
Appendix

We include the following supplementary materials in this Appendix.

In Appendix A, we formally derive our proximal operator from our ELB regularizer, resulting in
the proximal operator Eq. (12) as well as an alternative proximal operator Eq. (17), not used in our
experiments.

In Appendix B, we provide a more detailed version of Algorithm 1.

In Appendix C, we supply details regarding reproducibility, such as hyper-parameters, data-
preprocessing, implementation details, and datasets.

In Appendix D, we share additional experiments on synthetic data under varying levels of additive
noise, this time allowing for overlapping tiles.

In Appendix E, we provide additional experiments on synthetic data under a low additive noise and
varying densities.

A Derivation of the Proximal Operator

In this section, we derive our proximal operator (given in Eq. (12), repeated below)

prox�(x) ⌘ (1 + �)�1

⇢
x� sign(x) if x

1
2

x� sign(x� 1) + � otherwise ,
(15)

from the ELB (Eq. (4), repeated below)

R(X) =
X

x2X

min{r(x), r(x� 1)} .

Starting with the definition [32] of the general proximal operator

argmin
Y

1

2
kX � Y k

2
2 +R(X) ,

we observe that this proximal operator is coordinate-wise solvable. This allows us to derive a scalar
proximal operator, which we then apply to each value in the matrix independently. Substituting the
regularizer R with its scalar version, we obtain a scalar proximal operator (Eq. (11))

prox�(x) = argmin
y2R

1

2
(x� y)2 +min{r(y), r(y � 1)} ,

which is non-convex, has no unique minima, and, therefore, is not straightforwardly solvable.
We can, however, separate this function into two locally convex V-shaped functions, which are
straightforwardly solvable. By asserting that its least-squares solution is either less than 1/2 (if
x 1/2), or greater than 1/2 (if x > 1/2), we can address each case independently, and merge the
outcome into a single piecewise proximal operator.

Case I In the first case, we address the operator for x 1/2. For this, we start by simplifying our
scalar proximal operator Eq. (11), by substituting r(y) with its definition, and get

prox
1/2

� (x) =
1

2
(y � x)2 +

�0

2
y2 + |y| ,

for �0/2 = �. Then, we take its partial derivative for y
@

@y
prox

1/2
� (x) = (y � x) + �0y + sign(y) ,

which we set to zero, obtaining
0 = (y � x) + �0y + sign(y) , 0 = y(1 + �0)� x+ sign(y) .

By asserting that we can obtain a better least-squares solution if y has the same sign as x, we can
substitute the sign of x with sign(y), and get

0 = y(1 + �0)� x+ sign(x) , y = (1 + �0)�1[x� sign(x)] ,

which concludes the first case.

14

Case II Analogously, we now repeat the steps from above for x > 1/2. Again, we start by
simplifying Eq. (11), substituting r(y � 1)

prox>
1/2

� (x) =
1

2
(y � x)2 +

�0

2
(y � 1)2 + |y � 1| ,

for �0/2 = �. By taking its partial derivative for y

@

@y
prox>

1/2
� (x) = (y � x) + �0(y � 1) + sign(y � 1) ,

and setting it to zero, we obtain

0 = (y � x) + �0(y � 1) + sign(y � 1) , 0 = (1 + �0)y � �0
� x+ sign(y � 1) .

Then, asserting that the least-squares solution does not get worse by using the same sign for y � 1
and x� 1, we can substitute the sign of x� 1 with sign(y � 1), and get

0 = y(1 + �0)� x� �0 + sign(x� 1) , y = (1 + �0)�1[x� sign(x� 1) + �0] ,

which concludes the x > 1/2 case.

