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Abstract

Graph Neural Networks (GNNs) have received extensive research attention for their
promising performance in graph machine learning. Despite their extraordinary pre-
dictive accuracy, existing approaches, such as GCN and GPRGNN, are not robust
in the face of homophily changes on test graphs, rendering these models vulnerable
to graph structural attacks and with limited capacity in generalizing to graphs of
varied homophily levels. Although many methods have been proposed to improve
the robustness of GNN models, the majority of these techniques are restricted to
the spatial domain and employ complicated defense mechanisms, such as learning
new graph structures or calculating edge attention. In this paper, we study the
problem of designing simple and robust GNN models in the spectral domain. We
propose EvenNet, a spectral GNN corresponding to an even-polynomial graph
filter. Based on our theoretical analysis in both spatial and spectral domains, we
demonstrate that EvenNet outperforms full-order models in generalizing across
homophilic and heterophilic graphs, implying that ignoring odd-hop neighbors
improves the robustness of GNNs. We conduct experiments on both synthetic and
real-world datasets to demonstrate the effectiveness of EvenNet. Notably, EvenNet
outperforms existing defense models against structural attacks without introducing
additional computational costs and maintains competitiveness in traditional node
classification tasks on homophilic and heterophilic graphs. Our code is available in
https://github.com/Leirunlin/EvenNet.

1 Introduction

Graph Neural Networks (GNNs) have gained widespread interest for their excellent performance in
graph representation learning tasks [10, 13, 17, 26, 28]. GCN is known to be equivalent to a low-pass
filter [2, 21], which leverages the homophily assumption that “connected nodes are more likely to
have the same label” as the inductive bias. Such assumptions fail in heterophilic settings [37], where
connected nodes tend to have different labels, encouraging research into heterophilic GNNs [1, 22, 37].
Among them, spectral GNNs with learnable polynomial filters [3, 9, 14] adaptively learn suitable
graph filters from training graphs and achieve promising performance on both homophilic and
heterophilic graphs. If the training graph is heterophilic, a high-pass or composite-shaped graph filter
is empirically obtained.
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While GNNs are powerful in graph representation learning, recent studies suggest that they are vul-
nerable to adversarial attacks, where graph structures are perturbed by inserting and removing edges
on victim graphs to lower the predictive accuracy of GNNs [38, 31]. Zhu et al. [36] first established
the relationship between graph homophily and structural attacks. They claimed that existing attack
mechanisms tend to introduce heterophily to homophilic graphs, which significantly degrades the
performance of GNNs with low-pass filters. On the one hand, several attempts are made to improve
the robustness of GNNs against the injected heterophily from the spatial domain [11, 16, 29, 34, 35].
These methods either compute edge attention or learn new graph structures with node features,
requiring high computational costs in the spatial domain. On the other hand, while spectral GNNs
hold superiority on heterophilic graphs, their performance under structural perturbation is unsatis-
factory as well, which arouses our interest in exploring the robustness of current spectral methods.

Figure 1: Two friend-enemy net-
works of opposite homophily.

In this study, we consider homophily-heterophily inductive
learning tasks, which naturally model non-targeted structural at-
tacks. We observe that structure attacks enlarge the homophily
gap between training and test graphs besides introducing het-
erophily, challenging spectral GNNs to generalize across differ-
ent homophily levels. Consequently, despite their outstanding
performance on heterophilic graphs, spectral GNNs such as
GPRGNN have poor generalization ability when the training
and test graphs have different homophily. For example, sup-
pose we now have two friend-enemy networks like the ones in
Figure 1. If friends are more likely to become neighbors, repre-
senting the relationship “like”, the network is homophilic. If enemies form more links corresponding
to the relationship “hate”, the network becomes heterophilic. If we apply spectral GNNs trained on
“like” networks (where a low-pass filter is obtained) to “hate” networks, we will mistake enemies
for friends on “hate” networks. Despite the strength of spectral GNNs in approximating optimal
graph filters of arbitrary shapes, the lack of constraints on learned filters makes it difficult for them to
generalize.

