
A Additional Experiments and Detailed Setup

Our experimental goals were to understand the performance of our algorithms relative to the state
of the art methods in practice. We present numerical results on benchmark psuedo-games that
were studied empirically in previous work [104]: 1) two-player zero-sum bilinear pseudo-games
with jointly a�ne constraints; 2) two-player zero-sum bilinear pseudo-games with jointly convex
constraints; 3) monotone games with a�ne constraints, and 4) bilinear games with jointly convex
constraints. The �rst two set of experiments can be found in this section, while the two other
experiments can be found in Section 5.

We compare our algorithms to the accelerated mirror-prox quadratic penalty method (AMPQP,
Algorithm 1 [78]), the only GNE-�nding algorithm with theoretical convergence guarantees and
rates [78].9 For the AMPQP algorithm, we use the hyperparameter settings derived in theory when
available, and otherwise conduct a grid search for the best ones. We compare the convergence rates
of our algorithms to that of AMPQP, which converges at the same rate as EDA, but slower than
ADA, in settings in which it is guaranteed to converge, i.e., in monotone pseudo-games.

Computational Resources Our experiments were run on a MacOS machine with 8GB RAM
and an Apple M1 chip, and took about 1 hour to run. Only CPU resources were used.

Programming Languages, Packages, and Licensing We ran our experiments in Python 3.7
[106], using NumPy [107], and CVXPY [108]. All �gures were graphed using Matplotlib [109].

Numpy is distributed under a liberal BSD license. Matplotlib only uses BSD compatible code, and
its license is based on the PSF license. CVXPY is licensed under an APACHE license.

Common Experimental Details All our algorithms were run to generate 50 iterates in total.
In particular, we had T = 50 for EDA, Ta = Tb = 50. For AMPQP, we ran the main routine
(Algorithm 1, [78]) for 50 iterations, i.e., T = 50. As the iterates generated by AMPQP are not
necessarily feasible, we projected them onto the feasible set of actions, so as to avoid unbounded
exploitability. This heuristic improved the convergence rate of AMPQP signi�cantly. The �rst
iterate for all methods was common, and initialized at random.

Code repository The data our experiments generated, as well as the code used to produce our
visualizations, can be found in our code repository.

In what follows, we present two additional set of experiments comparing the empirical convergence
rates of all three algorithms in zero-sum games.

Bilinear Two-Player Zero-Sum Game with Jointly A�ne Constraints We consider the
following two player pseudo-game with m 2 N+ pure strategies: u1(a) = a1

TQa2 =
�u2(a), g(a) = 1�

P
j2[m] a1j �

P
i2[m] a2j ,A1 = A2 = [�10, 10]m , where u1, u2 are payo�

functions of the players, g is the joint constraint function for all players, and A1,A2, are the
players’ strategy spaces. A game version of this pseudo-game was explored by Gidel et al. [110] and
Raghunathan, Cherian, and Jha [104]. Current convergence guarantees for GNE-�nding algorithms
are known only for the type of jointly a�ne constraints g that we consider in this example [78].

For EDA, we use a constant learning rate of ⌘ = 1/kQk as determined by our theory (Theorem 3.4).
Similarly, for ADA, we use the theoretically-grounded constant learning rates of ⌘a = 1/kQk+ kQk2

↵

and ⌘a = 1/kQk, together with a regularization of ↵ = 0.1, which was determined by grid search.
In our implementation of AMPQP, grid search led us to initialize �0 = 0.01, � = 1.05,↵ = 0.2.10

In these experiments, the initialization seemed to have little impact on the algorithms’ performances.

9We note that we are not reporting on our results with the Accelerated Mirror-Prox Augmented Lagrangian
Method (AMPAL), another method studied in the literature with the convergence rates as AMPQP, because we
found this algorithm to be unstable on our benchmark pseudo-games.