Combining Case I & Case II Combining the cases above yields our piecewise proximal operator
(see Eq. (12))

prox�(x) ⌘ (1 + �)�1

⇢
x� sign(x) if x

1
2

x� sign(x� 1) + � otherwise .
(16)

Alternative Proximal Operator Considering Eq. (11), we notice that the term y � x is squared,
which means that there are multiple solutions to this equation. We derive the alternative operator
analogously to the steps above, however, by switching the positions of y and x in f .

proxalt.
�(x) ⌘ (�� 1)�1

⇢
�x� sign(x) if x

1
2

�x� sign(x� 1) + � otherwise .
(17)

Since this operator is denominated by �0
� 1, we need to ensure that �0

6= 1. Because our original
proximal operator in Eq. (12) is denominated by �0 + 1, and since �0 is usually positive, we are not
required to take extra precautions. Since this is more convenient, we select Eq. (12) as our proximal
operator, rather than taking extra precautions when using Eq. (17).

15

B Extended pseudocode for ELBMF

Extending Alg. 1, we provide the more detailed version of ELBMF as pseudocode in Alg. 2.

Algorithm 2: Long version of ELBMF in terms of iPALM [33]

Input:

Target Matrix A 2 {0, 1}n⇥m

Rank k 2 N,
l1 Regularizer Coefficients 2 R,
l2 Regularizer Coefficients � 2 R,
Regularization Rate ⌫t 2 N! R,
optional Inertial Parameter � 2 R+

Output: Factors U 2 {0, 1}n⇥k, V 2 {0, 1}k⇥m

U0 = U1 rand(n, k)
V0 = V1 rand(k,m)

for t = 1, 2, . . . until convergence do
�t � · ⌫t

U Ut�1 + �(Ut�1 �Ut�2)

rUf = UVV> �AV>

L kVV>k2
U proxL�1,�tL�1

�
U� L�1rUf

�

Ut U

V Vt�1 + �(Vt�1 �Vt�2)

rVf = U>UV �U>A

L kU>Uk2
V proxL�1,�tL�1

�
V � L�1rVf

�

Vt V
end
if U or V not Boolean (i.e., if the above was aborted early (cf. Fig. 2))

let �0 2 R be huge
U bprox0.5,�0(U)e
V bprox0.5,�0(V)e

end
return U, V

C Reproducibility

Here, we explain (1) how to obtain the datasets, (2) how we binarized them, (3) how to obtain the
source code, and (4) how we parameterized the algorithms, starting with the dataset descriptions.

Table 1: Our datasets are from different domains and cover a wide-range of dimensionalties. We
provide an overview over the real-world datasets involved in this study, listing their dimensionalities,
densities, and selected target matrix ranks k (number of components) used in our experiments.

Dataset Rank Rows Columns Density

Genomes 28 2 504 226 623 0.1043
String 100 19 385 19 385 0.0318
GBM 100 650 10 701 0.0566
LGG 32 644 29 374 0.0729
Cerebellum 450 644 30 243 0.0823
TCGA 33 10 459 20 530 0.0501
Movielens 10M 20 71 567 65 133 0.0011
Netflix 20 17 770 480 189 0.0067
Patents 136 10 499 10 511 0.1305

16

Broadly speaking, our datasets cover three domains: the biomedical domain, the entertainment
domain, and the innovation domain. To cover the biomedical domain, we extract the network
containing empirical evidence of protein-protein interactions in homo sapiens from the STRING
database. For this, we remove all interactions in the protein-protein network, for which the empirical-
evidence sub-score of the STRING database is zero, retaining only the protein-protein interactions
discovered experimentally. From the GRAND repository, we take the gene regulatory networks
sampled from Glioblastoma (GBM) and Lower Grade Glioma (LGG) brain cancer tissues, as well
as from non-cancerous Cerebellum tissue. These networks all stem from a method, PANDA, which
extracts gene-regulatory networks from data. The weights are between �20 and 20, where �20
corresponds to a low interaction likelihood, and 20 corresponds to a high interaction likelihood. To
binarize, we set everything to zero except the weights whose z-scores are in the upper 5% quantile,
retaining the information about likely interactions. The TCGA dataset contains gene expressions from
cancer patients. To binarize these logarithmic expression rates (log10(x+1)), we again only set those
weights to one whose z-scores lie in the upper 5% quantile [23], retaining high gene expressions. We
further obtain the single nucleotide polymorphism (SNP) mutation data from the 1k Genomes project,
and follow the data retrieval steps from the authors of BINAPS [9], which immediately produces a
binary dataset. In the entertainment domain, we use the user-movie datasets Movielens and Netflix.
Since we are only interested in recommending good movies, we binarize the original 5-star-scaled
ratings, by setting reviews with more than 3.5 stars to one, and everything else to zero. Finally, as
data from the innovation domain, we derive a directed citation network between patent groups from
patent citation and classification data provided by PatentsView. We binarize this weighted network
simply by setting every non-zero weight to one, retaining all edges in the network. For each of
these publicly3 available dataset, we give its dimensionality, density, and the matrix rank used in our
experiments in Table 1.

