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Abstract

Relative Positional Encoding (RPE), which encodes the relative distance between
any pair of tokens, is one of the most successful modifications to the original
Transformer. As far as we know, theoretical understanding of the RPE-based
Transformers is largely unexplored. In this work, we mathematically analyze the
power of RPE-based Transformers regarding whether the model is capable of
approximating any continuous sequence-to-sequence functions. One may naturally
assume the answer is in the affirmative—RPE-based Transformers are universal
function approximators. However, we present a negative result by showing there
exist continuous sequence-to-sequence functions that RPE-based Transformers
cannot approximate no matter how deep and wide the neural network is. One
key reason lies in that most RPEs are placed in the softmax attention that always
generates a right stochastic matrix. This restricts the network from capturing
positional information in the RPEs and limits its capacity. To overcome the prob-
lem and make the model more powerful, we first present sufficient conditions
for RPE-based Transformers to achieve universal function approximation. With
the theoretical guidance, we develop a novel attention module, called Universal
RPE-based (URPE) Attention, which satisfies the conditions. Therefore, the cor-
responding URPE-based Transformers become universal function approximators.
Extensive experiments covering typical architectures and tasks demonstrate that
our model is parameter-efficient and can achieve superior performance to strong
baselines in a wide range of applications. The code will be made publicly available
at https://github.com/lsj2408/URPE.

1 Introduction

Transformer [61] is well acknowledged as a powerful neural network in modeling sequential
data [12, 42]. Relative Positional Encoding (RPE) is one of the most successful modifications
to the Transformer model [49]. Unlike the originally designed Absolute Positional Encoding (APE)
that encodes each position as an embedding vector, RPE encodes the relative distance between any
pair of tokens and is usually placed in the softmax exponentiation in the self-attention module.
Empirically, many studies show that RPE-based Transformers can achieve impressive performance
on various language tasks [54, 10] and have better extrapolation ability on longer sequences [52].
Another point worth noting is that RPE makes Transformer easily be extended to other data modalities,
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such as image [14, 43] and graph [67], as the relative distance naturally preserves invariant properties
for several important transformations like rotation and translation.

In this paper, we first investigate the theoretical aspect of the RPE-based Transformers. In particular,
we study their expressive power which describes models’ ability to approximate any continuous func-
tions. Recently, Yun et al. [69] proved that the APE-based Transformers are universal approximators
of continuous sequence-to-sequence functions on a compact domain, and one may expect that the
RPE-based Transformers enjoy the same property. However, we provide a surprising theoretical find-
ing which shows that widely-used Transformers with RPE are not universal function approximators,
i.e., there exist continuous sequence-to-sequence functions that the models cannot approximate no
matter how deep and wide the model is. One key observation is that the RPEs are placed inside the
softmax in the attention module. The softmax operator always generates a right stochastic matrix,
which fails to reflect enough positional information encoded in RPE to the output. Synthetic tasks are
conducted to support this mathematical claim.

To design a more powerful RPE-based Transformer, we delve into the limitation of the model
and theoretically derive two sufficient conditions to achieve universal function approximation: the
attentive condition and position-aware condition. Both conditions together state that the RPE-based
attention function class should cover some special cases of the originally designed attention and
break the right-stochastic-matrix limitation. With such theoretical guidance, we develop a new
attention module called Universal RPE-based (URPE) Attention that satisfies the above conditions.
Therefore, the Transformers with URPE-based Attention, called URPE-based Transformers, are
universal function approximators. We show our proposed architecture is easy to implement and
parameter-efficient via extensive experiments covering typical model architectures [54, 10, 67]
and tasks (synthetic tasks, language modeling, and graph learning). Our model brings consistent
performance gains compared with existing RPE-based Transformers on a wide range of tasks.

The paper is organized as follows. In Section 2, we introduce background on the Transformer archi-
tecture and positional encoding approaches. In Section 3, we prove that the widely-used RPE-based
Transformers are not universal function approximators. In Section 4, we further present sufficient
conditions for RPE-based Transformers to achieve universal approximation, and develop a new
attention module, URPE-based Attention, to build a universal RPE-based Transformer. Experiments
are presented in Section 5 to demonstrate the effectiveness of Transformers with our proposed
URPE-based Attention. Related works and the conclusion are discussed in the last two sections.

