
A Further Discussions

Here we provide further discussions on our results. We present a detailed comparison with Li and
Wang (2022a) in Appendix A.1, where we first discuss the difference in the algorithmic design, and
then elaborate on the concentration issue under the asynchronous setting with a simple example. In
Appendix A.2, we give an alternative form of our algorithm, where we rewrite Algorithm 1 in an
‘episodic’ fashion. The purpose is to make it easier for readers to compare our algorithm with existing
algorithms for federated linear bandits that are usually expressed in the ‘episodic’ form.

A.1 Comparison with Li and Wang (2022a)

Difference in algorithmic design. The Async-LinUCB algorithm proposed by Li and Wang (2022a)
is not fully asynchronous since in their algorithm, if some agent uploads data to the server, the server
will decide if each of the M agents needs to download the data. If the server decides that an agent
needs to download the data, this agent has to first download the data from the server and then update
its local policy before further interaction with the environment (i.e., taking the next action). In other
words, if an agent is offline when the server requests a download, the agent cannot take any further
action until it goes online and completes the required download and local model update. In contrast,
under the communication protocol in our Algorithm 1, any offline agent can still take action until the
trigger of the upload protocol. It is evident that their asynchronous communication protocol is very
restricted.

Concentration issue. Next, we discuss the concentration issue, and we first illustrate the problem
using a multi-arm bandit instance. Unlike the synchronous case, the reward estimator based on the
server-end data can be biased in asynchronous federated linear bandits. To see so, let us consider the
following simple example: The decision set contains two arms, A and B, and suppose for pulling
arm A, the agent receives a reward equal to either 1 or �1 with equal probability. We assume that
there are M agents, and each agent is active for two consecutive rounds. For each agent m 2 [M ],
if the agent has selected the arm A in the first round, then the agent will select again the arm A in
the second round only if the agent receives a reward of 1 when pulling arm A in the first round. In
this case, it is easy to show that with probability 0.5, an agent selects arm A one time with reward
�1, and with probability 0.25, an agent selects arm A twice with total reward 2. Similarly, with
probability 0.25, an agent selects arm A twice with a total reward of 0.

In the synchronous setting, all agent will upload their local data to the server at the end of each
round. Thus, taking an average for all data at the server, the expected reward of arm A is 0, which
equals the actual expected reward of arm A. However, in the asynchronous setting, things become
more complicated. Suppose that for each agent, only selecting arm A twice will trigger the upload
protocal. Then after two active rounds, an agent will upload its data to the server if and only if the
agent receives reward 1 in the first round. Thus among the agents that upload the data, half of them
receive a total reward of 2 and the other half receive a total reward of 0. In this case, taking an average
for all data at the server, the expected reward of arm A is 0.5, which is a biased estimator compared
with the actual expected reward.

Indeed, the above issue could happen in federated linear bandits with the Async-LinUCB algorithm (Li
and Wang, 2022a). Specifically, let us consider a linear bandit instance with dimension d = 2, and we
assume that arm A has context vector xA = (3, 0)>, arm B has context vector xB = (0, 1/

p
10)>,

the true model is ✓⇤ = 0, the noise ⌘ is a Rademacher random variable, and the parameter � is set
to be 1. Therefore, the rewards for both arm A and B equal to 1 or �1 with 0.5 probability. In this
case, based on the principle of optimism in the face of uncertainty, at the beginning, the optimistic
estimators for the two arms A,B are 3� and �/

p
10 respectively. Thus, all agents will always choose

arm A in the first round, so x1 = xA. After choosing arm A at the first round, the optimistic estimator
for the two arms A,B in each agent’s second round will be 9r/10+3�/

p
10 and �/

p
10 respectively,

where r is the reward received in the first round. Therefore, with confidence radius � < 1, each agent
will select the arm A (i.e., x2 = xA) in the second round only if the agent receives a reward of r = 1
in the first round. Finally, only choosing arm A twice will increase the determinant of the covariance
matrix enough to trigger the upload protocol (e.g., det(�I+ x1x>

1 + x2x>
2 )/ det(�I) � 19).