In our experiments in Sec. 4, we compare ELBMF against six methods: four dedicated BMF meth-
ods (ASSO [24], GRECOND [6], ORM [35], and PRIMP [15]), one streaming Bi-Clustering algo-
rithm SOFA [29], one elastic-net-regularized NMF method leveraging proximal gradient descent
(NMF [31, 21, 22]), and one interpretable Boolean autoencoder (BINAPS [9]). The code for ASSO,
GRECOND, PRIMP, SOFA, ORM, and BINAPS was written by their respective authors and is publicly
available. We implement NMF and ELBMF in the Julia programming language and provide their
source code for reproducibility.4 On TCGA, Genomes, Movielens, Netflix, and Patents, we set the
l2-regularizer � = 0.001, the l1-regularizer = 0.005, and the regularization rate to ⌫t = 1.0033t.
On GBM, LGG, and Cerebellum, we set the l2-regularizer � = 0.001, the l1-regularizer = 0.001,
and the regularization rate to ⌫t = 1.0015t. We run NMF, ELBMF, PRIMP for at most 1 500 epochs on
each dataset. In the case that ELBMF reaches its maximum number of iterations without convergence,
we bridge the remaining integrality gap simply by applying our proximal operator (see Fig. 2). To
obtain a good reconstruction for PRIMP, we use a grid-width of 0.01. To obtain a binary solution
from NMF, we first clamp and then round its factor matrices upon convergence.

We set ASSO’s threshold, gain for covering, and penalty for over-covering each to 1. To achieve a
better performance with ASSO, we parallelize ASSO on 16 CPU cores. Further, because ASSO’s
runtime scales with the number of columns, we reconstruct the transposed target whenever it has more
columns than rows (see Table 1). For example, transposing GBM, LGG, Cerebellum, and Genomes
is particularly beneficial for ASSO, as these datasets have orders-of-magnitude more columns than
rows.

D Additional Results on the Performance of ELBMF on Synthetic Data

In this section, we provide additional results on our synthetic experiments in Sec. 4.1 and Fig. 3.

In our synthetic experiments in Sec. 4.1, we simulate data by generating non-overlapping tiles using
rejection sampling. That is, before we place the next randomly drawn tile into our matrix, we check
for overlap with past placements. If we detect an overlap, we reject, redraw, and repeat, until we
placed the desired number of tiles into our matrix. In the following, we allow overlapping tiles, for

3
GRAND.NETWORKMEDICINE.ORG STRING-DB.ORG CANCER.GOV/TCGA INTERNATIONALGENOME.ORG

PATENTSVIEW.ORG GROUPLENS.ORG/DATASETS/MOVIELENS KAGGLE.COM/DATASETS/NETFLIX-INC/NETFLIX-PRIZE-DATA
4

CS.UEF.FI/~PAULI/BASSO GITHUB.COM/MARTIN-TRNECKA/MATRIX-FACTORIZATION-ALGORITHMS

BITBUCKET.ORG/NP84/PALTILING CS.UEF.FI/~PAULI/BMF/SOFA EDA.MMCI.UNI-SAARLAND.DE/PRJ/BINAPS

GITHUB.COM/TAMMOR/LOGICALFACTORISATIONMACHINES DOI.ORG/10.5281/ZENODO.7187021

17

https://grand.networkmedicine.org
https://string-db.org
https://cancer.gov/tcga
https://www.internationalgenome.org/
https://patentsview.org/download/data-download-tables
https://grouplens.org/datasets/movielens/
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
https://cs.uef.fi/~pauli/basso/
https://github.com/martin-trnecka/matrix-factorization-algorithms/
https://bitbucket.org/np84/paltiling/src/master/
https://cs.uef.fi/~pauli/bmf/sofa/
http://eda.mmci.uni-saarland.de/prj/binaps/
https://github.com/TammoR/LogicalFactorisationMachines
https://doi.org/10.5281/zenodo.7187021

