
Appendix

A Connection between Our Method and Deep Learning

We show the similarities between our method, Neural ODE, and differentiable physics in Figure 4. All
the three approaches have a differentiable system governed by some kinds of differential equations.
Our method parametrizes the dynamics using continuous basis functions; Neural ODE uses neural
networks; and Differentiable physics describes the dynamics system using physics equations like
Newton’s Second Law, Navier–Stokes equations.

(a) Diff. Analog QC (b) Neural ODE (c) Diff. Physics
Figure 4: Connections between Diff. Analog computing and other deep learning models.

B Theory

B.1 Derivation of gradient

Lemma B.1. The derivative of the time evolution operator is

∂Uv(t2, t1)

∂v
= −i

∫ t2

t1

dτ Uv(t2, τ)
∂H(v, τ)

∂v
Uv(τ, t1) (9)

Proof. Let Uv(t2, t1) be as defined in Theorem 3.2. We can re-write (1) in the form of time evolution
operator,

i
∂Uv(t, 0)

∂t
= H(v, t)U(t, 0). (10)

It follows that

i (Uu(t, 0)− Uv(t, 0))
′

=H(u, t)Uu(t, 0)−H(v, t)Uv(t, 0)

=[H(u, t)−H(v, t)]Uu(t, 0) +H(v, t)(Uu − Uv)(t, 0). (11)

By the variation-of-parameters formula [11], we have

Uu(t, 0)− Uv(t, 0) = −i
∫ t

0

dτ Uv(t, τ)[H(u, τ)−H(v, τ)]Uu(τ, 0). (12)

Now, if u = v + h, we have H(u, t) = H(v, t) + h∂H(v,t)
∂v +O(h2). Therefore, for each t ≥ 0, we

have

Uu(t, 0)− Uv(t, 0)

h
= −i

∫ t

0

dτ Uv(t, τ)
∂H(v, τ)

∂v
Uu(τ, 0) +O(h), (13)

which implies the desired result (9) by taking h→ 0.

16

Proposition B.2. Let L be defined as (4), and H(v, t) =
∑
j fj(v, t)Hj .

∂L
∂v

=
(
− i
∫ T

0

dτ

m∑
j=1

∂fj(v, τ)

∂v
〈ψ(τ)|MτHj |ψ(τ)〉

)
+ h.c., (14)

where |ψ(τ)〉 = U(τ, 0) |ψ(0)〉 is the state evolving under H(v, t) to time τ starting from |ψ(0)〉,
and Mτ = U†(T, τ)MU(T, τ). Here h.c. means the Hermitian conjugate of the first half of the
expression (this is a common abbreviation among physics, resulting in a Hermitian matrix).

Proof. The derivatives can be computed as,

∂L
∂v

= 〈ψ(0)|U†(T, 0)M
∂U(T, 0)

∂v
|ψ(0)〉+ h.c.

=
(
− i
∫ T

0

dτ
∑
j

∂fj(v, τ)

∂v
〈ψ(0)|U†(τ, 0)U†(T, τ)MU(T, τ)HjU(τ, 0) |ψ(0)〉

)
+ h.c.

(15)

To compute the derivative ∂L
∂v on a quantum machine, we invoke the parameter-shift formula.

Then we show the MCI generates an unbiased estimation of ∂L∂v and converges of rate O(b
− 1

2

int). We

require that the derivatives of u(v, t) are bounded: ∀t ∈ [0, T],
∣∣∣∂uj(v,t)∂v

∣∣∣ ≤ D.
The integration mini-batch draws time samplings τ ∼ Uniform(0, T), and evaluates

f(τ) =

m∑
j=1

∂uj
∂v

(v, τ)
(
p−j (τ)− p+j (τ)

)
. (16)

Then (6) turns to ∂L
∂v =

∫ T
0
f(τ)dτ. By MCI, the average value of T · f(τ) in the integration

mini-batch is an unbiased estimation of ∂L∂v . By applying the Popocivius’s inequality and the Cauchy-
Schwarz inequality, we obtain the following variance bound, which guarantees the low error of
MCI.
Proposition B.3. The variance of f(τ) is finite. Specifically,

Var[f(τ)] ≤ 4m2‖M‖2D2. (17)

B.2 Proof of Lemma 3.3

Proof. We let ∂̂L∂v denote the accurate gradient of the loss function of the quantum machine, and ∂L
∂v

denote the estimated gradient via Algorithm 1. Their analytical expressions are

∂L
∂v

= −i
∫ T

0

dτ 〈ψ0| Û†v(T, 0)MÛv(T, τ)
∂H

∂v
Û(τ, 0) |ψ0〉+ h.c., (18)