As demonstrated above, in the asynchronous setting, the reward estimator based on the server-end
data can be biased, which leads to the issue that previous concentration results (e.g., Abbasi-Yadkori
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Algorithm 2 Federated linear UCB (Alternative)

1: Initialize ⌃m,1 = ⌃ser
1 = �I, b✓m,1 = 0, bloc

m,0 = 0 and ⌃loc
m,0 = 0 for all m 2 [M ]

2: for k = 1, 2, . . . ,K do
3: Participation set Pk ✓ [M ] of arbitrary order
4: for each active agent m 2 Pk do
5: Receive Dm,k from the environment
6: Select xm,k  argmaxx2Dm,k

hb✓m,k,xki+ �kxk⌃�1
m,k

/* Optimistic decision */

7: Receive rm,k from environment
8: ⌃loc

m,k  ⌃loc
m,k�1 + xm,kx>

m,k, bloc
m,k  bloc

m,k�1 + rm,kxm,k /*Local update*/

9: if det(⌃m,k +⌃loc
m,k) > (1 + ↵) det(⌃m,k) then

10: Agent m sends ⌃loc
m,k and bloc

m,k to server /* Upload */

11: ⌃ser
k  ⌃ser

k +⌃loc
m,k, bser

k  bser
k + bloc

m,k /* Global update */

12: ⌃loc
m,k  0, bloc

m,k  0
13: Server sends ⌃ser

k and bser
k back to agent m /* Download */

14: ⌃m,k+1  ⌃ser
k , bm,k  bser

k

15: b✓m,k+1  ⌃�1
m,k+1bm,k+1 /* Compute estimate */

16: else
17: ⌃m,k+1  ⌃m,k, bm,k+1  bm,k, b✓m,k+1  b✓m,k

18: end if
19: end for
20: for other inactive agents m 2 [M ] \ Pk do
21: ⌃m,k+1  ⌃m,k, bm,k+1  bm,k,

b✓m,k+1  b✓m,k

22: end for
23: end for

et al. (2011)) cannot be directly used for the server’s data. This is why we need a more dedicated
analysis to control this biased error (see Lemma 6.6 for more details).

A.2 An Alternative Form of Algorithm 1

We introduce an alternative form of Algorithm 1, which is displayed in Algorithm 2. Algorithm 2
can be viewed as the episodic7 version of Algorithm 1, and its form aligns with those of the existing
algorithms for federated linear bandits (Wang et al., 2019; Dubey and Pentland, 2020; Huang et al.,
2021; Li and Wang, 2022a).

Specifically, in Algorithm 2, for each round (episode) k 2 [K], the set of active agents is given
by Pk, where the order of agents in Pk can be arbitrary (Line 3). Then the agents in the set Pk

participate according to the prefixed order (Line 4). The operations in the inner loop of Algorithm 2
(i.e., decision rule, upload/download, local/global update, and model estimates) are all identical to
those in Algorithm 1. Therefore, Algorithm 2 is indeed equivalent to Algorithm 1 up to relabeling
of the participation of the agents, and hence all the theoretical results for Algorithm 1 also hold for
Algorithm 2.

B Experiments

In this section, we provide the remaining details on numerical simulations.

Experiment setup. We construct two linear bandit instances with dimension d = 25. In the first
instance, the true model parameter ✓⇤ is [1/

p
d, .., 1/

p
d] 2 Rd. In the second instance, the true

model parameter ✓⇤ is generated by uniform random sampling over the space [�1/
p
d, 1/
p
d]d with

normalization. For each round t 2 [T ], the active agent mt is uniform sampled from all M agents

7Here ‘episode’ means a collection of every agent’s interaction with the environment for one round, which is
different from the usual term in online learning that refers to a sequential interaction lasting for a certain time
horizon. We only use this term to differentiate Algorithm 2 from Algorithm 1.
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(a) M = 15. Cumulative regret versus Round (b) M = 30. Cumulative regret versus Round

(c) M = 15. Log-average regret versus Round (d) M = 30. Log-average regret versus Round

(e) M = 15. Communication cost versus Round (f) M = 30. Communication cost versus Round

Figure 3: Comparison of FedlinUCB (ours), Async-LinUCB (Li and Wang, 2022a) and OFUL
(full communication) (Abbasi-Yadkori et al., 2011) with parameter ✓⇤ = [1/

p
d, .., 1/

p
d] 2 Rd.