2 Preliminary

The Transformer architecture is composed of stacked Transformer blocks [61, 12]. A Transformer
block is a sequence-to-sequence mapping from Rn×d to Rn×d, where n is the sequence length and d
is the dimension of token embedding. A Transformer block consists of two layers: a self-attention
layer followed by a feed-forward layer, with both layers having normalization (e.g., LayerNorm [1],
RMSNorm [71]) and skip connections. For an input X ∈ Rn×d, the self-attention layer and
feed-forward layer are defined as follows:

Ah(X) = softmax
(
XW h

Q(XW h
K)⊤

)
; (1)

Attn(X) = X +

H∑
h=1

Ah(X)XW h
V W

h
O; (2)

FFN(X) = X +ReLU(XW1)W2, (3)

where W h
O ∈ RdH×d, W h

Q,W
h
K ,W h

V ∈ Rd×dH , W1 ∈ Rd×r,W2 ∈ Rr×d. H is the number of
attention heads, dH is the dimension of each head, and r is the dimension of the hidden layer. Ah(X)
is usually referred to as the attention matrix. Given pre-defined H , dH and r, we refer to the function
class of the Transformer blocks as T_blocks(H, dH , r).

Transformer with Absolute Positional Encoding. Self-attention layers and feed-forward layers
defined in Eq.(2) and (3) are entirely invariant to sequence order. Therefore, purely stacked Trans-
former blocks cannot distinguish information at different positions. The original Transformer [61]
proposes Absolute Positional Encoding (APE) to endow Transformer networks with the ability to
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capture positional information. In particular, a (learnable) real-valued embedding ei ∈ Rd is assigned
to each position i, leading to an Absolute Positional Encoding matrix E = [e1, · · · , en]⊤, which will
be added to the input sequence. Formally speaking, the function class represented by APE-based
Transformers is

ΩH,dH ,r
APE = {f(X) = g(X+E)|E ∈ Rn×d; g = gL ◦ · · · ◦g1; gi ∈ T_blocks(H, dH , r);L ∈ N∗}.

APE essentially enhances the expressive power of Transformers. Yun et al. [69] proved the following
theoretical result, which shows that APE-based Transformers can approximate any continuous
sequence-to-sequence function in a compact domain.

Theorem 1 (informal [69]). Given n, d ∈ N∗, the function class of Transformers with APE, Ω2,1,4
APE,

is a universal approximator for continuous functions that map a compact domain in Rn×d to Rn×d.

Though Transformers with APE are conceptionally simple and enjoy good theoretical properties, they
have a few known shortcomings. For example, Press et al. [52] showed that APE-based Transformers
usually generalize poorly to longer sequences, as those positional embeddings for large indexes are
hardly trained. Many works [58, 10, 54, 33, 26] employ Relative Positional Encoding (RPE), which
becomes increasingly popular as a powerful way to encode positional information for Transformers
and largely overcomes the disadvantages of APE.

Transformer with Relative Positional Encoding. Different from APE that assigns an embedding
ei for each position i, Relative Positional Encoding (RPE) encodes relative distance i− j for each
position pair (i, j). With the relative positional encoding, most previous works modified the attention
computation defined in Eq.(1) as follows:

Ah
RPE(X) = softmax

(
XW h

Q(XW h
K)⊤ +B

)
, (4)

where B is an n× n matrix. The (i, j)-th entry of B, denoted by bij , models the interaction between
the i-th and j-th position. Different parameterizations of B lead to different model architectures. A
few well-known examples include:

• Shaw’s RPE [58]: bij = XiW
h
Qr

⊤
i−j , where ri−j are learnable vectors.

• T5 [54]: bij = mi−j , where mi−j are learnable scalars, i.e., B is parameterized as a
Toeplitz matrix [22, 45].

• DeBERTa [25]: bij = XiW
h
Qr

⊤
i−j + si−j(XjW

h
K)⊤, where ri−j and si−j are learnable

vectors.
• Transformer-XL [10]: bij = XiW

h
Q(ri−jW̃

h
K)⊤ + u(XjW

h
K)⊤ + v(ri−jW̃

h
K)⊤, where

u,v and W̃ h
K are all learnable vectors/matrix, and ri−j are sinusoidal positional encoding

vectors fixed during training.