To improve the performance of current spectral methods against non-targeted structural adversar-
ial attacks, we design a novel spectral GNN that realizes generalization across homophily. Our
contributions are:

• We proposed EvenNet, a simple yet effective spectral GNN that can be generalized to
graphs of different homophily. EvenNet discards messages from odd-order neighbors
inspired by balance theory, deriving a graph filter with only even-order terms. We provide a
detailed theoretical analysis in the spatial domain to illustrate the advantages of EvenNet in
generalizing to graphs of different homophily.

• We propose Spectral Regression Loss (SRL) to evaluate the performance of graph filters on
specific graphs in the spectral domain. We theoretically analyze the relationship between
graph filters and graph homophily, confirming that EvenNet with symmetric constraints is
more robust in homophily-heterophily inductive learning tasks.

• We conduct comprehensive experiments on both synthetic and real-world datasets. The
empirical results validate the superiority of EvenNet in generalizing to test graphs of differ-
ent homophily without introducing additional computational complexity while remaining
competitive in traditional node classification tasks.

2 Preliminaries

Notations. Let G = (V, E) denote an undirected graph, where N = |V| is the number of nodes.
Let A ∈ {0, 1}N×N denote the adjacency matrix. Concretely, Aij = 1 indicates an edge between
nodes vi and vj . Graph Laplacian is defined as L = D − A, along with a normalized version
L̃ = I −D−1/2AD−1/2, where I is the identity matrix and D is a diagonal degree matrix with each
diagonal element Dii =

∑N
i=1 Aij . It is known that L̃ is a symmetric positive semidefinite matrix

that can be decomposed as L̃ = UΛUT , where Λ = diag{λ0, . . . , λN−1} is a diagonal eigenvalue
matrix with 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2, and U is a unitary matrix consisting of eigenvectors.
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For multi-class node classification tasks, nodes in G are divided into K classes {C0, . . . , CK−1}.
Each node vi is attached with an F dimension feature and a one-hot class label. Let X ∈ RN×F

be the input feature matrix and Y ∈ RN×K = (y0, . . . ,yK−1) be the label matrix, where yi is the
indicator vector of class Ci. Let R = Y ⊤Y and the size of class Ck be Rk.

Graph filtering. The graph filtering operation on graph signal X is defined as Z = σ(Ug(Λ)UTX),
where g(Λ) is the so-called graph filter, and σ is the normalization function. Directly learning
g(Λ) requires eigendecomposition (EVD) of time complexity O(N3). Recent studies suggest using
polynomials to approximate g(Λ) instead, which is:

Ug(Λ)UTX ≈ U

(K−1∑
i=0

wkΛ
k

)
U⊤X =

K−1∑
i=0

wkL̃
kX,

where {wk} are polynomial coefficients. We can also denote a K-order polynomial graph filter as a
filter function g(λ) =

∑K
k=0 wkλ

k that maps eigenvalue λ ∈ [0, 2] to g(λ).

Homophily. Homophily reflects nodes’ preferences for choosing neighbors. For a graph of strong
homophily, nodes show a tendency to form connections with nodes of the same labels. The ratio of
homophily h measures the level of overall homophily in a graph. Several homophily metrics have
been proposed with different focuses [20, 22]. We adopt edge homophily following [37], defined by

h =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E|
. (1)

By definition, h ∈ [0, 1] is the fraction of intra-class edges in the graph. The closer h is to 1, the more
homophilic a graph is.

3 Our Proposed Method: EvenNet

In this section, we first introduce our motivation and the methodology of EvenNet. We then explain
how EvenNet enhances the robustness of spectral GNNs from the perspective of both spatial and
spectral domains.

3.1 Motivations

Reconsider the toy example in Figure 1. Relationships between nodes are opposite on homophilic
and heterophilic graphs, being straightforward but erratic under changes in the graph structure.
Unconstrained spectral GNNs tend to overuse such unstable relationships and fail to generalize across
homophily. In contrast, a robust model should rely on more general topological information beyond
homophily.