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Noise

Si
m

ila
rit

y

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Noise

R
ec

al
l

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Noise

R
ec

al
l⇤

ASSO

GRECOND

ORM
SOFA

BINAPS

NMF

PRIMP

ELBMF

Figure 8: Overall, ELBMF reconstructs the noisy synthetic data well and recovers the ground-truth
tiles which are overlapping. On synthetic data for additive noise levels increasing from 0% to 50%,
we show mean as line and standard deviation as shade of similarity, recall w.r.t. the target matrix, and
recall⇤ w.r.t. the noise-free ground-truth tiles, for BINAPS, ASSO, GRECOND, ORM, SOFA, NMF,
PRIMP, and ELBMF.

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

Density

Si
m

ila
rit

y

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

Density

R
ec

al
l

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

Density

R
el

at
iv

e
Lo

ss

ASSO

GRECOND

ORM
SOFA

BINAPS

NMF

PRIMP

ELBMF

Figure 9: ELBMF reconstructs the low-noise synthetic high- and low-density matrices well and
consistently so. On synthetic data with fixed additive noise level of as low as 5%, and increasing
density, we show mean as line and standard deviation as shade of similarity, recall, and relative loss
w.r.t. the target matrix, for BINAPS, ASSO, GRECOND, ORM, SOFA, NMF, PRIMP, and ELBMF.

which we simply omit the rejection step laid out above. To depict results on harder-to-separate data,
we generate synthetic matrices as described in Sec. 4, however, this time, allowing tiles to overlap
arbitrarily. In Fig. 8, we show similarity, recall, and recall⇤for the overlapping case, observing a
similar behavior to Fig. 3 across the board. Again noticeable is the surprisingly good performance
of rounded NMF reconstructions, outperforming ASSO, GRECOND, SOFA, and BINAPS by a large
margin. Overall, PRIMP and ELBMF outperform ASSO, GRECOND, ORM, SOFA, BINAPS, and NMF
across varying noise levels in similarity, recall, and recall⇤. Fig. 3 and Fig. 8 show that ELBMF, which
does not use any post-processing, achieves best-in-class results for overlapping and non-overlapping
tiles, on par with the strongest competitor, which relies heavily on post-processing.

E Additional Results on the Performance of ELBMF on Synthetic Data with
Varying Densities

Continuing our experiments from Sec. 4.1 and Fig. 4, we ask whether our observations carry over to
a low-noise scenario, in which ASSO and GRECOND performance improves significantly (see Fig. 3).

For this, we study the effects of varying densities under a low noise level of only 5%. As tiny tiles
are hard to distinguish from noise, we see an overall improvement with increasing density, regardless
of the method. With less noise, ASSO, GRECOND, and NMF improve significantly in comparison to
their performance under more noise (Fig. 4). They, however, are still outperformed by PRIMP and
ELBMF in recall and loss. The similarities of ASSO, GRECOND, NMF, PRIMP, and ELBMF are close
to 1, whereas SOFA, BINAPS, and ORM exhibit lower similarity with increasing density. From Fig. 4
and Fig. 9, we see that ELBMF performs consistently well across varying densities, regardless of the
noise level.

18

	Introduction
	Theory
	Proximal Mapping
	Ensuring Boolean Factors

	Related Work
	Experiments
	Performance of Elbmf on Synthetic Data
	Performance of Elbmf on Real-World Data
	Exploratory Analysis of Gene Expression Data with Elbmf

	Conclusion
	Derivation of the Proximal Operator
	Extended pseudocode for Elbmf
	Reproducibility
	Additional Results on the Performance of Elbmf on Synthetic Data
	Additional Results on the Performance of Elbmf on Synthetic Data with Varying Densities

