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Abstract

Neural fields have emerged as a new paradigm for representing signals, thanks
to their ability to do it compactly while being easy to optimize. In most ap-
plications, however, neural fields are treated like black boxes, which precludes
many signal manipulation tasks. In this paper, we propose a new class of neural
fields called polynomial neural fields (PNFs). The key advantage of a PNF is
that it can represent a signal as a composition of a number of manipulable and
interpretable components without losing the merits of neural fields representa-
tion. We develop a general theoretical framework to analyze and design PNFs.
We use this framework to design Fourier PNFs, which match state-of-the-art per-
formance in signal representation tasks that use neural fields. In addition, we
empirically demonstrate that Fourier PNFs enable signal manipulation applica-
tions such as texture transfer and scale-space interpolation. Code is available at
https://github.com/stevenygd/PNF.

1 Introduction

Neural fields are neural networks that take as input spatial coordinates and output a function of the
coordinates, such as image colors [8, 56], 3D signed distance functions [3, 46], or radiance fields [39].
Recent works have shown that such representations are compact [15, 35, 51], allow sampling at
arbitrary locations [56, 59], and are easy to optimize within the deep learning framework. These
advantages enabled their success in many spatial visual computing applications including novel view
synthesis [39, 41, 43, 55, 68] and 3D reconstruction [17, 27, 47, 55, 56]. Most recent neural field
based methods, however, treat the network as a black box. As such, one can only obtain information
by querying it with spatial coordinates. This precludes the applications where we want to change the
signal represented in a neural field. For example, it is difficult to remove high frequency noise or
change the stationary texture of an image.

One way to enable signal manipulation is to decompose a signal into a number of interpretable
components and use these components for manipulation. A general approach that works across a
wide range of signals is to decompose them into frequency subbands [1, 7, 54]. Such decompositions
are studied in the traditional signal processing literature, e.g., the use of Fourier or Wavelet transforms
of the spatial signal. These transformations, however, usually assume the signal is densely sampled
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in a regular grid. As a result, it is non-trivial to generalize these approaches to irregular data (e.g.,
point clouds). Another shortcoming of these transforms is that they require a lot of terms to represent
a signal faithfully, which makes it difficult to scale to signals of more than two dimensions, such as in
the case of light fields. Interestingly, these are the very problems that can be solved by neural fields,
which can represent irregular signals compactly and scale easily to higher dimensions. This leads
to the central question of this paper: can we incorporate the interpretability and controllability of
classical signal processing pipelines to neural fields?

Our goal is to design a new class of neural fields that allow for precise subband decomposition and
manipulation as required by the downstream tasks. To achieve that, our network needs to have the
ability to control different parts of the network to output signal that is limited by desirable subbands.
At the same time, we want the network to inherit the usual advantages of neural fields, namely, being
compact, expressive, and easy to optimize. The most relevant prior works with related aims are
Multiplicative Filter Network (MFN) [19] and BACON [32]. While MFNs enjoy the advantages of
neural fields and are easy to analyze, they do not use this property to control the network’s output
for subband decomposition. BACON [32] extends the MFN architecture to enforce that its outputs
are upper-band limited, but it lacks the ability to provide subband control beyond upper band limits.
This hinders BACON’s applicability to tasks that requires more precise control of subbands, such as
manipulating stationary textures (shown in Sec. 4.2).

To address these issues, we propose a novel class of neural fields called polynomial neural fields
(PNFs). PNF is a polynomial neural network [10] evaluated using a set of basis functions. PNFs
are compact, easy to optimize, and can be sampled at arbitrary locations as with general neural
fields. Moreover, PNFs enjoy interpretability and controllability of signal processing methods. We
provide a theoretical framework to analyze the output of PNFs. We use this framework to design the
Fourier PNF, whose outputs can be localized in the frequency domain with both upper and lower
band limits, along with orientation specificity. To the best of our knowledge, this is the first neural
field architecture that can achieve such a fine-grained decomposition of a signal. Empirically, we
demonstrate that Fourier PNFs can achieve subband decomposition while reaching state-of-the-art
performance for signal representation tasks. Finally, we demonstrate the utility of Fourier PNFs in
signal manipulation tasks such as texture transfer and scale-space interpolation.