Balance theory [6], which arose from signed networks, offers a good perspective: “The enemy of my
enemy is my friend, and the friend of my friend is also my friend.” Balance theory always holds as a
more general law, regardless of how structural information is revealed on the graph. As a result, we
can obtain a more robust spectral GNN under homophily change by incorporating balance theory
into graph filter design.

3.2 EvenNet

Denote propagation matrix as P = I − L̃ = D− 1
2AD− 1

2 . A K-order polynomial graph filer is
defined as g(L̃) =

∑K
k=0 wkL̃

k, where wk, k = 0, . . . ,K are learnable parameters. We can rewrite
the filter as g(L̃) =

∑K
k=0 wk(I − L̃)k =

∑K
k=0 wkP

k since wk is learnable. Then, we discard the
monomials in g(L̃) containing odd-order P , obtaining:

geven(L̃) =

⌊K/2⌋∑
k=0

wk(I − L̃)2k =

⌊K/2⌋∑
k=0

wkP
2k. (2)

In practice, we decouple the transformation of input features and graph filtering process following [9,
18]. Our model then takes the simple form:
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Z = f(X,P ) =

(⌊K/2⌋∑
k=0

wkP
2kt(X)

)
, (3)

where t is an input transformation function (e.g. MLP), and Z is the output node representation that
can be fed into a softmax activation function for node classification tasks.

From the perspective of the spectral domain, geven keeps both low and high frequencies components
and suppresses medium-frequency components, which is a band-reject filter with the filter function
symmetric about λ = 1. We provide a theoretical analysis to demonstrate further the advantages of
geven in Section 3.3 and 3.4.

3.3 Analysis from the Spatial Domain

Recently, Chen et al. [8] analyzed the performance of graph filters under certain homophily. They
concluded that graph filters operate as a potential reconstruction mechanism of the graph structure. A
graph filter g(L̃) achieves better performance in a binary node classification task when the homophily
of the transformed graph is high. The transformed homophily can therefore be seen as an indicator
of the performance of graph filters on specific tasks. We now provide the well-defined transformed
homophily adopted from [8].

Definition 1. (k-step interaction probability) For propagation matrix P = D− 1
2AD− 1

2 , the k-step
interaction probability matrix is

Π̃k = R− 1
2Y ⊤P kYR− 1

2 .

Definition 2. (k-homophily degree) For a graph G with the k-step interaction probability Π̃k, its
k-homophily degree Hk(Π̃) is defined as

Hk(Π̃) =
1

N

K−1∑
l=0

(
RlΠ̃

k
ll −

∑
m ̸=l

√
RmRlΠ̃

k
lm

)
.

The transformed 1-homophily degree with filter g(L̃) is H1(g(I − Π̃)).

By definition, the k-homophily degree reflects the average possibility of deriving a node’s label from
its k-hop neighbors. In Theorem 1, we show that even-order filters achieve more robust performance
under homophily change by enjoying a lower variance of transformed homophily degree without
losing average performance. Detailed proof is provided in the appendix, including discussions about
multi-class cases.

Theorem 1. In a binary node classification task, assume the edge homophily h ∈ [0, 1] is a
random variable that belongs to a uniform distribution. An even-order graph filter achieves no less
EH

[
H1

(
g(I − Π̃)

)]
with lower variation than the full-order version.

3.4 Analysis from Spectral Domain

Similar to Section 3.3, we proposed Spectral Regression Loss (SRL) as an evaluation metric of graph
filters in the spectral domain. In a binary node classification task, suppose the dimension of inputs
F = 1. Denote the difference of labels as ∆y = y0 − y1. A graph filtering operation is defined as
Z = σ(Ug(Λ)UTX). Desirable filtering produces distinguishable node representations correlated to
∆y to identify node labels. Let α = U⊤∆y and β = U⊤X . The classification task in the spectral
domain is then a regression problem in the form of σ(α) = σ(g(Λ)β).