Experiments are run for M = 15 and M = 30, and results are averaged over 20 runs. Figures 3(a)
and 3(b) present the cumulative regret; Figures 3(c) and 3(d) show the averaged regret (in log scale);
Figures 3(e) and 3(f) compare the communication cost versus number of rounds. Note that the
communication cost of OFUL with full communication is linear with the number of rounds T and is
far greater than those of both FedLinUCB and Async-LinUCB. Therefore, in order to make a clearer
comparison between the communication cost of FedLinUCB and Async-LinUCB, OFUL is omitted
in Figure 3(e) and 3(f).

and the decision set Dt consists of 25 different actions uniformly randomly sampled from the space
[�1/

p
d, 1/
p
d]d. After the active agent mt chooses an action xt, the agent mt receives a reward

given by rt = hxt,✓⇤i + ⌘t, where ⌘t is a 0.3-Gaussian noise. We run simulation on the above
linear bandit instance with the total number of rounds T = 30000 (repeating 20 times and taking the
average) and the number of agents is set to be 15 or 30. We implement our FedLinUCB algorithm
and compare its performance with Async-LinUCB (Li and Wang, 2022a) and OFUL Abbasi-Yadkori
et al. (2011) with full communication (i.e., the active agent communicates with the server in each
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(a) M = 15. Cumulative regret versus Round (b) M = 30. Cumulative regret versus Round

(c) M = 15. Log-average regret versus Round (d) M = 30. Log-average regret versus Round

(e) M = 15. Communication cost versus Round (f) M = 30. Communication cost versus Round

Figure 4: Comparison of FedlinUCB (ours), Async-LinUCB (Li and Wang, 2022a) and OFUL (full
communication) (Abbasi-Yadkori et al., 2011) with random select ✓⇤. Experiments are run for
M = 15 and M = 30, and results are averaged over 20 runs. Figures 4(a) and 4(b) present the
cumulative regret; Figures 4(c) and 4(d) show the averaged regret (in log scale); Figures 4(e) and
4(f) compare the communication cost versus number of rounds. Note that the communication cost of
OFUL with full communication is linear with the number of rounds T and is far greater than those of
both FedLinUCB and Async-LinUCB. Therefore, in order to make a clearer comparison between the
communication cost of FedLinUCB and Async-LinUCB, OFUL is omitted in Figure 4(e) and 4(f).

round). We set the parameter ↵ = 1 for FedLinUCB and �U = �D = 5 for Async-LinUCB to ensure
that the communication costs of FedLinUCB and Async-LinUCB have similar magnitudes.

Results. The results are presented in Figure 3 and 4, suggesting that our algorithm significantly out-
performs Async-LinUCB as our algorithm achieves smaller regret while spending less communication
cost.

Specifically, Figure 3(a) and 3(b) displays the cumulative regret of our FedLinUCB algorithm, Async-
LinUCB (Li and Wang, 2022a) and OFUL (Abbasi-Yadkori et al., 2011) with full communication.
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It can be apparently seen that FedLinUCB outperforms Async-LinUCB in terms of regret. Next,
Figure 3(c) and 3(d) show the average regret in log scale. These two plots show that the average regret
of our algorithm has a rate very close to the optimal rate of OFUL. Finally, we plot communication
cost versus number of rounds in Figure 3(e) and 3(f), which indicates that the communication cost
of FedLinUCB is significantly lower than that of Async-LinUCB. Together with Figure 3(a) and
3(b), we see that our algorithm achieves lower regret with lower communication cost, compared to
Async-LinUCB.

The experiment for Figure 4 adopts a different ✓⇤ (which is randomly selected sampled the space
[�1/

p
d, 1/
p
d]d with normalization) from that of Figure 3. Figure 4 shows almost the same results

as Figure 3, indicating our algorithms works in general.

Overall, the simulation corroborates our theoretical results. It also shows that our algorithm indeed
outperforms Async-LinUCB (Li and Wang, 2022a).

For all the experiments, the results are averaged over 20 runs with the error bars chosen as the
empirical one standard deviation. All experiments are conducted on a Macbook with 8-core CPU and
16 GB of memory.

C Missing Proofs in Section 6

Here we present the proof of the results in Section 6.

C.1 Communication complexity within each epoch

We first present the proof for the bound on the communication complexity within each epoch given in
Lemma 6.2.