10As suggested by Jordan, Lin, and Zampetakis [78], we replaced the convergence tolerance parameter �
in Algorithm 1 of Jordan, Lin, and Zampetakis [78], with a number of iterations for which the accelerated
mirror-prox subroutine algorithm [105] was run. which at eachFor every iteration of AMPQP, this parameter
was increased by a factor of � of AMPQP.
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(a) Sample phase portrait form = 1 (b) Sample exploitability convergence form = 10

Figure 2: Convergence in zero-sum bilinear pseudo-game with jointly a�ne constraints.

In Figure 2, we plot the phase portrait of a randomly initialized one-dimensional pseudo-game,
as well as the convergence rates in a higher-dimensional pseudo-game. We see that all methods
converge sublinearly, with EDA and AMPQP at similar rates, and ADA slightly faster. Interestingly,
the three methods �nd distinct GNEs (Figure 2a). This outcome can be explained by the fact that the
three algorithms have di�erent objectives. In the next set of experiments we will see that although
AMPQP converges to a di�erent GNE than that of EDA and ADA when the constraints are not
a�ne, EDA and ADA (which have similar objectives) converge to the same GNE.

Bilinear Two-Player Zero-Sum Game with Jointly Convex Constraints Next, we consider
the same setting as above, replacing the a�ne constraints with convex l2-ball constraints, i.e.,
g(a) = 1� kak22. This setting is of interest since AMPQP is not guaranteed to converge in pseudo-
games with non-a�ne constraints. Nonetheless, we observe that AMPQP converges, although
this requires a change in the parameters we use, namely we chose �0 = 0.01, � = 1.05,↵ = 0.2
using grid search. Additionally, we observed that changing the EDA regularization parameter to
↵ = 1 resulted in faster convergence. This suggests that the convexity of the constraints a�ects the
structure of the regularized exploitability, and points to a need for additional theory.

(a) Sample phase portrait form = 1 (b) Sample exploitability convergence form = 10

Figure 3: Convergence in zero-sum bilinear pseudo-game with jointly convex constraints.

Once again, we observe in Figure 2b that all three algorithms converge at a sublinear rate, with
AMPQP and EDA at a similar rate, and ADA slightly faster. Interestingly, in Figure 3a, the GNEs
found by ADA and EDA are the same in these experiments, although ADA seems to �nd a more
direct path to there. This could be a result of the regularization, which penalizes large deviations
from the players’ best-responses at each iteration of the algorithm.

19



B Omitted Proofs

Preliminaries A min-max Stackelberg game, denoted (X ,Y, f, g), is a two-player, zero-sum
game, where one player, who we call the x-player (resp. the y-player), is trying to minimize their
loss (resp. maximize their gain), de�ned by a continuous objective function f : X ⇥ Y ! R,
by choosing a strategy from a compact strategy set X ⇢ Rn (resp. Y ⇢ Rm) s.t. g(x,y) � 0

where g(x,y) = (g1(x,y), . . . , gd(x,y))
T with gk : X ⇥ Y ! R, for all k 2 [d]. A strategy

pro�le (x,y) 2 X ⇥ Y is said to be feasible i� gk(x,y) � 0, for all k 2 [d]. The function
f maps a pair of feasible strategies taken by the players to a real value (i.e., a payo�), which
represents the loss (resp. the gain) of the x-player (resp. y-player). The relevant solution concept
for Stackelberg games is the Stackelberg equilibrium (SE). A strategy pro�le (x⇤

,y⇤) 2 X ⇥ Y

s.t. g(x⇤
,y⇤) � 0 is a Stackelberg equilibrium if maxy2Y:g(x⇤,y)�0 f (x⇤

,y)  f (x⇤
,y⇤) 

minx2X maxy2Y:g(x,y)�0 f (x,y).
Theorem 3.4 (Convergence rate of EDA). Consider a pseudo-game G with convex-concave
cumulative regret that satis�es Assumption 3.3. Suppose that EDA (Algorithm 1) is run with
⌘ < 1/`r , and that doing so generates the sequence of iterates (a(t)

, b(t))Tt=0. Let a(T) =
1/T
PT

t=1 a
(t) and b(T) = 1/T

PT
t=1 b

(t). Then the following convergence rate to a VE, i.e.,
to zero exploitability holds: maxb2X  (a(T), b) � maxa2X  (a, b(T))  1/T (d`r ), where
d = max(a,b)2X⇥X

��(a, b)� (a(0)
, b(0))

��2
2
. If, additionally,  is µ-strongly-convex-µ-strongly-

concave, and the learning rate ⌘ = 1/4` , then the following convergence bound also holds:
maxb2X  (a(T), b)�maxa2X  (a, b(T))  d`

2
 /µ (1� µ/4` )

T .