We adopt Mean Squared Error (MSE) as the objective function of the regression problem and vector
normalization as σ. Then SRL is defined as follows:

4



Definition 3. (Spectral regression loss.) Denote α = (α0, . . . , αN−1)
⊤,β = (β0, . . . , βN−1)

⊤. In
a binary node classification task, Spectral Regression Loss (SRL) of filter g(Λ) on graph G is:

L(G) =
N−1∑
i=0

 αi√
N

− g(λi)βi√∑N−1
j=0 g(λ2

j )β
2
j

2

(4)

= 2− 2√
N

N−1∑
i=0

αig(λi)βi√∑N−1
j=0 g(λ2

j )β
2
j

. (5)

The constant
√
N comes from the fact

∑N−1
i=0 α2

i = N . A detailed illustration is included in the
appendix. A graph filter that achieves lower SRL is of higher performance in the task.

Filters that Minimize SRL. Suppose αi = wβi + ϵ, where w > 0 reflects the correlation between
labels and features in the spectral domain and ϵ is the noise term. If ϵ is close to 0, indicating
features are free of noise and highly predictive, an all-pass filter (for example, MLP) with g(λi) = 1

already minimizes SRL. If the noise becomes dominant, SRL approximately equals to
∑N−1

i=0 ( αi√
N

−
g(λi)√∑
j g(λj)2

)2. In this noise-dominant case, an ideal filter is linearly correlated to α and structure-

based to achieve a lower SRL. Most real-world situations lie between these two opposite settings. As
a result, the shape of an ideal graph filter lies between an all-pass filter and an α-dependent filter.

From the discussion above, we have shown that the performance of graph filters is related to the
correlation between g(λ) and α. By connecting α and h in Theorem 2, we establish the relationship
between graph homophily and the performance of graph filters.
Theorem 2. For a binary node classification task on a k-regular graph G, let h be edge homophily
and λi be the i-th smallest eigenvalue of L̃, then

1− h =

∑N−1
i=0 α2

iλi

2
∑

i λi
(6)

The above equation can be extended to general graphs by replacing the normalized Laplacian L̃ with
the unnormalized L.

Notice that
∑N−1

i=0 α2
iλi is a convex combination of non-decreasing {λi} with weights α2

i . On a
homophilic graph where h is close to 1, the right-hand side of Equation 6 is close to 0, implying
larger weights for smaller λi. A low-pass filter that suppresses high-frequency components is more
correlated with such α and therefore achieves lower SRL. From previous works, we have known that
low-pass filters hold superiority on homophilic graphs, which is consistent with our analysis.

In the case of generalization, the distribution of {αi} is not fixed. A graph filter that minimizes the
SRL on training graphs could achieve poor results on a test graph of different homophily. Remember
that vanilla GCN could be worse than MLP on many heterophilic graphs. The same conclusion can
be applied to learnable filters without any constraints, as they only tried to minimize the SRL of
training graphs. In Theorem 3, we prove that even-order design helps spectral GNNs better generalize
between homophilic and heterophilic graphs as a practical constraint to current filters.
Theorem 3. Suppose λN−1 = 2 for a homophilic graph G1 with non-increasing {αi}, and a
heterophilic graph G2 with non-decreasing {αi}. Then an even-order filter geven achieves a lower
SRL gap |L(G1)− L(G2)| than full-order filters when trained on one of the graphs and test on the
other.

Theorem 3 reveals a trade-off in filter design between fitting the training graph and generalizing
across graphs of different homophily. While naive low-pass filters and high-pass filters work better on
graphs with certain homophily, EvenNet tolerates imperfect filter learning and becomes more robust
under homophily changes. A specific example on ring graphs is given in the following corollary. We
see that EvenNet intrinsically satisfies the necessary condition for perfect generalization.
Corollary 1. Consider two ring graphs G1 and G2 of 2n nodes, n ∈ N+. Suppose h(G1) = 0 and
h(G2) = 1. Assume the spectrum of input difference β = c1, where c > 0 is a constant. Then the
necessary condition for a graph filter g(λ) to achieve L(G1) = L(G2) is g(0) = g(2).
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3.5 Complexity

Denote N the number of nodes, d the size of hidden channels (we assume it is of the same order as
the size of input features), |E| the number of edges, L the number of MLP layers used in feature
transformation and K the order of the propagation layer.