∂̂L
∂v

= −i
∫ T

0

dτ 〈ψ0| Û†v(T, 0)MÛv(T, τ)
∂Ĥ

∂v
Û(τ, 0) |ψ0〉+ h.c., (19)

where h.c. means the Hermitian conjugate of the first half of the expression, and Ûv(t2, t1) is the
evolution operator under the actual Hamiltonian Ĥ(v, t) of the realistic machine. Hence the difference
between these two evaluations are∣∣∣∣∣∂L∂v − ∂̂L

∂v

∣∣∣∣∣ =

∣∣∣∣∣−i
∫ T

0

dτ 〈ψ0| Û†v(T, 0)MÛv(T, τ)

(
∂H

∂v
− ∂Ĥ

∂v

)
Û(τ, 0) |ψ0〉+ h.c.

∣∣∣∣∣ (20)

≤ 2T‖M‖ max
τ∈[0,T]

∥∥∥∥∥∂H∂v (v, τ)− ∂Ĥ

∂v
(v, τ)

∥∥∥∥∥ , (21)

where ‖·‖ is the spectral norm [30].

17

B.3 Simulating Approximated System

We show that there are cases that, when simulating the system based on imprecise approximation of
the machine Hamiltonian, the gradient estimated is largely off to the actual gradient.

Consider a 1 qubit system H(v, t) = π
4Y + vY evolve for time in [0, 1] with initial state |ψ0〉 = |0〉,

and measurement M = |0〉 〈0| . Let the approximation be H̃(v, t) = vY , whose difference to H(v, t)
is constant. Then by Algorithm 1 where the system evolution is executed on quantum machine, the
estimated gradient is exact since ∂H

∂v = ∂H̃
∂v = Y. When simulating the system with H̃ and estimating

the gradient as ∂̂L
∂v , however, consider when v = 0. Note

∂̂L
∂v

= −i 〈ψ0|MY |ψ0〉+ h.c. = 0, (22)

∂L
∂v

= −i 〈ψ0| ei
π
4 YMY e−i

π
4 Y |ψ0〉+ h.c. = 1. (23)

In a similar way, one can construct cases where the difference between estimated gradient based on
the approximated system and actual gradient is as large as Θ(T · ‖M‖ · ‖H(v, t)− H̃(v, t)‖).

C IBM Pulse-level control

We adopt the following effective Hamiltonian [44] to model the pulse-level qubit control on the
n-qubit IBM machine:

H(t) = Hsys +Hctrl(t). (24)
The system (drift) Hamiltonian is independent of time,

Hsys =

n∑
j=1

εj
2

(Ij − Zj) +
∑

(j,k)∈E
j 6=k

Jjk
4

(XjXk + YjYk), (25)

whereE is a bidirectional connectivity graph with self loops, and Jjk = Jkj . The control Hamiltonian
is

Hctrl(t) =

n∑
j=1

∑
k∈Ej

Mjk(ujk, t)Xj ., (26)

where the functionMjk(ujk, t) modulates pulse ujk with a local oscillatory frequency ωk of qubit
k:

Mjk(ujk, t) = ΩjRe{eiωktujk(t)}, (27)
where Ωj is the maximal energy input on qubit j, ujk(t) is a complex-valued control pulses and
|ujk(t)| ≤ 1.

On the real machine, ujk(t) should be a piece-wise constant complex-valued function, with each
piece having length dt = 0.222ns. In our simulation we take ujk(t) as continuous function. Taking
piece-wise constant approximation of our results will generate pulses that are available on the real
machine.

In our 1-qubit experiments, the involved constants are: n = 1, ε1 = 3.29× 1010, ω1 = 2π × 5.23×
109,Ω1 = 9.55× 108 and E1 = {1}.
In our 2-qubit experiments, the involved constants are: n = 2, ε1 = 3.29 × 1010, ε2 = 3.15 ×
1010, ω1 = 2π × 5.23 × 109, ω2 = 2π × 5.01 × 109,Ω1 = 9.55 × 108,Ω2 = 9.87 × 108, J12 =
1.23× 107 and E1 = E2 = {1, 2}.

D Experiment Details

We present the detailed experiment setups here. Our code is written in Python and C++ and the
experiments run on a Desktop with an Intel Xeon W-2123 CPU @ 3.6GHz. In the comparisons, we
use existing packages for CMAES and SLSQP with default hyperparameters. More details can be
found in our supplementary code.

18

(c) 6 qubits (d) 9 qubits (d) 11 qubits

Figure 5: Comparison with circuit QAOA in scaling up MaxCut problems. As the size of graphs
increases, the number of qubits increases and ours still converges better than VQAs.