Proof. The results follow from the results of Nemirovski [21].

Lemma 3.1. Given a pseudo-game G, for all a 2 A, '(a) � 0. Additionally, a strategy pro�le
a⇤

2 X(a⇤) is a GNE i� it achieves the lowerbound, i.e., '(a⇤) = 0.

Proof. We �rst prove the second part of the lemma.

(GNE =) No-Exploitability): Suppose that a⇤
2 X(a⇤) is a GNE, i.e., for all players i 2 [n],

ai
⇤
2 argmaxbi2Xi(a⇤

�i)
ui(bi,a⇤

�i). Then, for all players i 2 [n], we have:

max
bi2Xi(a⇤

�i)
ui(bi,a

⇤
�i)� ui(a

⇤) = 0 (1)

Summing up across all players i 2 [n], we get:

X

i2[n]

 
max

bi2Xi(a⇤
�i)

ui(bi,a
⇤
�i)� ui(a

⇤)

!
= 0 (2)

X

i2[n]

max
bi2Xi(a⇤

�i)

�
ui(bi,a

⇤
�i)� ui(ai

⇤
,a⇤

�i)
�
= 0 (3)

X

i2[n]

max
bi2Xi(a⇤

�i)
Regreti(ai

⇤
, bi;a

⇤
�i) = 0 (4)

max
b2X(a⇤)

X

i2[n]

Regreti(ai
⇤
, bi;a

⇤
�i) = 0 (5)

max
b2X(a⇤)

 (a⇤
, b) = 0 (6)

(No-Exploitability =) GNE):

Suppose that we have a⇤
2 X(a⇤) such that '(a⇤) = 0, then:
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'(a⇤) = 0 (7)

max
b2X(a⇤)

X

i2[n]

Regreti(ai
⇤
, bi;a

⇤
�i) = 0 (8)

X

i2[n]

max
bi2Xi(a⇤

�i)
Regreti(ai

⇤
, bi;a

⇤
�i) = 0 (9)

X

i2[n]

max
bi2Xi(a⇤

�i)

�
ui(bi,a

⇤
�i)� ui(ai

⇤
,a⇤

�i)
�
= 0 (10)

X

i2[n]

 
max

bi2Xi(a⇤
�i)

ui(bi,a
⇤
�i)� ui(a

⇤)

!
= 0 (11)

We remark that since ai
⇤
2 Xi(a�i), we have for all i 2 [n],maxbi2Xi(a⇤

�i)
ui(bi,a⇤

�i)�ui(a⇤) �

ui(a⇤)� ui(a⇤) � 0. As a result, we must have that for all players i 2 [n]:

ui(a
⇤) = max

bi2Xi(a⇤
�i)

ui(bi,a
⇤
�i) (12)

The �rst part of the lemma follows from the previous remark.

Theorem 4.1 (Parameteric Moreau Envelope Theorem). Given ↵ > 0, consider the parametric
Moreau envelope '↵(a)

.
= maxb2X

n
 (a, b)� ↵

2 ka � bk22

o
and the associated proximal operator

{b⇤(a)}
.
= argmaxb2X

n
 (a, b)� ↵

2 ka � bk22

o
, where  is `r -Lipschitz smooth. Then '↵(a)

is
⇣
`r +

`2r 
↵

⌘
-Lipschitz-smooth, with gradients ra'↵(a) = ra (a, b⇤(a))� ↵(a � b⇤(a)).