Proof of Lemma 6.2. For each agent m 2 [M ], let nm be the number of communications agent m
has made during this epoch, and we denote the communication rounds as t1, . . . , tnm for simplicity.
Now we consider the data uploaded to the server, and it can be denoted by the value of covariance
matrix ⌃loc

m,tj before communicating with the server. For each j = 2, . . . , nm, according to the
determinant-based criterion (Line 9) in Algorithm 1, we have

det(⌃m,tj +⌃loc
m,tj )� det(⌃m,tj ) > ↵ · det(⌃m,tj ),

which further implies that
↵ · det(⌃ser

Ti
) < det(⌃ser

Ti
+⌃loc

m,tj )� det(⌃ser
Ti
), (C.1)

where the inequality holds due to Lemma E.2 together with the fact that the communication in round
t1 updates the covariance matrix so that ⌃m,tj ⌫ ⌃ser

Ti
. In addition, we define the sequence of all

communications from Ti to Ti+1 � 1 as t01, . . . , t0L. For each round t
0
j , if the agent mt0j

have already
communicated with the server earlier in this epoch, we have

det(⌃ser
t0j
)� det(⌃ser

t0j�1
) = det(⌃ser

t0j�1
+⌃loc

mt0j
,t0j
)� det(⌃ser

t0j�1
)

� det(⌃ser
Ti

+⌃loc
m,tj )� det(⌃ser

Ti
)

> ↵ · det(⌃ser
Ti
), (C.2)

where the first inequality holds due to Lemma E.1 together with the fact that ⌃ser
t0j�1
⌫ ⌃ser

Ti
, and the

second inequality follows from (C.1). Now, taking the sum of (C.2) over all round t
0
j , we obtain

det(⌃ser
Ti+1�1)� det(⌃ser

Ti
) =

X

1jL

det(⌃ser
t0j
)� det(⌃ser

t0j�1
) �

MX

m=1

(nm � 1)↵ · det(⌃ser
Ti
).

Since det(⌃ser,Ti+1�1)  2 det(⌃ser,Ti), we further have
X

j2M

nj M + 1/↵.

Each communication between one agent and the server includes one upload and one download, so
the communication complexity within one epoch is bounded by 2(M + 1/↵). This finishes the
proof.
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C.2 Proof for the covariance comparison

Next, we prove the comparison between the covariance matrices given in Lemma 6.5.

Proof of Lemma 6.5. Fix any round t 2 [T ]. Let t1  t be the last round such that agent m is active
at round t1. If agent m communicated with the server at this round, then we have

�I+
MX

m0=1

⌃up
m0,t ⌫ 0 =

1

↵
⌃loc

m,t.

Otherwise, according to determinant-based criterion (Line 9) in Algorithm 1, at the end of each round
t1, we have

det
�
⌃m,t1 +⌃loc

m,t1

�
 (1 + ↵) det(⌃m,t1).

By Lemma E.4, for any non-zero vector x 2 Rd, we have

x>(⌃m,t1 +⌃loc
m,t1)x

x>⌃m,t1x


det(⌃m,t1 +⌃loc
m,t1)

det(⌃m,t1)
 1 + ↵.

Rearranging the above yields x>⌃loc
m,t1x  ↵x>⌃m,t1x, which then implies that

⌃m,t1 ⌫
1

↵
⌃loc

m,t1

Note that ⌃m,t1 is the downloaded covariance matrix from last communication before round t1, so it
must satisfy ⌃m,t1 � ⌃ser

t1 . Therefore, we have

�I+
MX

m0=1

⌃up
m0,t1

= ⌃ser
t1 ⌫ ⌃m,t1 ⌫

1

↵
⌃loc

m,t1 .

Now, for round t, since agent m is inactive from round t1 to t, then we have

�I+
MX

m0=1

⌃up
m0,t ⌫ �I+

MX

m0=1

⌃up
m0,t1

⌫ 1

↵
⌃loc

m,t1 =
1

↵
⌃loc

m,t,

which yields the first claim in Lemma 6.5.

Next, suppose agent m is the only active agent from round t1 to t2�1 and agent m only communicates
with the server at round t1. Further average the above inequality over all agents m 2 [M ], and we get

�I+
MX

m0=1

⌃up
m0,t ⌫

1

M↵

MX

m0=1

⌃loc
m0,t, (C.3)

which implies that for t1 + 1  t  t2 � 1, we have

⌃m,t = �I+
MX

m0=1

⌃up
m0,t1

= �I+
MX

m0=1

⌃up
m0,t

⌫ 1

1 +M↵

✓
�I+

MX

m0=1

⌃up
m0,t +

MX

m0=1

⌃loc
m0,t

◆
=

1

1 +M↵
⌃all

t ,

where the second equation holds due to the fact that no agent communicate with server from round
t1 + 1 to t2 � 1, and the inequality follows from (C.3). This yields the second claim in Lemma 6.5
and finishes the proof.