Several interesting phenomena suggest that RPE-based Transformers have many advantages compared
to their APE-based counterparts. Press et al. [52] demonstrated that RPE-based Transformers
generalize better on longer sequences. T5 [54] and Transformer-XL [10] show that Transformers
with RPE can achieve strong performance in language understanding and language generation tasks.
Recently, RPEs are also popularly used in other domains to encode translation/rotation-invariant
structural signals. Typical examples include Swin Transformer [43] and Graphormer [67], both of
which use RPE and achieve state-of-the-art performance in image and graph representation learning.

3 Transformers with RPE are not Universal Approximators

We are interested in the expressive power of Transformers with RPE and investigate whether this
architecture is as powerful as the original APE-based Transformers. To make comparison, we
similarly define the function class of the Transformer blocks with RPE-based attention (Eq.(4)) as
T_blocksRPE(H, dH , r), in which the relative positional encoding matrix B is assumed to be an
arbitrary parameterized mapping from the input X to an n×n matrix. The function class represented
by Transformers with RPE is defined as:

ΩH,dH ,r
RPE = {gL ◦ · · · ◦ g1 : Rn×d → Rn×d|g1, · · · , gL ∈ T_blocksRPE(H, dH , r), L ∈ N∗}.
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Surprisingly, we present a negative theoretical result: we prove that the function class of Transformers
with RPE, ΩH,dH ,r

RPE , is not a universal approximator for sequence-to-sequence functions.

Theorem 2. Given n > 2, d and D ⊆ Rn×d, assume that the all-zero matrix 0 ∈ D. For any M > 0,
there exists a continuous function g̃M : D → Rn×d, such that

sup
X∈D

∥g̃M (X)− g(X)∥F > M (5)

holds for any g ∈ ΩH,dH ,r
RPE , where H, dH , r ∈ N∗.

Proof. Without loss of generality, we prove the theorem for d = 1. The proof can be easily
extended to d > 1 settings. Given M > 0, we consider a specific sequence-to-sequence function
as target: g̃M : X 7→ (2M, 0, · · · , 0)⊤. To show supX∈D ∥g̃M (X)− g(X)∥F > M holds for any
g ∈ ΩH,dH ,r

RPE , we pick up an input X∗, which is composed of n identical row vectors in Rd, i.e.,
the sequence consists of n identical tokens. Since the function Ah

RPE(X) outputs a right stochastic
matrix, it is easy to check that Attn(X) = X +

∑H
h=1 A

h(X)XW h
V W

h
O is also composed of n

identical row vectors in Rd. Note that FFN(X) and normalizations operate identically on each row
vector, we can obtain that the final output of a Transformer block with RPE-based attention is still
composed of n identical row vectors in Rd.

Since g is a composition of multiple Transformer blocks in T_blocksRPE(H, dH , r) and 0 is com-
posed of n identical row vectors in Rd, we conclude from the analysis above that g(0) is also
composed of n identical row vectors in Rd, i.e., there exists c ∈ Rd such that g(0) = c1⊤

n . Therefore,
by applying Cauchy-Schwartz Inequality we obtain

∥g̃M (0)−g(0)∥2F = (2M−c)2+(n−1)c2 ≥ 4M2

1 + 1
n−1

> M2 ⇒ sup
X∈D

∥g̃M (X)−g(X)∥F > M,

which completes the proof.

Discussions. The key observation in Theorem 2 is that ARPE(X) always outputs a right stochastic
matrix. Even if RPE carries rich positional information, such signal will be suppressed to satisfy
ARPE(X)1 = 1 for arbitrary X ∈ Rn×d, where 1 is an all-one n-dimensional vector. As a result,
the attention module fails to reflect enough positional information encoded in RPE to the output,
which restricts the model capacity. The problem will be significant when the target function g̃ is very
position-sensitive (in the extreme case, g̃ only depends on the position indexes). We also conduct
experiments on simple sequence-to-sequence tasks using synthetic data to support this mathematical
claim in Section 5.1. One may expect that simply removing the denominator in the softmax can
break the limitation. However, this modification brings significant optimization instability in practice.
Given that RPE has many advantages3 compared to APE, it’s appealing to design an RPE-based
Transformer variant that is a universal approximator of sequence-to-sequence functions and easy to
optimize. This is what we precisely work on in the next section.