Proof of Theorem 4.1. For notational clarity, let  ↵(a, b)
.
=  (a, b) � ↵

2 ka � bk22. First, note
that argmaxb2X

n
 (a, b)� ↵

2 ka � bk22

o
is singleton-valued because it is the proximal operator

associated with  [101]. The di�erentiability of '↵ and its gradient then follow directly from
Danskin’s theorem [111] (or an envelope theorem [112, 113]). Let {b̃} .

= argmaxb2X  ↵(ã, b),
{b̂}

.
= argmaxb2X  ↵(â, b). Now, notice that  ↵ is strongly-concave in b as it is the sum of  

which is concave in b, and ka � bk22 which is strongly concave in b [97]. Then, by the strong
concavity of  ↵ in b, we have:

 ↵(ã, b̃)   ↵(ã, b̂) +
D
rb ↵(ã, b̂), b̃ � b̂

E
�
↵

2

���b̃ � b̂
���
2

2
(13)

 ↵(ã, b̂)   ↵(ã, b̃) +
D
rb ↵(ã, b̃), b̂ � b̃

E

| {z }
0 by FOC for b̃

�
↵

2

���b̃ � b̂
���
2

2
(14)

Summing up the two inequalities, we obtain:

↵

���b̃ � b̂
���
2

2


D
rb ↵(ã, b̂), b̃ � b̂

E
(15)

Additionally, since
D
rb ↵(â, b̂), b̃ � b̂

E
 0, we can substract it from the right hand side of the

above inequality and obtain:
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↵

���b̃ � b̂
���
2

2


D
rb ↵(ã, b̂), b̃ � b̂

E
�

D
rb ↵(â, b̂), b̃ � b̂

E
(16)

=
D
rb ↵(ã, b̂)�rb ↵(â, b̂), b̃ � b̂

E
(17)



���rb ↵(ã, b̂)�rb ↵(â, b̂)
���
2

���b̃ � b̂
���
2

(Cauchy-Schwarz [114]) (18)

 `r ↵ kã � âk2

���b̃ � b̂
���
2

(Lipschitz-smoothness of  ↵)
(19)

Dividing both sides ↵
���b̃ � b̂

���
2
, we obtain:

���b̃ � b̂
���
2

`r ↵
↵

kã � âk2 (20)

We now show that the parametric Moreau envelope of  , '↵(a) = maxb2X  ↵(a, b), is Lipschitz-
smooth. For any â, ã 2 A:

kr'↵(â)�r'↵(ã)k2 (21)

=
���rb ↵(â, b̂)�rb ↵(ã, b̃)

���
2

(22)

=
���rb ↵(â, b̂)�rb ↵(ã, b̂) + rb ↵(ã, b̂)�rb ↵(ã, b̃)

���
2

(23)



���rb ↵(â, b̂)�rb ↵(ã, b̂)
���
2
+
���rb ↵(ã, b̂)�rb ↵(ã, b̃)

���
2

(24)

 `r ↵ kâ � ãk2 + `r ↵

���b̂ � b̃
���
2

(Lipschitz-smoothness of  ↵)
(25)

 `r ↵ kâ � ãk2 +
`
2
r ↵
↵

kâ � ãk2 (Equation (20)) (26)



 
`r ↵ +

`
2
 ↵

↵

!
kã � âk2 (27)

Let  ↵(a, b) =  (a, b) + ↵/2 ka � bk22. The following theorem summarizes succinctly impor-
tant properties of the ↵-regularized-exploitability, '↵(a) = maxb2X  ↵(a, b), which we use
throughout this section:
Theorem B.1. Given ↵ > 0, the following properties hold for ↵-regularized exploitability and its
associated solution correspondence B⇤(a)

.
= argmaxb2X  ↵(a, b):

1.  ↵ is ↵ strongly concave in b, and for all a 2 A, the set B⇤(a) is a singleton.

2. For any SE (a⇤
, b⇤) of mina2X maxb2X  ↵(a, b), a⇤ = b⇤. Additionally, a⇤ is a SE

strategy of the outer player i� a⇤ is a VE of G.