Compared with structural learning methods which usually have a space complexity of O(N2),
EvenNet takes up O(|E|) space complexity, as it only needs to store the input sparse adjacency matrix
during training. For the time complexity of EvenNet, the transform process has a time complexity of
O(Nd2L), and the propagation process has a complexity O(Kd|E|) during each forward pass.

In practice, H2GCN [37] and ProGNN [16] require O(N2) space complexity and are thus not scalable
to large graphs. GCNII [7] achieves its best performance with multiple stacked layers which is slow
to train. FAGCN [4], GAT [26] and GNNGuard [34] with attention calculations are also inefficient
during training. Notice that the space and time complexity of EvenNet are both linear to N and |E|,
which is highly efficient.

We report the computational time and an experiment on a larger dataset ogbn-arxiv [15] in the
appendix to further verify the efficiency of EvenNet.

4 Related Work

Spectral GNNs. GNNs have become prevalent in graph representation learning tasks. Among them,
Spectral GNNs focus on designing graph filters with filter functions that operate on eigenvalues
of graph Laplacian [5]. Graph filters could be fixed [17, 18, 28] or approximated with polynomi-
als. ChebNet [10] adopts Chebyshev polynomials to realize faster localized spectral convolution.
ARMA [3] achieves a more flexible filter approximation with Auto-Regressive Moving Average
filters. GPRGNN [9] connects graph filtering with graph diffusion and learns coefficients of poly-
nomial filters directly. BernNet [14] utilizes Bernstein approximation to learn arbitrary filtering
functions. Although learnable graph filters perform well on heterophilic graphs, they have difficulties
generalizing if a homophily gap exists between training and test graphs.

GNNs for Heterophily. Previous works pointed out the weakness of vanilla GCN on graphs with
heterophily. Recently, various GNNs have been proposed to tackle this problem. Geom-GCN [22]
uses a novel neighborhood aggregation scheme to capture long-distance information. Zhu et al. [37]
introduces several designs that are helpful for GNNs to learn representations beyond homophily.
FAGCN [4] adaptively combines signals of different frequencies in message passing via a self-
gating mechanism. While these methods can handle heterophilic graphs, they are not guaranteed to
generalize across graphs of different homophily.

Robust GNNs. In the field of designing robust GNNs, existing methods can be divided into
two main categories: 1) Models utilizing new graph structures. GNN-Jaccard [29] and GNN-
SVD [11] preprocess the input graph before applying vanilla GCN. ProGNN [16] jointly learns a
better graph structure and a robust model. 2) Attention-based models. RGCN [35] uses variance-
based attention to evaluate the credibility of nodes’ neighbors. GNNGuard [34] adopts neighbor
importance estimation, aligning higher scores to trustworthy neighbors. TWIRLS [32] applies
an attention mechanism inspired by classical iterative methods PGD and IRLS. These methods
are effective against structural attacks. However, the learned graph structure cannot be applied to
inductive learning settings and requires additional memory. At the same time, attention-based models
are limited in the spatial domain and need high computational costs. On the contrary, EvenNet
improves the robustness of spectral GNNs without introducing additional computational costs.

5 Experiment

We conduct three experiments to test the ability of EvenNet in (1) generalizing across homophily
on synthetic datasets, (2) defending against non-targeted structural attacks, and (3) supervised node
classification on real-world datasets.
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5.1 Baselines

We compare our EvenNet with the following methods. (1) Method only using node features: A
2-layer MLP. (2) Methods achieving promising results on homophilic graphs: GCN [17], GAT [26],
GCNII [7]. (3) Methods handling heterophilic settings: H2GCN [37], FAGCN [4], GPRGNN [9].
We also include five advanced defense models in the experiment about adversarial attacks, including
RobustGCN [35], GNN-SVD [11], GNN-Jaccard [29], GNNGuard [34], and ProGNN [16]. We
implement the above models with the help of PyTorch Geometric [12] and DeepRobust libraries [19].

