,
every diagonal entry of S

T
S is n− 1. For the off diagonal entries, consider a pair i ̸= j. As each

row corresponds to a unique pair, the supports of i and j overlap in a single entry corresponding to
the (i, j) pair. By construction one column has a 1 at this entry and the other has a −1. Hence the
inner product between these two columns is −1 and all off diagonal entries of S

T
S are −1. Hence,

S
T
S = nI − 1n1

T
n = nJ .

F Additional experimental details

In this section we provide additional experimental details and results.

F.1 Datasets

The color preference data was originally collected by [24] and we include a .mat file of the dataset
in the paper supplement along with a full description in the code README document. Before
running our learning algorithms, we centered the 3× 37 item matrix X of CIELAB coordinates, and
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normalized the centered coordinates by the magnitude of the largest norm color in CIELAB space
such that maxi∈[n]∥xi∥2 = 1 after centering and normalization.

For both the normally distributed items and color experiments, we performed train and test dataset
splits over multiple simulation runs, and averaged results across each run. For each simulation run,
we blocked the train/test splitting by user, in that all users were queried equally in both training
and test data. Specifically, during each run the dataset was randomly shuffled within each user’s
responses, and then a train/test split created. For the normally distributed data, this consisted of 300
training comparisons per user, and 300 test comparisons. For the color dataset, each user provided
37 × 36 = 1332 responses, which was partitioned into a training set of 300 pairs and a test set of
1032 pairs. To vary the number of training pairs per user, for both datasets we trained incrementally
on the 300 pairs per user in a randomly permuted order (while evaluating on the full test set).

For both normally distributed items and color preference data, we repeat 30 independent trials. In
the color preference data, since the dataset is fixed ahead of time the only difference between each
trial is the train/test splitting as detailed above. In the normally distributed experiments, we generate
responses as P(y(k)i,j = −1) = (1 + eβ(x

T
i M∗xi−xT

j M∗xj+(v∗
k)

T (xi−xj)))−1 for a noise scaling
parameter β > 0.

F.2 Implementation and computation

In out experiments, we did not enforce the γ constraints required for our theoretical results (i.e., the γ
constraints in eqs. (5) and (7)). This constraint is added to the theory to guard against highly coherent
xi vectors. In the simulated instances, this quantity appears to be controlled by the isotropic nature
of both the normally distributed and color datasets, along with the fact that we are constraining the
norms of the latent parameters to be learned.

For all simulated experiments, we leveraged ground-truth knowledge of M∗ and v∗
k to set the hyper-

parameter constraints. This was done to compare each method under its best possible hyperparameter
tuning — namely, the smallest norm balls that still contained the true solution. Specifically, we set
hyperparameters for the normally distributed items experiment as follows:

• Frobenius metric: ∥M∥F ≤ ∥M∗∥F , for all k ∈ [K], ∥vk∥2 ≤ 2maxk∈[K]∥M∗u∗
k∥

• Nuclear full: ∥[M ,v1, · · · ,vK ]∥∗ ≤ ∥[M∗,−2M∗u∗
1, · · · ,−2M∗u∗

K ]∥∗
• Nuclear metric: ∥M∥∗ ≤ ∥M∗∥∗, for all k ∈ [K], ∥vk∥2 ≤ 2maxk∈[K]∥M∗u∗

k∥

• Nuclear split: ∥M∥∗ ≤ ∥M∗∥∗, ∥[v1, · · · ,vK ]∥∗ ≤ 2∥M∗[u∗
1, · · · ,u∗

K ]∥∗
• Nuclear full, single: for each k ∈ [K], ∥[M ,vk]∥∗ ≤ ∥[M∗,−2M∗u∗

k]∥∗.

For the color preferences experiment, we set all hyperparameters under an a priori estimate of
M∗ = I (due to the assumed perceptual uniformity of CIELAB space). Specifically, we constrained
∥M∥F ≤ ∥I∥F =

√
3 (since d = 3), and constrained ∥vk∥2 ≤ 2, since under the heuristic

assumption that M∗ = I we have ∥vk∥2 = ∥−2Muk∥2 = 2∥uk∥ ⪅ 2maxi∈[n]∥xi∥2 = 2, where
in the last inequality we have approximated the distribution of ideal points uk with the empirical
item distribution over centered, scaled CIELAB colors (which have maximal norm of 1 as described
above).