3. '↵(a) is
⇣
`r ↵ +

`2r ↵
↵

⌘
-Lipschitz-smooth with gradients given by for all i 2 [n]:

rai
'↵(a) =

X

i2[n]

⇥
rai

ui(b
⇤
i (a),a�i)�rai

ui(ai,a�i)
⇤
� ↵(ai � b⇤i (a))

where {b⇤(a)} = B
⇤(a)

Proof. (1) Notice that  (a, b) is concave in b for all a 2 A, hence, since ↵
2 ka � bk22 is ↵-strongly

convex in b,  ↵(a, b) is strongly concave in b, and argmaxb2X  ↵(a, b)must be singleton-valued.
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(2) First, note that a Stackelberg equilibrium ofmina2X maxb2X  ↵(a, b) is guaranteed to exist
by continuity of  ↵ and compactness of the constraints.

(SE ( VE): Suppose that a⇤
2 X is a VE of G, then for all b 2 A we have:

 ↵(a
⇤
, b) =  (a⇤

, b)�
↵

2
ka⇤

� bk22 (28)

=
X

i2[n]

2

64ui(bi,a�i)� ui(ai,a�i)| {z }
0 by GNE de�nition

3

75�
↵

2
ka⇤

� bk22 (29)

 �
↵

2
ka⇤

� bk22 (30)

Taking the max over b on both sides of the �nal inequality, we obtain

max
b2X

 ↵(a
⇤
, b)  max

b2X
�
↵

2
ka⇤

� bk22  0 .

Note that for all a 2 X, maxb2X  ↵(a, b) �  ↵(a,a) = 0, hence we must have that a⇤ is the SE
strategy of the outer player and the SE strategy of the inner player b⇤ must be equal to a⇤.

(SE ) VE): Let (a⇤
, b⇤) be an SE of mina2X maxb2X  ↵(a, b). Note that for all a 2

X, maxb2X  ↵(a, b) �  ↵(a,a) = 0. Since under our assumptions a GNE is guaran-
teed to exist, there exists a0 such that maxb2A  ↵(a0

, b) = 0, we must then have that
mina2X maxb2A  ↵(a, b)  0, i.e.:

max
b2X

8
<

:
X

i2[n]

⇥
ui(bi,a

⇤
�i)� ui(ai

⇤
,a⇤

�i)
⇤
�
↵

2
ka⇤

� bk22

9
=

;  0 (31)

We will show that the exploitability of a⇤ is zero w.r.t. the pseudo-game G, which will imply that
a⇤ is a GNE. First, by the above equation, we have for any b 2 A:

X

i2[n]

⇥
ui(bi,a

⇤
�i)� ui(ai

⇤
,a⇤

�i)
⇤
�
↵

2
ka⇤

� bk22  0 (32)

For � 2 (0, 1), and any a 2 A, let bi = �ai
⇤ + (1� �)ai in the above inequality, we then have:

0 �

X

i2[n]

⇥
ui(�ai

⇤ + (1� �)ai,a
⇤
�i)� ui(ai

⇤
,a⇤

�i)
⇤
�
↵

2
ka⇤

� [�a⇤ + (1� �)a]k22 (33)

=
X

i2[n]

⇥
ui(�ai

⇤ + (1� �)ai,a
⇤
�i)� ui(ai

⇤
,a⇤

�i)
⇤
�
↵

2
k(1� �)a⇤

� (1� �)ak22 (34)

=
X

i2[n]

⇥
ui(�ai

⇤ + (1� �)ai,a
⇤
�i)� ui(ai

⇤
,a⇤

�i)
⇤
�
↵

2
(1� �)2 ka⇤

� ak22 (35)

�

X

i2[n]

⇥
�ui(ai

⇤
,a⇤

�i) + (1� �)ui(ai,a
⇤
�i)� ui(ai

⇤
,a⇤

�i)
⇤
�
↵

2
(1� �)2 ka⇤

� aik
2
2 (36)

(37)

Taking �! 1�, by continuity of the l2-norm and the utility functions, we have:

0 �

X

i2[n]

⇥
ui(ai

⇤
,a⇤

�i)� ui(ai
⇤
,a⇤

�i)
⇤

(38)

which implies that a⇤ is a GNE, additionally for
P

i2[n]

⇥
ui(bi,a⇤

�i)� ui(ai
⇤
,a⇤

�i)
⇤
�

↵
2 ka⇤

� bk22  0 to be minimized by a⇤, we must have that b = a⇤.