D.1 Quantum Optimization

D.1.1 Experiment details in comparison to VQE

The workflow of analog-ansatz-based VQE is shown in Figure 2a. The H2 molecule Hamiltonian at
bond distance has coefficients α0 = −1.0524, α1 = −0.0113, α2 = 0.1809, α3 = −0.3979, α4 =
0.3979.

The parameters of different methods are presented below. When updating, the measurements for
all methods has sampling size (observation mini-batch size) bobs = 100. When evaluating, matrix
multiplication is utilized to have accurate loss function calculation.

Hyper-parameters in our approach. The integration mini-batch size bint = 6; the maximal degree
of Legendre polynomial is d = 3; the initialization uses Gaussian distribution centered at 0; the
optimizer is Adam with learning rate lr = 0.02; time duration is T = 720dt and T = 360dt
correspondingly.

Circuit ansatz VQE: We use a three layered circuit ansatz. Let Uj(θ1, θ2, θ3) =

e−i
θ3
2 Zje−i

θ2
2 Xje−i

θ1
2 Zj , and Vj(θ) = U1(θj11, θj21, θj31)U2(θj12, θj22, θj32). Then the circuit

ansatz is U(θ) = V2(θ)e−i
π
2 Z1X2V1(θ). We substitute a ZX rotation for the cross resonance gate in

[33] since they generate the same entanglement.

Finite difference: We use the same ansatz as in our approach. The finite difference formula used is:

FD

(
∂L
∂vi

, h

)
=

1

2h
(L(v + hei)− L(v − hei)) , (28)

where ei is the unit vector whose only non-zero entry is the i-th entry with value 1. We take a small
pertubation h = 10−4 and simulate the quantum system twice to evaluate corresponding influences.

D.1.2 Experiment details in comparison to QAOA

The workflow of analog-ansatz-based QAOA is shown in Figure 2c. The settings of the measurements
and the finite difference method are similar as Appendix D.1.1.

Hyper-parameters in our approach: The integration mini-batch size bint = 1; the maximal degree
of Legendre polynomial is d = 3; the initialization uses Gaussian distribution centered at 0; the
optimizer is Adam with learning rate lr = 0.02; time duration is T = 4.

We also conduct larger experiments on cycle graph involving 6, 9, 11 vertices, as in Figure 5. Our
method still outperforms circuit QAOA with better convergence rate and lower final loss.

D.2 Quantum Control

D.2.1 Experiment details in state preparation

We implement our method, together with three other methods (SLSQP, CAMES, GRAPE) to the two
state preparation tasks: (a) to prepare |+〉 from |0〉; (b) to prepare |Φ+〉 from |00〉.

19

Quantum measurement. In both tasks, the quantum observable used in computing the loss function
can be expressed as a sum local Pauli operators. This nice property makes the loss function easy to
evaluate on the quantum computer. For the state |+〉, the observable is

M = I− |+〉 〈+| = 1

2
(I−X). (29)

Similarly, we compute the observable used in preparing the |Φ+〉 state:

M = I−
∣∣Φ+

〉 〈
Φ+
∣∣ =

1

4
(X1X2 − Y1Y2 + Z1Z2 − 3I). (30)

Hyper-parameters in our approach. The integration mini-batch size is bint = 1 in task (a), and
bint = 400 in task (b). The maximal degree of Legendre polynomial is d = 4 in both cases. The
initialization uses Gaussian distribution centered at 0. The optimizer is Adam in both tasks, with
learning rate lr = 0.01 in (a) and lr = 0.05 in (b).

D.2.2 Experiment details in gate synthesis

We implement our method, together with three other methods (SLSQP, CAMES, GRAPE) to the two
gate synthesis tasks: (a) to synthesize X gate; (b) to synthesize CNOT gate. The matrix representation
of the X gate can be found in (3). The CNOT gate is shown below:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (31)

Quantum measurement. We identify two sets SX and SCNOT that completely determine the X gate
and CNOT gate correspondingly:

SX = {(|0〉 , |1〉), (|1〉 , |0〉), (|+〉 , |+〉)}, (32)
SCNOT = {(|00〉 , |00〉), (|01〉 , |01〉), (|10〉 , |11〉), (|11〉 , |10〉), (|++〉 , |++〉)}. (33)

In SX and SCNOT, one of the computational basis pair can be safely removed. But for the convenience
of training we keep them in our experiments.

Hyper-parameters in our approach. The integration mini-batch size is bint = 1 in task (a), and
bint = 400 in task (b). The maximal degree of Legendre polynomial is d = 4 in both cases. The
initialization uses Gaussian distribution centered at 0. The optimizer is Adam in both tasks, with
learning rate lr = 0.005 in (a) and lr = 0.03 in (b).

20