To solve these optimizations, we leveraged CVXPY9 with different solvers. When learning on
normally distributed items, we set ℓ(x) = log(1 + exp(−βx)) to be the logistic loss, where β > 0 is
the same parameter used to generate the response noise. We used the Splitting Conic Solver with
a convergence tolerance set to 1e− 6 to balance between accuracy and computation time. For the
color preference data, we used the hinge loss ℓ(x) = max{0, 1 − x}, solved using the CVXOPT
solver with default parameters, which we found performed more stably than SCS. As an additional
safeguard for numerical stability due to the presence of negative eigenvalues near machine precision,
we project all learned metrics back onto the positive semidefinite cone after solving with CVXPY. All
additional code was written in Python, and all experiments were computed on three Dell 740 servers
with 36, 3.1 GHz Xeon Gold 6254 CPUs.

9https://www.cvxpy.org/

50

https://www.cvxpy.org/


When estimating ideal points ûk from M̂ and v̂k, rather than using the exact pseudo-inverse we
perform a regularized recovery as in [7], since M̂ may have recovery errors. Specifically, for
regularization parameter α > 0 we estimate ûk as

ûk = −2(4M̂2 + αI)−1M̂T v̂k. (46)

We only perform ideal point recovery in the normally distributed item experiments, since no ground-
truth ideal points are available in the real-world color preference data. Since we know a priori
that uk ∼ N (0, 1dI), we can leverage the interpretation of the recovery estimate in eq. (46) as the
maximum a posteriori estimator under a Gaussian prior over uk with Gaussian observations in order
to set α = d.

F.3 Additional experiments and details

Below we present experimental results in additional simulation settings, as well as supplementary
figures for the data presented in the main paper body. We detail specific performance metrics below:
in the following, let V̂ := [v̂1, · · · , v̂K ], U∗ := [u∗

1, · · · ,u∗
K ] V ∗ := −2M∗U∗, and (M∗)†

denote the pseudoinverse of the ground-truth metric.

• Test accuracy: fraction of test data responses predicted correctly from sign(δ̂
(k)
i,j ), where

δ̂
(k)
i,j is computed as in eq. (2) using M̂ and v̂k as parameter estimates.

• Relative metric error: ∥M̂−M∗∥F

∥M∗∥F

• Relative ideal point error: ∥Û−(M∗)†M∗U∗∥F

∥(M∗)†M∗U∗∥F
. We compare recovery error against

(M∗)†M∗U∗ rather than U∗ since if M∗ is low-rank, then the components of U∗ in
the kernel of M∗ are not recoverable.

• Relative pseudo-ideal point error: ∥V̂ −V ∗∥F

∥V ∗∥F

In Figure 1e, we compute the heatmap of the crowd’s metric as the empirical average of the learned
metrics over all independent trials.

We present additional simulation results with normally distributed items in two noise regimes —
“high” noise with β = 1 in the logistic model, and “medium” noise with β = 4 in the logistic model.
We generate the dataset in the same manner as in Section 5. We present results for the low-rank
case as in the main paper body (d = 10, r = 1) as well as the full-rank case (d = r = 10). In the
full-rank case, to generate a ground-truth metric M∗ we generate a d× r matrix L whose entries
are sampled independently according to the standard normal distribution, compute M∗ = LLT ,
and normalize M∗ such that it has a Frobenius norm of d. Otherwise, if we generated L as in the
low-rank experiments, M∗ would simply become a scaled identity matrix.

Fig. 2 repeats the main results in the paper body, with an additional subfigure depicting recovery
error for pseudo-ideal points. This is a “high” noise, low-rank setting. The remaining figures are:
“high” noise full-rank metric (Fig. 3); “medium” noise low-rank metric (Fig. 4); and “medium” noise
full-rank metric (Fig. 5). In Fig. 6 we analyze the color prediction results from Fig. 1d in the low
query count regime.
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(d) Relative pseudo-ideal point error

Figure 2: Full prediction and recovery results for a high noise setting (β = 1) with a low-rank
metric (r = 1). Error bars indicate ±1 standard error about the sample mean. (a-c) appear in the
main paper body, with (d) added here for completeness. Nuclear full gives the best performance on
prediction and Nuclear split is a close second (subfigure a), reflecting the necessity of modeling the
low-rank nature of the M∗ and V ∗. While the Nuclear metric method that only places a nuclear
norm constraint on M performs well in terms of relative error for recovering M∗ (subfigure b), it
achieves far worse performance for estimating U∗ and V ∗ as shown in subfigures (c) and (d). This
reflects the importance of enforcing that M̂ and V̂ share a column space.
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Figure 3: Prediction and recovery results for a high noise setting (β = 1) with a full-rank metric
(d = r = 10). Error bars indicate ±1 standard error about the sample mean. Surprisingly, even in the
full-rank scenario, Nuclear full demonstrates the highest prediction performance, even in comparison
to Frobenius metric which is designed for full-rank metrics. That said, the difference is less stark
for estimating both M∗ and U∗.
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(a) Test accuracy
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(c) Relative ideal point error
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(d) Relative pseudo-ideal point error