C.3 Proof of the local concentration for agents

Recall that the global concentration and corresponding global confidence bound have been shown in
Lemma 6.3. Next, we establish the concentration properties of the local data on the agents’ side.
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Proof of Lemma 6.4. For each agent m 2 [M ] and any rounds 1  t1  t2  T , consider

⌃m,t1,t2 = ↵�I+
t2X

i=t1+1,mi=m

xix
>
i and um,t1,t2 =

t2X

i=t1+1,mi=m

xi⌘i.

By Theorem 2 in Abbasi-Yadkori et al. (2011), with probability at least 1� �/(T 2
M), we have

k⌃�1
m,t1,t2um,t1,t2k⌃m,t1,t2

 R

r
d log

⇣�
1 + TL2/(↵�)

�
/�

⌘
+
p
�S.

Then taking an union bound over all agent m 2 [M ] and rounds 1  t1  t2  T and applying
to t1 = Nm(t) and t2 = t for each t 2 [T ], we obtain the desired concentration. This finishes the
proof.

For clarity, we break Lemma 6.6 into two lemmas, Lemma C.1 for local confidence bound and
Lemma C.2 for per-round regret, and prove them separately.
Lemma C.1 (Local confidence bound). Under the setting of Theorem 5.1, with probability at least
1� �, for each t 2 [T ], the estimate b✓m,t+1 satisfies that k✓⇤ � b✓m,t+1k⌃m,t+1  �.

Proof of Lemma C.1. Since the estimated vector b✓m,t+1 and covariance matrix ⌃m,t+1 will keep the
same value as in the previous round if the agent m do not communicate with the server, we only need
to consider for those round t where agent m communicates with the server. By the determinant-based
criterion (Line 9) in Algorithm 1, if the agent m communicates with the server in round t, then at the
end of this round, the covariance matrix ⌃m,t+1 and vector bm,t+1 are given by

⌃m,t+1 = �I+
MX

m0=1

⌃up
m0,Nm0 (t)

= �I+
MX

m0=1

⌃up
m0,t, bm,t+1 =

MX

m0=1

bup
m0,t. (C.4)

Therefore, the estimated vector b✓m,t+1 is

b✓m,t+1 =

✓
�I+

MX

m0=1

⌃up
m0,t

◆�1 MX

m0=1

bup
m0,t

=

✓
�I+

MX

m0=1

⌃up
m0,t

◆�1 MX

m0=1

(⌃up
m0,t✓

⇤ + uup
m0,t)

= ✓⇤ � �

✓
�I+

MX

m0=1

⌃up
m0,t

◆�1

✓⇤ +

✓
�I+

MX

m0=1

⌃up
m0,k

◆�1 MX

m0=1

uup
m0,t

= ✓⇤ � �(⌃m,t+1)
�1✓⇤ +

MX

m0=1

(⌃m,t+1)
�1uup

m0,t.

Thus, the difference between b✓m,t+1 and the underlying truth ✓⇤ can be decomposed as

��✓⇤ � b✓m,t+1

��
⌃m,t+1


���(⌃m,t+1)

�1✓⇤��
⌃m,t+1

+

����
MX

m0=1

(⌃m,t+1)
�1uup

m0,t

����
⌃m,t+1


p
�k✓⇤k2 +

����
MX

m0=1

(⌃m,t+1)
�1uup

m0,t

����
⌃m,t+1

, (C.5)

where the first inequality holds due to that fact that ka + bk⌃  kak⌃ + kbk⌃ and the second
inequality follows from ⌃m,t+1 � �I. By the assumption that k✓⇤k2  S, the first term can be
controlled by

p
�S. For the second term in (C.5), consider the following decomposition:

MX

m0=1

(⌃m,t+1)
�1uup

m0,t =
MX

m0=1

(⌃m,t+1)
�1

�
uup
m0,t + uloc

m0,t

�
�

MX

m0=1

(⌃m,t+1)
�1uloc

m0,t

= (⌃m,t+1)
�1uall

t| {z }
A

�
MX

m0=1

(⌃m,t+1)
�1uloc

m0,t| {z }
Bm0

. (C.6)
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For the term A, it follows from (6.5) in Lemma 6.5 that
��(⌃m,t+1)

�1uall
t

��
⌃m,t+1

=
��(⌃m,t+1)