4 Making RPE-based Transformers Universal Approximators

This section contains two sub-sections. In the first sub-section, we provide a sufficient condition
for the RPE-based Transformers to achieve universal approximation. In the second sub-section,
we offer a practical instantiation of the Transformer with RPE that satisfies the requirement and is
parameter-efficient.

3On one hand, we claim that RPE-based Transformers cannot achieve universal function approximation
(while APE-based models can achieve). On the other hand, we claim RPE is empirically advantageous compared
to APE, according to previous works. One may feel there exists a contradiction and get confused. We would
like to clarify that the two claims are made in different settings. For example, RPE empirically performs well
in generalization to longer sequences, while the theoretical analysis of approximation capability focuses on
functions with bounded input lengths (See Theorem 1 where n is given). Our goal is to design an RPE variant
with the same expressiveness as APE in the theoretical setting and enjoys its usefulness in practical scenarios.
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4.1 A Sufficient Condition to Achieve Universal Approximation

Motivated by formulation (1) and (4), we consider a general form Ah
U : Rn×d → Rn×n and define

the corresponding attention layer as

AttnU(X) = X +

H∑
h=1

Ah
U(X)XW h

V W
h
O, (6)

We further define the function class of the corresponding Transformer block as T_blocksU(H, dH , r),
and define the function class of Transformers composed of stacked T_blocksU(H, dH , r) as:

ΩH,dH ,r
U = {gL ◦ · · · ◦ g1 : Rn×d → Rn×d | g1, · · · , gL ∈ T_blocksU(H, dH , r), L ∈ N∗}. (7)

Our goal is to investigate the requirements on Ah
U under which the induced function class ΩH,r

U can
become universal approximators of continuous sequence-to-sequence functions. We provide one
sufficient condition in the following theorem. Following Yun et al. [69] and many other previous
theoretical works [44, 24, 70], we study the expressiveness of a simplified version of Transformer
in which normalization layers are omitted, as it is widely believed that normalization mainly helps
optimization but does not hurt the expressive power of the network [32, 1].
Theorem 3. Given n, d ∈ N∗, p ∈ [1,+∞), ε > 0, a compact set D ⊆ Rn×d, and a continuous
sequence-to-sequence function f : D → Rn×d. Assume that Ah

U satisfies the following conditions:

• Attentive condition. For any u ∈ Rd×1 and c ∈ R, there exists a parametrization of Ah
U ,

such that Ah
U (X) = softmax

(
Xu(Xu− c1)⊤

)
.

• Position-aware condition. There exists a parametrization of Ah
U and a vector v ∈ Rn

whose entries are all distinct, such that Ah
U (X)1 = v for any X ∈ Rn×d.

Then there exists a Transformer network g ∈ Ω2,1,4
U such that

(∫
D ∥f(X)− g(X)∥ppdX

) 1
p < ε,

where ∥ · ∥p denotes the entry-wise ℓp norm for matrices.

The detailed proof of Theorem 3 can be found in Appendix A. Theorem 3 presents two conditions to
make RPE-based Transformers become universal approximators. Intuitively, the attentive condition
states that Ah

U should contain a special case of the original attention matrix in Eq.(1), where WQ =
WK ∈ RdH×d and dH = 1. The position-aware condition states that Ah

U needs to break the
limitation of A(X) being a right stochastic matrix (i.e., A(X)1 = 1 for all X ∈ Rn×d). We will
present a concrete example satisfying these conditions in the next subsection.

4.2 A Universal RPE-based Transformer

We develop a new Transformer variant which satisfies the conditions above. In particular, we multiply
the softmax attention matrix with another matrix, and obtain

AU(X) = softmax
(
XWQ(XWK)⊤ +B

)
⊙C, (8)

where ⊙ denotes entry-wise product. B can take any form described in Section 2. We refer to this
attention variant as Universal RPE-based Attention (URPE-based attention).

To make URPE-based attention rely relative positional information, we set C ∈ Rn×n to be a
learnable Toeplitz matrix in which each element on the descending diagonal from left to right has the
same value. Note that a Toeplitz matrix of shape n×n has 2n− 1 degrees of freedom. Therefore, we
only need 2n− 1 new parameters for each C. It can be proved that URPE-based Attention satisfies
the two conditions in Theorem 3 and the proof can be found in Appendix B.
Proposition 4. URPE-based Attention defined in Eq.(8) satisfies the conditions in Theorem 3.
Consequently, given n, d ∈ N∗, Transformers using this form of attention are universal approximators
of continuous sequence-to-sequence functions that map a compact domain in Rn×d to Rn×d.