2 Related Works

Our method are built on three bodies of prior works: signal processing, neural fields, and polynomial
neural networks. In this section, we will focus on the most relevant part of these prior works. For
further readings, please refer to Orfanidis [45] for signal processing, Xie et al. [66] for neural fields,
and Chrysos et al. [12] for polynomial neural networks.

Fourier and Wavelet Transforms. In traditional signal processing pipeline, one usually first
transforms the signal into weighted sums of functionals from certain basis before manipulating
and analyzing the signal [45]. The Fourier and Wavelet transformation are most relevant to our
work. In particular, prior works has leveraged Fourier and Wavelet transforms to organize image
signal into meaningful and manipulable components such as the Laplacian [7] and Steerable [54]
pyramids. In our paper, we analyze the signal in terms of the basis functions studied by Fourier and
Wavelet transforms. Our manipulable components are also inspired by the subband used in Steerable
Pyramid [53]. While this signal processing pipeline is very interpretable, it’s non-trivial to make it
work on irregular data because these transformations usually assume the signal to be densely sampled
in a regular grid. In this paper, we tries to combines the interpretability of traditional signal processing
pipeline with the merits of neural fields, which is easy to optimize even with irregular data.

Neural Fields. Neural Fields are neural networks that maps spatial coordinate to a signal. Recent
research has shown that neural fields are effective in representing a wide variety of signals such
as images [56, 58], 3D shapes [3, 14, 37, 46, 67], 3D scenes [17, 24, 27, 47, 55]. and radiance
fields [4, 5, 6, 20, 28, 31, 33, 34, 36, 39, 40, 41, 43, 44, 48, 50, 55, 57, 63, 68, 69, 70, 71]. However,
neural fields typically operate as black boxes, which hinders the application of neural fields to some
signal decomposition and manipulation tasks as discussed in Sec. 1. Recent works have to alleviate
such issue by designing network architecture that are partially interpretable. A common technique is
to encode the input coordinate with a positional encoding where one can control spectrum properties
such as the frequency bandwidth inputting into the network [4, 39, 56, 59, 72]. But these positional
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encodings are passed through a black-box neural networks, making it difficult to analyze properties
of the final output. The most relevant works is BACON [32], which propose an initialization schema
for multiplicative filter networks (MFNs) [18] that ensures the output to be upper-limited by certain
bandwidth. This work generalizes BACON in two ways. First, our theory can be applied to a more
general set of basis function and network topologies. Second, our network enables more precise
subband controls, which include band-limiting from above, below, and among certain orientation.

Polynomial Neural Networks. Polynomial neural networks (PNNs) are generally referred to neural
networks composed of polynomials [12]. The study of PNNs can be dated back to higher-order
boltzmann machine [52] and Mapping Units [25]. Recently, research has shown that PNNs can train
very strong generative models [10, 11, 13, 23, 65] and recognition models [26, 64]. The empirical
success has also followed with deeper theoretical analysis. For example, [13] reveal how PNNs’
architecture relates to polynomial factorization. Kileel et al. [29] and Choraria et al. [9] studies the
expressive power of PNNs. Our work establish the connection between PNNs and many neural fields
such as MFN [19] and BACON [32]. We further extends polynomial neural networks by evaluating
the polynomial with a set of basis functions such as the Fourier basis.

3 Method

In this section, we will provide a definition for polynomial neural fields (Sec. 3.1). From this
definition, we derive a theoretical framework to analyze their outputs in terms of subbands (Sec. 3.2).
We then use this framework to design Fourier PNFs, a novel neural fields architecture to represent
signals as a composition of fine-grain subbands in frequency spaces (Sec. 3.3).