�1/2uall
t

��
2


p
1 +M↵ ·

��(⌃all
t )�1/2uall

t

��
2


p
1 +M↵ ·

⇣
R

q
d log

�
(1 + TL2/�)/�

�
+
p
�S

⌘
, (C.7)

where the second inequality holds due to Lemma 6.3. Next, for each term Bm0 in (C.6), by (6.4) in
Lemma 6.5, we have

�I+
MX

j=1

⌃up
j,t ⌫

1

↵
⌃loc

m0,t,

which further implies that

�I+
MX

j=1

⌃up
j,t ⌫

1

2↵
(↵�I+⌃loc

m0,t). (C.8)

Thus, the norm of each term Bm0 can be bounded as
��(⌃m,t+1)

�1uloc
m0,t

��
⌃m,t+1

=
��(⌃m,t+1)

�1/2uloc
m0,t

��
2


p
2↵ ·

���
�
↵�I+⌃loc

m0,t

��1/2
uloc
m0,t

���
2


p
2↵ ·

✓
R

r
d log

↵�+ TL2

↵��
+
p
�S

◆
, (C.9)

where the first inequality holds due to (C.8) and the second inequality follows from Lemma 6.4.

Finally, combining (C.5), (C.6), (C.7) and (C.9), we obtain

��✓⇤ � b✓m,t+1

��
⌃m,t+1


p
�S +

�p
1 +M↵+M

p
2↵

�✓
R

s

d log
min(↵, 1) · �+ TL2

min(↵, 1) · �� +
p
�S

◆
.

Thus we finish the proof of Lemma C.1.

Lemma C.2 (Per-round regret). Under the setting of Theorem 5.1, with probability at least 1� �, for
each t 2 [T ], the regret in round t satisfies

�t = max
x2Dt

h✓⇤
,xi � h✓⇤

,xti  2�
q
x>
t ⌃

�1
mt,txt.

Proof of Lemma C.2. First, by Lemma C.1, with probability at least 1� �, for each round t 2 [T ]
and each action x 2 Dt, we have

b✓>
m,tx+ �

q
x>⌃�1

mt,tx� (✓⇤)>x = (b✓m,t � ✓⇤)>x+ �

q
x>⌃�1

mt,tx

� �kb✓m,t � ✓⇤k⌃mt,t
· kxk⌃�1

mt,t
+ �

q
x>⌃�1

mt,tx

� ��kxk⌃�1
mt,t

+ �

q
x>⌃�1

mt,tx

= 0, (C.10)

where the first inequality holds due to the Cauchy-Schwarz inequality and the last inequality follows
from Lemma C.1. (C.10) shows that the estimator for agent mt is always optimistic. For simplicity,
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we denote the optimal action at round t as x⇤ = argmaxx2Dt(✓
⇤)>x, and (C.10) further implies

�t = (✓⇤)>x⇤ � (✓⇤)>xt

 b✓>
m,tx

⇤ + �

q
(x⇤)>⌃�1

mt,tx
⇤ � (✓⇤)>xt

 b✓>
m,txt + �

q
x>
t ⌃

�1
mt,txt � (✓⇤)>xt

= (b✓m,t � ✓⇤)>xt + �

q
x>
t ⌃

�1
mt,txt

 kb✓m,t � ✓⇤k⌃mt,t
· kxkk⌃�1

mt,t
+ �

q
x>
t ⌃

�1
mt,txt

 2�
q
x>
t ⌃

�1
mt,txt,

where the first inequality holds due to (C.10), the second inequality follows from the definition of
action xt in Algorithm 1, the third inequality applies the Cauchy-Schwarz inequality, and the last
inequality is by Lemma C.1. Thus, we finish the proof of Lemma C.2.

Combining Lemmas C.1 and C.2 yields Lemma 6.6

D Proof for Lower Bound

Lemma D.1 (Theorem 3 in Abbasi-Yadkori et al. 2011). There exists a constant C > 0, such that for
any normalized linear bandit instance with R = L = S = 1, the expectation of the regret for OFUL
algorithm is upper bounded by E[Regret(T )]  Cd

p
T log T .

Lemma D.2 (Theorem 24.1 in Lattimore and Szepesvári 2020). There exists a set of hard-to-learn
normalized linear bandit instances with R = L = S = 1, such that for any algorithm Alg and T � d,
for a uniformly random instance in the set, the regret is lower bounded by E[Regret(T )] � cd

p
T for

some constant c > 0.