5.2 Evaluation on synthetic datasets

Datasets. In the first experiment testing generalization ability, we use cSBM model to generate
graphs with arbitrary homophily levels following [9]. Specifically, we divide nodes into two classes
of equal size. Each node is attached with a feature vector randomly sampled from a class-specific
Gaussian distribution. The homophily level of a graph is controlled by parameter ϕ ∈ [−1, 1]. A
larger |ϕ| indicates that the generated graph provides stronger topological information, while ϕ = 0
means only node features are helpful for prediction. Note that if ϕ > 0, the graph is more homophilic
and vice versa.

Settings. We set up node classification tasks in the inductive setting. We generate three graphs of
the same size for each sub-experiment, one graph each for training, validation, and testing. Graphs
for validation and testing share the same ϕtest, while training graphs either take ϕtrain = ϕtest

or ϕtrain = −ϕtest. If ϕtrain = −ϕtest, the training and test graphs are of opposite homophily
but provide the same amount of topological information. A model manages to generalize across
homophily when it realizes high prediction accuracy in both scenarios. In practice, we choose
(ϕtrain, ϕtest) ∈ {(±0.5,±0.5), (±0.75,±0.75)}.

Results. The results are presented in Table 1. When ϕtrain = ϕtest, GPRGNN achieves the highest
predictive accuracy as it best fits the desired graph filter. However, when ϕtrain = −ϕtest, all
methods except EvenNet suffer from a huge performance drop. Vanilla GCN, which corresponds to a
low-pass filter, achieves desirable performance only when the test graph is homophilic. GPRGNN
overfits training graphs most, resulting in more severe performance degradation on test graphs of
opposite homophily. EvenNet is the only method that achieves more than 75% accuracy on all
datasets among all the models, which is robust in generalization across homophily.

Table 1: Average node classification accuracy(%) and absolute performance gap(%) between experi-
ments of the same ϕtrain over ten repeated experiments on synthetic cSBM datasets. The best result
is highlighted by bold font, the second best result is underlined.

ϕtrain 0.75 0.50 -0.50 -0.75
ϕtest 0.75 -0.75 gap(↓) 0.50 -0.50 gap(↓) -0.50 0.50 gap(↓) -0.75 0.75 gap(↓)

MLP 57.92 57.24 0.68 63.65 64.26 0.61 63.28 63.83 0.55 56.92 59.24 2.32
GCN 75.24 60.31 15.11 78.98 63.21 15.77 63.27 76.67 13.40 60.48 77.88 17.40
GAT 74.15 60.55 13.60 75.64 61.96 13.68 64.43 71.02 6.59 63.19 71.61 8.42
GCNII 83.12 54.30 28.82 78.07 58.43 19.64 72.32 67.68 4.64 65.93 62.92 3.01

H2GCN 76.41 54.81 21.60 78.86 58.89 19.97 78.43 59.77 18.66 76.29 55.92 20.37
FAGCN 81.29 60.44 20.85 78.73 60.28 18.45 79.45 60.62 18.83 85.78 57.34 28.44
GPRGNN 95.93 53.52 42.41 84.42 56.16 28.26 84.18 63.76 20.42 95.99 66.49 29.52

EvenNet 95.29 94.59 0.70 82.37 82.57 0.20 81.99 79.81 2.18 94.79 96.25 1.46

5.3 Performance under non-targeted structural adversarial attacks

Datasets. For adversarial attacks, we use four public graphs, Cora, Citeseer, PubMed [24, 33] and
ACM [30] available in DeepRobust Library [19]. We use the same preprocessing method and splits
as [38], where the node set is split into 10% for training, 10% for validation, and 80% for testing,
and the largest connected component of each graph for attacks are selected.

We include the experiment against non-targeted attacks on heterophilic datasets in the appendix as
well, in which we use the same preprocessing methods and dense splits following [9]
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Figure 2: Homophily level of training graphs and test graphs on Cora after DICE attack, Metattack,
and MinMax attack. All attacks result in a homophily gap between training and test graphs.

.