3.1 Polynomial Neural Fields

Recall that we would like to maintain the merits of the neural field representation while adding
the ability to partition it into analyzable components. As with all neural networks, to guarantee
expressivity, we want to base our neural fields on function compositions [49]. At the same time,
we want our neural fields to be interpretable in terms of a set of basis functions that have known
properties, as in the signal processing literature. We propose the following class of neural fields:

Definition 3.1 (PNF). Let B be a basis for the vector space of functions for Rn → R. A Polynomial
neural field of basis B is a neural network f = gL ◦ · · · ◦ g1 ◦ γ, where ∀i, gi are finite degree
multivariate polynomials, and γ : Rn → Rd is a d-dimensional feature encoding using basis B:
γ(x) = [γ1(x) . . . γd(x)]

T , γi ∈ B,∀i.

This definition allows a rich design space that subsumes several prior works. For example, MFN [19]
and BACON [32] can be instantiated by setting gi to be either the linear layer or a masked multi-
plication layer. Similarly, if we set the basis to be B = {xn}n∈N, then we can show architectures
proposed in Π-Net [13] are a subclass of PNF. This rich design space can potentially allow us to
tailor the architecture to the application of interests, as demonstrated later in Sec. 3.3 and Sec. 4.3.
Moreover, such rich space also contains many expressive neural networks, as shown by both the prior
works [10, 13, 19, 32] and by our experiment in Sec. 4.1.

Furthermore, as long as the span of the basis is closed under multiplication, PNF yields a linear
combination of basis functions and is thus easy to analyze:

Theorem 1. Let F be a PNF with basis B s.t ∀b1, b2 ∈ B, b1(x)b2(x) =
∑

i∈I aibi(x), |I| < ∞.
Then the output of F is a finite linear sum of the basis functions from B.

Many commonly used bases, such as Fourier, Gabor, and spherical harmonics, all satisfy this property.
Please refer to the supplementary for proofs for a variety of different bases.

3.2 Controllable Subband Decomposition

Theorem 1 is not enough to control or manipulate the signal represented by the network, because any
single neuron in the network may potentially be working with an arbitrary set of basis functions. This
is a problem if we want to manipulate the signal through these neurons. For example, if we want to
discard the contributions of some high-frequency components in the Fourier basis, we cannot decide
which neurons to discard if each of them are contributed to a variety of frequency bands.
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To allow better manipulation, we use the notion of subbands from traditional frequency domain
analysis [62]. In the most general sense, a subband is simply a subset of the basis. Manipulations
such as smoothing or sharpening can then be done by discarding or enhancing the contributions of
one or more such subbands. One way to instantiate these ideas with a PNF is to represent the signal as
a sum of different PFNs, each of which is limited to only a specific subband; then one can manipulate
these component PFNs separately.
Definition 3.2. A PNF F of basis B is limited by a subband S ⊂ B if F is in the span of S.

A key challenge is to construct a subband limited PNF for certain subbands. To this end, we need to
understand how the subband-limited PNF transforms under different network operations. Fortunately,
for PNFs we only need to study two types of operations: multiplication and addition. To this end, we
need the notion of a PNF-controllable set of subbands:
Definition 3.3 (PNF-controllable Set of Subbands). S = {Sθ|Sθ ⊂ B}θ is a PNF-Controllable Set
of Subbands for basis B if (1) Sθ1 ∪ Sθ2 ∈ S and (2) there exists a binary function ⊗ : S × S → S
such that if b1 ∈ Sθ1 , b2 ∈ Sθ2 =⇒ b1b2 ∈ Sθ1 ⊗ Sθ2 . 2

Intuitively, a PNF-controllable set of subbands lends some predictability to what happens if two
PNFs, limited to different subbands, are put together into a larger PNF:
Theorem 2. Let S be a PNF-controllable set of subbands of basis B with binary relation ⊗. Suppose
F1 and F2 are polynomial neural fields of basis B that maps Rn to Rm. Furthermore, suppose F1

and F2 are subband limited by R1 ∈ S and R2 ∈ S. Then we have the following:

1. W1F1(x) +W2F2(x) is a PNF of B limited by subband R1 ∪R2 with W1,W2 ∈ Rm×n;

2. F1(x)
TWF2(x) is a PNF of B limited by subband R1 ⊗R2 with W ∈ Rm×m.

Many structures used in the signal processing literature, such as the Steerable Pyramid, use subbands
that are PNF-controllable [7, 54]. Please refer to the supplementary for the derivations of PNF-
controllable sets of subbands. In the following sections, we will focus on using Fourier bases and
show how to build PNFs that instantiate subband manipulation efficiently.