Theorem 5.3 is an extension of the lower bound result in Wang et al. (2019, Theorem 2) from
multi-arm bandits to linear bandits.

Proof of Theorem 5.3. For any algorithm Alg for federated bandits, we construct the auxiliary Alg1
as follows: For each agent m 2 [M ], it performs Alg until there is a communication between the
agent m and the server (upload or download data). After the communication, the agent m remove all
previous information and perform the OFUL Algorithm in Abbasi-Yadkori et al. (2011). In this case,
for each agent m 2 [M ], Alg1 do not utilize any information from other agents and it will reduce to a
single agent bandit algorithm.

Now, we uniformly randomly select a hard-to-learn instance from the set given in Lemma D.2, and
let each agent m 2 [M ] be active for T/M different rounds (where we assume T/M is an integer
for simplicity). Since Alg1 reduces to a single agent bandit algorithm, Lemma D.2 implies that the
expected regret for agent m with Alg1 is lower bounded by

E[Regretm,Alg1] � cd

p
T/M. (D.1)

Taking the sum of (D.1) over all agents m 2 [M ], we obtain

E[RegretAlg1] =
MX

m=1

E[Regretm,Alg1] � cd

p
MT. (D.2)

For each agent m 2 [M ], let �m denote the probability that agent m will communicate with the
server. Notice that before the communication, Alg1 has the same performance as Alg, while for the
rounds after the communication, Alg1 executes the OFUL algorithm and Lemma D.1 suggests an
O(d

p
T/M log(T/M)) upper bounded for the expected regret. Therefore, the expected regret for

agent m with Alg1 is upper bounded by

E[Regretm,Alg1]  E[Regretm,Alg] + �mCd

p
T/M log(T/M). (D.3)
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Taking the sum of (D.3) over all agents m 2 [M ], we obtain

E[RegretAlg(T )] =
MX

m=1

E[Regretm,Alg1]


MX

m=1

E[Regretm,Alg] +

✓ MX

m=1

�m

◆
Cd

p
T/M log(T/M)

= E[RegretAlg] + �Cd

p
T/M log(T/M), (D.4)

where � =
PM

m=1 �m is the expected communication complexity. Combining (D.2) and (D.4), for any
algorithm Alg with communication complexity �  c/(2C) ·M/ log(T/M) = O(M/ log(T/M)),
we have

E[RegretAlg] � cd

p
MT � �Cd

p
T/M log(T/M) � cd

p
MT/2 = ⌦(d

p
MT ).

This finishes the proof of Theorem 5.3.

E Auxiliary Lemmas

To make the analysis self-contained in this paper, here we include the auxiliary lemmas that have
been previously used.
Lemma E.1 (Lemma 2.2 in Tie et al. 2011). For any positive semi-definite matrices A, B and C, it
holds that det(A+B+C) + det(A) � det(A+B) + det(A+C).
Lemma E.2 (Lemma 2.3 in Tie et al. 2011). For any positive semi-definite matrices A, B and C, it
holds that det(A+B+C) det(A)  det(A+B) det(A+C).
Theorem E.3 (Theorem 2 in Abbasi-Yadkori et al. 2011). Suppose {Ft}1t=0 is a filtration. Let
{⌘t}Rt=1 be a stochastic process in R such that ⌘t is Ft-measurable and R-sub-Gaussian conditioning
on Ft�1, i.e, for any c > 0,

E [exp (c⌘t)|Ft�1]  exp

✓
c
2
R

2

2

◆
.

Let {xt}1t=1 be a stochastic process in Rd such that xt is Ft�1-measurable and kxtk2  L. Let
yt = hxt,✓⇤i+ ⌘t for some ✓⇤ 2 Rd s.t. k✓⇤k2  S. For any t � 1, define

⌃t = �I+
tX

i=1

xtx
>
t , and b✓t = ⌃�1

t

tX

i=1

xiyi,

for some � > 0. Then for any � > 0, with probability at least 1� �, for all t, we have

kb✓t � ✓⇤k⌃t  R

s

d log

✓
1 + tL2/�

�

◆
+
p
�S.

Lemma E.4 (Lemma 12 in Abbasi-Yadkori et al. (2011)). Suppose A,B 2 Rd⇥d are two positive
definite matrices satisfying that A ⌫ B, then for any x 2 Rd, kxkA  kxkB ·

p
det(A)/ det(B).
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