Attack methods. Graph structural attacks can be categorized into poison attacks and evasion attacks.
In poison attacks, attack models are trained to lower the performance of a surrogate GNN model. The
training graph and the test graph are both allowed to be perturbed but only with a limited amount of
modifications, which are referred to as perturb ratios. Evasion attacks only happen during inference,
meaning GNNs are trained on clean graphs. In our study, we include two poison attacks, Metattack
(Meta) [38] and MinMax attack [31] with GCN the surrogate model, and an evasion variant of DICE
attack [27]. Notice that we mainly focus on modification attacks, which are strictly structural attacks.
A discussion of GNNs under graph injection attacks is included in the appendix.

For poison attacks, we use the same setting in [34] and set the perturb ratio for poison attacks to be
20%. For the evasion DICE, we randomly remove intra-class edges and add inter-class edges on the
test graph while keeping the graph structure between labeled nodes unchanged. We set the perturb
ratio of DICE attack in {0.4, 0.8, 1.2, 1.6}. From Figure 2, it can be seen that all attacks result in
homophily gaps between the training graphs and the test graphs. Besides the 1-hop homophily gap, in
Table 2, we present the change in two-hop homophily for learnable attacks with perturb ratio of 0.2.
As can be seen, the two-hop homophily gap is relatively smaller than the one-hop homophily gap,
which is in accordance with our analysis that homophily between even-hop neighbors is more robust.

Table 2: Homophily gaps between training and test graphs after Meta/MinMax attacks with 20% the
perturb ratio.

Homophily \dataset Meta-Cora Meta-Citeseer Meta-ACM MinMax-Cora MinMax-Citeseer MinMax-ACM
1-hop Train 0.42 0.4 0.49 0.36 0.38 0.49
1-hop Test 0.7 0.65 0.72 0.74 0.69 0.72
1-hop Gap 0.28 0.25 0.23 0.38 0.31 0.23
2-hop Train 0.52 0.55 0.54 0.37 0.40 0.36
2-hop Test 0.65 0.66 0.61 0.69 0.68 0.56
2-hop Gap 0.13 0.11 0.07 0.32 0.28 0.20

Results. Defense results are presented in Table 3 and Figure 3. For the DICE attack, the performance
of all methods significantly decreases along with the increase of the homophily gap except EvenNet.
Interestingly, when the homophily gap is enormous, EvenNet enjoys a performance rebound, consis-
tent with our topological information theory (strong homo. and strong hetero. are both helpful for
prediction). For poison attacks, EvenNet achieves SOTA compared with advanced defense models.
Unlike spatial defense models, EvenNet is free of introducing extra time or space complexity.

5.4 Performance on real-world graph datasets

We evaluate EvenNet on real-world datasets to examine the performance of EvenNet on clean graphs.
Besides the datasets used in Section 5.3, we additionally include four public heterophilic datasets:
Actor, Cornell, Squirrel, and Texas [22, 23, 25]. The statistics of real-world Datasets are included
in Table 4. In the node classification task, we transform heterophilic datasets into undirected ones
following [9].
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Table 3: Average node classification accuracy (%) against non-targeted poison attacks Metattack and
MinMax attack with perturb ratio 20% over 5 different splits. The best result is highlighted by bold
font, the second best result is underlined.

Dataset Meta-cora Meta-citeseer Meta-acm MM-cora MM-citeseer MM-acm

MLP 58.60 62.93 85.74 59.81 63.72 85.66
GCN 63.76 61.98 68.29 69.21 68.02 69.37
GAT 66.51 63.66 68.50 69.50 67.04 69.26
GCNII 66.57 64.23 78.53 73.01 72.26 82.90
H2GCN 71.62 67.26 83.75 66.76 69.66 84.84
FAGCN 72.14 66.59 85.93 64.90 66.33 81.49
GPRGNN 76.27 69.63 88.79 77.18 72.81 88.24

RobustGCN 60.38 60.44 62.29 68.53 63.16 61.60
GNN-SVD 64.83 64.98 84.55 66.33 64.97 81.08
GNN-Jaccard 68.30 63.40 67.81 72.98 68.43 69.03
GNNGuard 75.98 68.57 62.19 73.23 66.14 66.15
ProGNN 75.25 68.15 83.99 77.91 72.26 73.51

EvenNet 77.74 71.03 89.78 78.40 73.51 89.80
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Figure 3: DICE attack on four homophilic datasets. EvenNet is marked with “△”.