3.3 Fourier PNF

In this section, we demonstrate how to build a PNF that can decompose a signal into frequency
subbands in the following three steps. First, we identify a PNF-controllable sets of subband for the
Fourier basis. Second, we choose a finite collection of subbands for the PNF to output, and organize
them into controllable sets. The final step is to instantiate the PNF compactly using Theorem 2.

3.3.1 Controllable Subband Decomposition for Fourier Space

R(1) R1 R2 R1 ⊗R2 R(∞) R3 R4 R3 ⊗R4

Figure 1: Illustration of PNF-controllable subbands in Fourier space. Left: 2-norm series of subbands;
Right: infinite-norm series of subbands.

The Fourier basis can be written as: bω(x) = exp (iωTx), where ω,x ∈ Rd and i is the imaginary
unit. It’s easy to see that the fourier basis is complete under multiplication, which satisfies the
condition for Theorem 1: exp(iωT

1 x) exp(iω
T
2 x) = exp(i(ω1 + ω2)

Tx).

Now we need to divide frequency space of ω ∈ Rd into subbands that are easy to manipulate and
meaningful for downstream tasks. We define the subband following Simoncelli and Freeman [54].
Formally, frequency space is decomposed into following sectors:

R(p)(α, β,d, γ) =
{
ω|α ≤ ∥ω∥p ≤ β, ∥d∥ = 1,ωTd < γ ∥ω∥

}
, (1)

2It’s possible prove Theorem 2 with a more relax version of Definition 3.3: b1b2 ∈ Span(Sθ1 ⊗ Sθ2).
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where p describe which norm do we choose to describe the frequency bands. Intuitively, α defines
the lower band limits and β defines the upper band limits. The vector d defines the orientation of the
subband and γ defines the angular width of the subband. Fig. 1 provides illustrations of R(p).

This definition of subband allows us to organize them into controllable sets. For example, we can
show that the following sets of subbands are controllable:
Theorem 3. Let S be a set of subbands defined as S = {R(2)(α, β,d, γ)|∀0 ≤ α ≤ β}. If |γ| < π

4 ,
then S is PNF-controllable. Specifically, if ω1 ∈ R

(2)
1 (α1, β1) ∈ S, and ω2 ∈ R

(2)
2 (α2, β2) ∈ S,

then bωi
bωi

= bω3
implies that ω3 ∈ R(2)(

√
cos(2γ)(α1 + α2), β1 + β2) ∈ S.

This theorem captures the intuition that the multiplication of two waves of similar orientations creates
high-frequency waves at that orientation. It allows us to predict the spectrum properties of the output
of the network when knowing the spectrum properties of the inputs. Fig. 1 provides illustrations of
how two 2D subbands interact under multiplications.

3.3.2 Subband Tiling

In order to represent different signals, our networks need to be able to leverage basis functions with
different orientations and within different bandwidths. With that said, we need to choose a set of
PNF-controllable subbands to cover all basis functions we want to use. For example, we can tile the
space with the set of controllable subbands in Theorem 3 in the following way:

Tcirc = {Sij = R(2)(bi, bi+1,d(θj), δ)|b1 ≤ · · · ≤ bn, θj = jδ, δ =
π

m
, 1 ≤ j ≤ 2m}, (2)

where d(θ) = [sin(θ), cos(θ)]T denotes unit vector rotate with angle θ, δ = π
m , and m sufficiently

small to allow the application of Theorem 3.

ωx
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ωy
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d(θ)

d(θ − δ)

d(θ − δ)
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Figure 2: Left: Tcirc; Right: Trect.