Figure 4: Prediction and recovery results for a medium noise setting (β = 4) with a low-rank metric
(r = 1). Error bars indicate ±1 standard error about the sample mean. Similar trends as Figure 2
hold except that the differences are less pronounced. Interestingly, for large numbers of samples per
user, Nuclear metric and Frobenius metric appear to achieve better performance on estimating M∗

and therefore achieve better performance for estimating V ∗, though they do not achieve as strong of
performance for estimating U∗, perhaps because these methods do not enforce that M̂ and V̂ share
a column space.

54



50 100 150 200 250 300
Number of pairs per user

0.75

0.80

0.85

0.90

0.95

Te
st

 a
cc

ur
ac

y
Nuclear full
Nuclear split
Nuclear metric
Frobenius metric
PSD only
Nuclear full, single
Oracle

(a) Test accuracy
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(c) Relative ideal point error
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(d) Relative pseudo-ideal point error

Figure 5: Prediction and recovery results for a medium noise setting (β = 4) with a full-rank metric
(d = r = 10). Error bars indicate ±1 standard error about the sample mean. Similar trends as
Figure 3 hold in this case.
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Figure 6: Comparison of methods on color preference data in the low query regime, with error bars
representing 2.5% and 97.5% percentiles. The identity metric performs more poorly than the methods
that learn a metric tuned to user judgments. The method that learns a single M for the crowd and
method that learns a M for each individual perform similarly in most of the range of number of
pairs. There is a slight advantage to the method that learns a metric for the crowd when very few
pairs have been given to each user. This stems from the fact that the crowd metric can amortize the
cost of learning the metric over the responses given by all users.
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F.4 Comparison with [7] in the single user case

Although the focus of this work is developing and analyzing algorithms for simultaneous metric
and preference learning over multiple users, for completeness we compare the performance of our
approach against the algorithms presented in [7], which only study simultaneous metric and preference
learning in the single user case (K = 1, in our notation). Xu and Davenport propose both “single-step”
and “alternating” estimation algorithms, referred to here as XDsingle and XDalt respectively (we
direct the reader to [7] for the details of these algorithms). Since [7] does not specifically consider
the low-rank metric setting, we evaluate these methods on the full-rank simulated data described in
Fig. 3. To run their algorithms, we use the default hyperparameter values described in their paper and
found in their code (see [7] for details and code link).

In the table below we evaluate their algorithms’ performance using the same procedure as in Fig. 3, at
sampled intervals of 50 queries per user. For reference, we also copy the corresponding values from
Nuclear full, single in Fig. 3. We evaluate XDsingle and XDalt in an analogous manner to Nuclear
full, single: the crowd of K = 10 simulated users generates responses according to a common metric,
but the single user algorithms are solved separately, learning a separate metric for each user. Test
accuracy, metric recovery error, and ideal point recovery error are then averaged over all users.

Number of queries per user 50 100 150 200 250 300
Nuclear full, single 0.720 0.752 0.768 0.779 0.785 0.791
XDsingle 0.641 0.682 0.701 0.712 0.727 0.731
XDalt 0.683 0.715 0.737 0.745 0.757 0.762

(a) Test accuracy

Number of queries per user 50 100 150 200 250 300
Nuclear full, single 1.134 0.975 0.874 0.797 0.747 0.704
XDsingle 1.003 1.889 1.816 1.513 1.233 1.085
XDalt 0.791 0.757 0.733 0.715 0.680 0.674

(b) Relative metric error

Number of queries per user 50 100 150 200 250 300
Nuclear full, single 0.985 0.879 0.841 0.819 0.794 0.782
XDsingle 1.000 0.963 0.910 0.882 0.862 0.866
XDalt 0.922 0.906 0.887 0.887 0.875 0.875

(c) Relative ideal point error

Table 1: Comparison of Nuclear full, single against the methods proposed in [7] for the single user
case. We evaluate prediction accuracy and recovery error (averaged over 30 trials) for a high noise
setting (β = 1) with a full-rank metric (d = r = 10). Simulation details are otherwise identical to
those in Fig. 1a-c.

Overall, among the single user methods Nuclear full, single recovers the highest test prediction
accuracy and lowest ideal point recovery error, while XDalt results in the lowest metric estimation
error. While our work and [7] share the same model in the single user case (as a reminder, [7] does not
consider the multi-user case), each frames the problem differently and solves a different optimization
problem, so it is intuitively unclear how each single user algorithm differs theoretically.
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