(3): Follows from Theorem 4.1.
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Before we move forward, we introduce the following de�nitions. A function f : A ! R is said to be
µ-Polyak-Lojasiewicz (PL) if for allx 2 X , 1/2 krf(x)k22 � µ(f(x)�minx2X f(x)). A function
f : A ! R is said to be µ-quadratically growing (QG), if for all x 2 X , f(x)�minx2X f(x) �
µ/2 kx⇤

� xk2 where x⇤
2 argminx2X f(x). We note that any µ-SC function is PL (Appendix A,

[103]), and that any µ-PL function is 4µ-QG, we restate the following lemma for convenience as we
will use it in the subsequent proofs:
Lemma B.2 (Corollary of Theorem 2 [103]). If a function f satis�es is µ-PL, then f is 4µ-
quadratically-growing.

In order to obtain our convergence rates, we �rst bound the error between the true gradient of '↵
and its approximation by ADA:
Lemma B.3 (Inner Loop Error Bound). Let '↵(a) = maxb2A  ↵(a, b), let c =
max(a,b)2X⇥X ( ↵(a, b)�  ↵(a,0)), and de�nera'↵ as in Theorem B.1. Suppose that ADA is run
on a pseudo-game G which satis�es Assumption 3.3 with learning rates ⌘a > 0 and ⌘b = 1

` ↵
, for any

number of outer loop iterations Ta 2 N++, and for Tb �

2 log

✓
"

`r ↵

p
2↵
c

◆

log
⇣

↵
`r ↵

⌘ total inner loop iterations,

where " > 0. Then, the outputs (a(t)
, b(t))

Ta

t=1 satisfy
��ra'↵(a(t))�ra ↵(a(t)

, b(t))
��  ".

Proof. Note that argmaxb2A  ↵(a, b) is singleton-valued by Theorem B.1. Let {b⇤(a)} =
argmaxb2A  ↵(a, b).

Since  ↵ is ↵-strongly-concave in b and `r ↵-Lipschitz-smooth (Theorem B.1), we have from
Theorem 1 of Karimi, Nutini, and Schmidt [103]:

'↵(a
(t))�  ↵(a

(t)
, b(t)) 

✓
1�

↵

`r ↵

◆t ⇣
'↵(a

(t))�  ↵(a
(t)

,0)
⌘

(39)

Then, since  ↵ is ↵-strongly-convex, by Lemma B.2, we have:

'↵(a
(t))�  ↵(a

(t)
, b(t)) � 2↵

���b⇤(a(t))� b(t)
���
2

2
, (40)

Combining the two previous inequalities, we get:

���b⇤(a(t))� b(t)
���
2


✓
↵

`r ↵

◆ t
2

s�
'↵(a(t))�  ↵(a(t),0)

�

2↵
(41)

Finally, we bound the error between the approximate gradient computed by ADA r a(a(t)
, b(t))

and the true gradient r'↵(a(t)) at each iteration t 2 N++:
���r'↵(a(t))�r ↵(a

(t)
, b(t))

���
2
=
���r (a(t)

, b⇤(a(t)))�ra (a
(t)

, b(t))
���
2

(42)

 `r ↵

���(a(t)
, b⇤(a(t)))� (a(t)

, b(t))
���
2

(43)

 `r ↵

⇣���a(t)
� a(t)

���
2
+
���b⇤(a(t))� b(t)

���
2

⌘
(44)

= `r ↵

���b⇤(a(t))� b(t)
���
2

(45)

 `r ↵

✓
↵

`r ↵

◆ t
2

s�
'↵(a(t))�  ↵(a(t),0)

�

2↵
(Equation (41))

(46)

 `r ↵

✓
↵

`r ↵

◆ t
2

r
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Let c = max(a,b)2X⇥X ( ↵(a, b)�  ↵(a,0)), we obtain:
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Then, given " > 0, for any number of inner loop iterations such that Tb �
2 log