For 2D images, the region of interest is [−N,N ]2 where
N is the bandwidth determined by the Nyquist Sampling
Theorem [42]. To tile this rectangular region well without
introducing unnecessary high-frequency details, we will
use pesudo polar coordinate grids, which divide the space
into vertical or horizontal sub-regions and tile those sub-
regions according to l-∞ norm. Formally, the 2D pseudo
polar coordinate tiling can be written as:

Trect = {Sij = R(∞)(bi, bi+1,d(θj), δ)|b1 ≤ · · · ≤ bn, θj = jδ, 1 ≤ j ≤ 2m, j ̸= m}. (3)

Note that we exclude certain regions to avoid having a subband to include orientation at π
4 and 3π

4 in
order for Theorem 3 to generalize to such tiling. Fig. 2 contains an illustration of these two types of
tiling. We show detailed derivation in the supplementary.

Tiling the spectrum space with subbands from Tcirc or Trect allows us to organize information in a
variety of meaningful ways. For example, this set of subbands can be grouped into different cones
{Sij}2mj=1. Each cone corresponds to a particular orientation of the signal. Alternatively, we can also
organize this set of subbands into different rings {Sij}ni=1, which corresponds to the decomposition
of an image into the Laplacian Pyramid.

3.3.3 Network architecture

We now have decided on the set of subbands we want to produce by PNF. We want to design the
final Fourier PNF as an ensemble of subband limited PNFs: F (x) =

∑
j

∑
i OijFij(x), where

Fij(x) : Rn → Rh is a PNF that’s limited with subband Sij defined in Eq. (3), and Oij ∈ Rh×m

aggregates the output signals together. One way to achieve this is to naively define Fij as a two layers
PNF the feature encoding layer to include only the basis functions in the subband Sij followed by a
linear layer. However, such an approach fails to achieve good performance without a huge number of
trainable parameters. Alternatively, we leverage Theorem 2 to factorize F :

F (x) =
∑

j Fj(x), Fj(x) =

n∑
k=1

Gj(x, bi, bi)WjkZj,k(x), (4)

Zj,1(x) = Gj(x, 0,∆1), Zj,k(x) = Gj(x, 0,∆k)WiZj,k−1(x), (5)
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Figure 3: Illustration of Fourier PNF architecture. Fourier PNF is an ensemble model. The final
result is summed over a series of PNFs Fj , whose structure is shown on the left side of the figure.

BACON PNF

Figure 4: BACON: The bottom row shows the output of each layer which is upper band limited. The
top row (columns 2-4) shows the difference between the output of a given layer and the one before it.
PNF: The top row shows the output of each layer which is both upper and lower band limited. The
bottom row (columns 2-4) shows the addition of the output at a given layer and the one before it.

where Gj(x, a, b) is subband limited in R(∞)(a, b, d(θj), δ) and ∆k = bk − bk−1. This network
architecture of Fi is illustrated in Fig. 3. We instantiate this architecture by setting Gj(x, a, b) into a
linear transform of basis sampled from the subband to be limited:

Gj(x, a, b) = Wiγj(x), γj ∈ R(∞)(a, b, d(θj), δ)
d,Wi ∈ Rh×d, (6)

where h and d is the dimension for the output and the feature encoding. We provide additional
implementation details in the supplementary.

4 Results

We demonstrate the applicability of our framework along three different axes: (Expressivity) For a
number of different signal types, we demonstrate our ability to fit a given signal. We observe that
our method enjoys faster convergence in terms of the number of iterations. (Interpretability) We
visually demonstrate our learned PNF, whose outputs are localized in the frequency domain with
both upper band-limit and lower-band limit. (Decomposition) Finally, we demonstrate the ability to
control a PNF on the tasks of texture transfer and scale-space representation, based on our subband
decomposition. For all presented experiments, full training details and additional qualitative and
quantitative results are provided in the supplementary.
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Table 1: Image Fitting on the DIV2K dataset.