For all datasets, we adopt dense splits the same as [22] to perform full-supervised node classification
tasks, where the node set is split into 60% for training, 20% for validation, and 20% for testing.

Table 4: Statistics of real-world datasets.

Cora Citeseer PubMed ACM Chameleon Squirrel Cornell Texas Actor

Nodes 2,708 3,327 19,717 3,025 2,277 5,201 183 183 7,600
Edges 5,278 4,552 44,324 13,128 31,371 198,353 277 279 26,659

Features 1,433 3,703 500 1,870 2,325 2,089 1,703 1,703 932
Classes 7 6 3 3 5 5 5 5 5

Homophily Level 0.81 0.74 0.80 0.82 0.23 0.22 0.30 0.09 0.22

The results are shown in Table 5. While EvenNet sacrifices its performance for robustness, it is still
competitive on most datasets.

5.5 Ablation study

To analyze the effect of introducing odd-order components into graph filters, we develop a regularized
variant of EvenNet named EvenReg. EvenReg adopts a full-order learnable graph filter, with the
coefficients of odd-order monomials being punished as a regularization term. The training loss of
EvenReg then takes the form: L = Lpred + η

∑⌊K/2⌋
k=0 |w2k+1|, where Lpred is the classification loss

and η is a hyper-parameter controlling the degree of regularization.
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Table 5: Average node classification accuracy(%) on real-world benchmark datasets over 10 different
splits. The best result is highlighted by bold font, the second best result is underlined.

Model Cora Cite. Pubm. Cham. Texas Corn. Squi. Actor

MLP 74.88 74.82 85.58 46.65 89.50 90.17 32.33 41.30

GCN 87.19 80.87 87.51 63.28 80.66 74.09 46.42 34.21
GAT 88.21 81.36 89.42 64.02 81.63 81.97 47.87 36.21
GCNII 87.91 82.13 86.41 50.76 86.23 89.83 36.35 41.68
FAGCN 88.83 80.35 89.34 56.67 89.18 90.16 39.10 41.18
H2GCN 87.59 79.69 88.68 55.88 88.52 85.57 34.45 39.62
GPRGNN 88.34 80.16 90.08 67.13 93.44 92.45 51.93 41.62

EvenNet 87.25 78.65 89.52 66.13 93.77 92.13 49.80 40.48

We set η = 0.05 and repeat experiments in Section 5.2. The results are presented in Table 6. The
performance of EvenReg lies between full-order GPRGNN and EvenNet, indicating the introduced
odd orders impede spectral GNNs to generalize across homophily.

Table 6: Average node classification accuracy(%) of EvenReg over 10 repeated experiments on
synthetic cSBM datasets.

ϕtrain 0.75 0.50 -0.50 -0.75
ϕtest 0.75 -0.75 0.50 -0.50 -0.50 0.50 -0.75 0.75

GPRGNN 95.93 53.52 84.42 56.16 84.18 63.76 95.99 66.49
EvenNet 95.29 94.59 82.37 82.57 81.99 79.81 94.79 96.25
EvenReg 95.44 93.90 84.05 78.06 83.72 75.33 95.40 95.73

6 Conclusion

In this study, we investigate the ability of current GNNs to generalize across homophily. We observe
that all existing methods experience severe performance degradation if a large homophily gap exists
between training and test graphs. To overcome this difficulty, we proposed EvenNet, a simple yet
effective spectral GNN which is robust under homophily change of graphs. We provide a detailed
theoretical analysis to illustrate the advantages of EvenNet in generalization between graphs with
homophily gaps. We conduct experiments on both synthetic and real-world datasets. The empirical
results verify the superiority of EvenNet in inductive learning across homophily and defense under
non-targeted structural attacks by sacrificing only a tiny amount of predictive accuracy on clean
graphs.
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