⇣
"

`r ↵

p
2↵
c

⌘
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↵
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⌘ , for all

t 2 [Ta ], we have:
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(t)

, b(t))
���  " (49)

Lemma B.4 (Progress Lemma for Approximate Iterate). Suppose that ADA is run on a pseudo-game
G which satis�es Assumption 3.3 with learning rates ⌘a > 0 and ⌘b = 1

`r ↵
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loop iterations Ta 2 N++ and for Tb �
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⇣
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p
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Proof of Lemma B.4. Note that by the second projection/proximal theorem [115, 101], we have for
all a 2 A:
D
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E
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by setting a = a(t), and applying Cauchy-Schwarz [115] to the right hand side of the above
inequality, it follows that:
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De�ne err(t) .
= ra'↵(a(t))�r ↵(a(t)

, b(t)), we get:
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Let '↵(a) = maxb2A  ↵(a, b) and ra'↵ as in Theorem B.1. By Theorem B.1, we have that '↵
is
⇣
`r ↵ +
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which combined with Equation (56), yields:
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Re-organizing expressions, we obtain:
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where the last line follows from the fact that
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where the penultimate line follows from Proposition 2.4 of Hazan, Singh, and Zhang [116]. Going
back to Equation (63), we have:
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The conditions of Lemma B.3 are satis�ed by our lemma statement and hence we have for all
t 2 [Ta ],

��err(t)
��  ", giving us:
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Theorem 4.2 (Convergence to Stationary Point of Exploitability). Suppose that ADA is run on a
pseudo-game G which satis�es Assumption 3.3 with learning rates ⌘a >

2
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`2r ↵
↵

and ⌘b = 1
` ↵

,

for any number of outer loop iterations Ta 2 N++ and for Tb �
2 log

⇣
"

`r ↵

p
2↵
c

⌘

log
⇣

↵
`r ↵

⌘ total inner loop

iterations where " > 0. Then the outputs (a(t)
, b(t))Tt=0 satisfy mint=0,...,Ta�1

���G'↵
⌘a

(a(t))
���
2

2


1

1
⌘a

�
`r ↵+

`2r ↵
↵

2

 
'↵(a

(0))
Ta

+ "

 ⇣
`r ↵ +

`2r ↵
↵ + "

⌘ 
`r ↵+

`2r ↵
↵

2 �
1
⌘a

!
+ ` ↵

!!
.

Proof of Theorem 4.2. By Lemma B.4, we have:
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Summing up the inequalities for t = 0, . . . , Ta � 1:
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After re-organizing, we obtain:
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Dividing by Ta on both sides, we obtain:
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Theorem 4.3 (PL Exploitability Convergence). Suppose ADA is run on a PL-pseudo-game G

which satis�es Assumption 3.3 with learning rates ⌘a 2

h
`r ↵ +

`2r ↵
↵ , `r ↵ +

`2r ↵
↵ + 1

2µ

i

and ⌘b = 1/`r ↵ , for any number of outer loop iterations Ta 2 N++

and for Tb �
log

⇣
"

r ↵

p
2↵
c

⌘

log( ↵
r ↵ )

total inner loop iterations. Then the outputs

(a(t)
, b(t))Tt=0 satisfy '↵(a

(Ta )) 

"
1 + 2µ

 
`r ↵+

`2r ↵
↵

2 �
1
⌘a

!#Ta

'↵(a(0)) +

 ⇣
`r ↵ +

`2r ↵
↵ + "

⌘ 
`r ↵+

`2r ↵
↵

2 �
1
⌘a

!
+ ` ↵

!
".

Proof of Theorem 4.3. By Lemma B.4, we have:
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where the penultimate line is obtained from the projected-PL property combined with the fact that 
`r ↵+

`2r ↵
↵

2 �
1
⌘a

!
 0 by the theorem’s assumptions. The last line was obtained from the fact

that mina2X '↵(a) = 0. Re-organizing expressions:
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Telescoping the sum for t = 1, . . . , Ta � 1, since
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