PSNR SSIM # Params

RFF 28.72 0.834 0.26M
SIREN 29.22 0.866 0.26M
BACON 28.67 0.838 0.27M
BACON-L 29.44 0.871 0.27M
BACON-M 29.44 0.871 0.27M
PNF 29.47 0.874 0.28M

Table 2: 3D shape fitting. CD is Chamfer Dis-
tance (×106)

CD F-score # Params

SIREN 9.00 99.76% 0.53M
BACON 2.60 99.84% 0.54M
BACON-L 2.60 99.85% 0.54M
BACON-M 2.61 99.85% 0.54M
PNF 2.25 99.97% 0.59M

Table 3: NeRF Fitting for 642 resolution. A comparison between PNF and bacon is shown for PSNR
and SSIM at 300 and 500 epochs. as well as corresponding number of parameters used.

1x 1/2x 1/4x 1/8x Avg

300 epochs BACON 28.07/0.936 29.95/0.943 30.75/0.939 31.37/0.927 30.04/0.936
PSNR/SSIM PNF 29.89/0.937 31.16/0.946 32.11/0.934 32.00/0.920 31.29/0.934

500 epochs BACON 28.51/0.932 30.77/0.941 31.74/0.940 32.10/0.928 30.78/0.935
PSNR/SSIM PNF 29.33/0.950 31.19/0.950 31.48/0.936 31.37/0.926 30.84/0.940

# Params BACON 0.54M 0.41M 0.27M 0.14M 0.34M
PNF 0.46M 0.34M 0.23M 0.12M 0.29M

4.1 Expressivity

We demonstrate that a PNF is capable of representing signals of different modalities including images,
3D signed distance fields, and radiance fields. We compare our Fourier PNF with state-of-the-art
neural field representations such as BACON [32], SIREN [56], and Random Fourier Features [59].

Images Following BACON [32], we train a PNF and the baselines to fit images from the DIV2K [2]
dataset. During training, images are downsampled to 2562. All networks are trained for 5000
iterations. At test time, we sample the fields at 5122 and compare with the original resolution images.

Different from other networks, BACON is supervised with the training image in all output layers. For
fair comparison, we also include two BACON variants, which are only supervised either at the last
output layer (“BAC-L”) or using the average of all output layers (“BAC-M”). We report the PSNR
and Structural Similarity (SSIM) scores of these methods in Tab. 1. Fourier PNF improves on the
performance of the previous state-of-the-arts.

In addition to its expressivity, PNF is also able to localize signals in different regions. Specifically,
Fourier PNF decomposes an image into subbands in the frequency domain. For example, Fig. 4
shows that the output branches of the Fourier PNF correspond to specific frequency bands. Note
that such decomposition forms for all layers while training is only performed for the last layer of the
PNF. Such subband control is reminiscent of the traditional signal processing analogue of Laplacian
Pyramids [7]. Note that each layer of the PNF is guaranteed to be both lower and upper frequency
band limted, while this is not achievable by BACON. For comparison Fig. 4 shows the corresponding
result of training BACON only for the last layer. In Sec. 4.2 and Sec. 4.3 we demonstrate how to
leverage such fine-grain localization for texture transfer and scale space interpolation.

3D Signed Distance Field One advantage of neural fields is their ability to represent irregular
data such as 3D point cloud or signed distance fields with high fidelity. We demonstrate that PNFs
can represent 3D shapes via signed distance fields expressively. We follow BACON’s experimental
setting to fit a range of 3D shapes from the Stanford 3D scanning repository [60] (a slightly different
normalization is used, see supplementary for details). During training, we sample 10k oriented
points from the ground truth surface and perturb them with noise to compute an estimate of SDF as
ground truth. All models are trained with reconstruction loss for the same number of iterations. A
quantitative comparison of the different methods is reported in Tab. 2. We observe that PNF achieves
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Figure 5: LHS: Convergence time in terms of number of steps/iterations for the Thai Statue model [60].
The x-axis shows the number of steps (K) and the y-axis shows the validation Chamfer Distance
(×106). RHS: Qualitative comparison for the Thai Statue model [60].
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Figure 6: Qualitative comparison of neural radiance fields for the Drums scene given in [4] at the 300
epochs. The results suggests that our model can achieve better quality in early iterations.

slightly higher fitting quality than other methods. Next, we investigate convergence behavior in Fig. 5
(Left) on the Thai Statue model [60]. Here, we observe that PNFs converge much more quickly than
SIREN and BACON while achieving comparable quality. In Fig. 5 (Right) we provide a qualitative
comparison of our result, BACON, and SIREN.

Neural Radiance Field In the context of neural radiance fields, we show that PNFs can represent
signals in higher dimensions compactly and faithfully. We follow BACON’s setting and train a PNF
to model the radiance field of a set of Blender scenes [39], see supplementary for details. Specifically,
the PNF outputs a 4D vector of RGB and density values. These values are used by a volumetric
renderer proposed of NeRF [39] to produce an image, which is supervised with reconstruction loss.
At test time, we use the same volumetric renderer to produce images from different camera poses
and evaluate them with the known ground truth images. The results, in comparison to BACON, are
presented in Tab. 3. A Qualitative comparison is also given in Fig. 6. Similarly to SDF, we are able to
match or improve BACON’s performance using about 60% of the total number of iterations. This
can be potentially attributed to PNF’s ability to disentangle coarse signal from finer one; and so at
higher layers, BACON needs to relearn low-frequency details in the image while the PNF does not.

Parameter Efficiency. One major advantage of using neural fields is that it can represent signal
with high expressivity while remaining compact. In this section, we will demonstrate that PNF also
retains this advantages. While choosing the hyperparameters for PNFs (e.g. hidden layer size) for
the expressivity experiemnts, we make sure the PNF has a comparable number of parameters with
the prior works. A comparison of the number of trainable parameters used for different model is
included in Tab. 1-Tab. 3. We can see that PNFs are achieving comparable performance with the
state-of-the-arts neural fields with roughly the same amount of trainable parameters.

Training and Inference Time While we observe that Fourier PNF can converge in fewer iterations,
but due to the ensemble nature of Fourier PNF, each forward and backward pass of PNF requires
longer time to evaluate. This leads to the question, can we actually achieve faster convergence in
wall time? We profile the training and inference time of the image fitting experiment in Tab. 4 for the
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Table 4: A comparison of the training and inference time for image fitting of a cameramen image.

Time(s)/Step Time(s) to 36 PSNR Final PSNR Final SSIM

BACON 0.16 177 37.45 97.33
PNF 0.64 96 37.45 97.44
SIREN 0.10 163 36.90 97.50
RFF 0.08 275 36.23 95.05
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Figure 7: Texture transfer. (a). We optimize specific layers of the neural field. L-1 (layers 1-4),
L-2 (layers 2-4), L-3 (layers 3-4). The texture contains stationary texture (in high frequency) and
structured texture (in low frequency). As opposed to BACON, our method can isolate the stationary
texture. (b) We consider the text based texture transfer objectives of CLIPStyler [30] for the cat
content image. For PNF, we consider the text prompt “Mosaic” and apply the same layer-based
optimization as in (a). For comparison, we apply CLIPStyler of “Low frequency mosaic” (B-1),
“High frequency mosaic” (B-3) and “Mosaic” (B-3).

camera men image. The results show that it’s possible for PNF to converge faster even in terms of
clock time because PNFs can converge is drastically fewer number of steps.

4.2 Texture Transfer

Traditional approaches for image manipulation assume the input and output images are represented
using a regular grid [16, 22]. Recent work has opted to use neural fields instead, for example allowing
fine detailed texturing of 3D meshes [38]. Our formulation allows for an additional layer of control.
In particular, due to our subband decompositionality, one can restrict the manipulation to particular
subbands. The manipulation can then be driven by optimizing the PNF weights corresponding to
those subbands, using various loss objectives.

We demonstrate this in the setting of texture transfer. We consider a Fourier PNF with four layers
of the following frequency ranges (in Hz): (1) [0, 8], (2) [4, 16], (3) [12, 32] and (4) [28, 64]. We
consider a content image C of 1282 resolution. In the first stage, we train a network to fit C as in
Sec. 4.1. In the second stage, we optimize only the parameters of specifics layers. To optimize these
parameters, we query the network on a 1282 image grid producing image I. We then consider two
sets of objectives: (a) Content and style loss objectives as given in [21]. (b), Text-based texture
manipulation objectives as given by CLIPStyler [30]. See further details in the supplementary.

In Fig. 7, we illustrate the result of optimizing layers 1 to 4, 2 to 4 or 3 to 4, corresponding to
frequency ranges [0, 64], [4, 64] and [12, 64] respectively. We consider a texture which contains both
stationary texture in the high frequency range and structured texture in the low frequency range. As
opposed to BACON, our method can isolate the stationary texture. As can be seen in Fig. 7(b), for
text based manipulation, our method generates texture that is in the correct frequency range. For
comparison, we consider CLIPStyler [30], with text prompts of "Low frequency mosaic" (B-1), "High
frequency mosaic" (B-3) and "Mosaic" (B-3), resulting in non-realistic texturing. As can be seen,
simply specifying the frequency in the text does not result in a satisfactory result.
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4.3 Scale-space Representation

In many visual computing applications such as volumetric rendering, one is usually required to
aggregate information from the neural fields using operations such as Gaussian convolution [4]. It
is useful to model signals as a function of both the spatial coordinates and the scale: f(x,Σ) =
Ex∼N (x,Σ)[g(x)], where g is the assumed ground truth signal. Existing works try to approximate
the scale-space by using a black-box MLP with intergrated positional encoding, which computes the
analytical Gaussian convolved Fourier basis functions [4, 61]. While such approaches demonstrate
success in volumetric rendering applications which requires integrating different scales, they depend
on supervision in multiple scales, possibly because their ability to interpolate correctly between scales
is hindered by the black-box MLP. 1× 1/2× 1/4× 1/8 ×
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N
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Figure 8: Scale-space representation. Networks
are trained on full resolution image (1x) and test on
the other reolutions. GTR is produced by applying
Gaussian smoothing on (1x) image.

In this section we want to demonstrate the PNF’s
ability to better model this scale space with
limited supervision. Suppose the signal of in-
terest can be represented by Fouier bases as
g(x) =

∑
n αn exp (ω

T
i x), then we know ana-

lytically the Gaussian convolved version should
be f(x,Σ) =

∑
n αn exp(ω

T
i Σωi) exp(iω

T
i x).

If we assume that our Fourier PNF can learn the
ground truth representation well, then one po-
tential way to achieve this is setting γ(x,Σ)n =
exp(− 1

2ω
T
nΣωn) exp(−iωT

nx). We also mul-
tiply the output of Fi (Eq. (4)) with a cor-
rection term addressing the error arises from
missing the interference terms in the form of
exp(− 1

2ω
T
i Σωj). We show in the supplemen-

tary how to derive and approximate these miss-
ing terms using Fourier PNF.

We test the effectiveness of Fourier PNF to learn
the scale-space of a 2D image. In this applica-
tion, the network is trained with the image signal
in full resolution (finest scale). At test time, the
network is asked to produce image with different
scales and compared to the ground truth Gaus-
sian smoothed image. We compared our method with IPE [4] as well as BACON with IPE as filter
function. The results are shown in Fig. 8. Our model can represent a signal reasonably well when
testing with a lower resolution while other methods degrade more quickly.

Limitations Currently, the activation memory of PNF scales linearly in the number of subbands,
and so interpretability and decompositiality gained by PNF comes at a “cost" of a larger memory
footprint. Further, it is also non trivial to tile higher dimensional space with controllabel subbands.

5 Conclusion

We proposed a novel class of neural fields (PNFs) that are compact and easy to optimize and enjoy the
interpretability and controllability of signal processing methods. We provided a theoretical framework
to analyse the output of a PNF and design a Fourier PNF, whose outputs can be decomposed in a fine-
grained manner in the frequency domain with user-specified lower and upper limits on the frequencies.
We demonstrated that PNFs matches state-of-the-art performance for signal representation tasks.
We then demonstrated the use of PNF’s subband decomposition in the settings of texture transfer
and scale-space representations. As future work, the ability to generalize our representation to
represent multiple higher-dimensional signals (such as multiple images) can enable applications in
recognition and generation, where one can leverage our decomposeable architecture to impose a prior
or regularize specific subbands to improve generalization.
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