To further improve parameter efficiency, we set C to be shared across different layers but to be unique
for each attention head. As an example, in Transformer-XL (see Section 5.2), we introduce only about

5



|V|=10 |V|=1,000 |V|=10,000
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Position Identification
noPE
RPE
URPE (ours)

|V|=10 |V|=1,000 |V|=10,000
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Even Token Prediction
noPE
RPE
URPE (ours)

Figure 1: Results on synthetic sequence-to-sequence tasks: (1) Position Identification (Left Panel);
(2) Even Token Prediction (Right Panel). |V | is the vocabulary size. The URPE-based Transformer
model consistently solves both tasks across different settings while other methods fail.
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Figure 2: Visualizations of the learned Universal RPE (matrix B and C in Eq.(8)). It can be easily
seen that the matrix B and C capture different aspects of positional information.

4K new parameters, which is negligible compared to the 151M parameters of the Transformer-XL
model but still leads to non-trivial improvements.

We make two more discussions for our designed URPE-based attention. The first one is about
applying URPE-based attention in the causal setting. Causal attention is important in language
generation tasks. URPE-based Attention is compatible with it as one can set the (i, j)-th entry of C to
be 0 for i > j. The second one is on the initialization of C. In practice, the matrix C can be initialized
as an all-one matrix. Therefore, the model behaves identically to the original RPE-based model at
initialization, and the additional parameters in C are learned gradually. We can also fine-tune any
well-trained RPE-based Transformer to its URPE-based counterpart by setting C as an all-one matrix
and further fine-tuning the model to learn C.

5 Experiments

In this section, we empirically study the effectiveness of the proposed model. In particular, we aim at
answering the following questions through experiments:

• Question 1: Can the theoretical results on the approximation capability of RPE-based
Transformer and URPE-based Transformer be reflected in certain experiments?

• Question 2: With different RPE methods (the matrix B in Eq.(8)), can URPE-based
Transformer outperform its RPE-based counterpart in real-world applications?

• Question 3: Can URPE-based Attention serve as a versatile module to improve the general
Transformers beyond language tasks?

We will answer each question with carefully designed experiments in the following sub-sections. Due
to space limitation, we only present results on representative model architectures, task types, and data
modalities in the main body of the paper. More results are presented in the appendix. All codes are
implemented based on the official codebases of Fairseq [50] and Graphormer [67] in PyTorch [51].

5.1 Synthetic Tasks

To empirically verify our theoretical results on the approximation capability of RPE-based Trans-
former and URPE-based Transformer, we design two synthetic tasks: 1) Position Identification; 2)
Even Token Prediction.
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Table 1: Language model perplexity scores on WikiText-103 validation and test set. We use ∗ to
indicate the best performance. All the results of the baseline methods are reported in [10]

Model #Params Valid Perplexity Test Perplexity

LSTM [21] - / 48.7
TCN [2] - / 45.2
GCNN-8 [11] - / 44.9
LSTM+Neural cache [21] - / 40.8
GCNN-14 [11] - / 37.2
QRNN [46] 151M / 33.0
Hebbian+Cache [53] - / 29.9

Transformer-XL Base [10] 151M 23.1 24.0
Transformer-XL Base + URPE-based Attention (ours) 151M 22.4∗ 23.2∗

Both Position Identification (PI) task and Even Token Prediction (ETP) task are sequence-to-sequence
prediction tasks. Given a sequence of tokens s = (w1, w2, · · · , wn) , the PI task is to predict the
position index of each token in the sequence, i.e., the target sequence-to-sequence function f to
approximate can be defined as

fPI(w1, w2, · · · , wn) = (1, 2, · · · , n) (9)

The ETP task is defined as follows: for the first half of positions in a sequence, the task requires
the model to output the input tokens at positions with even number index; for the remaining half of
positions, the task requires the model to output the special token End-Of-Sentence (EOS), i.e.,

fETP(w1, w2, · · · , wn) = (w2, w4, · · · , wn,EOS, · · · ,EOS) (10)

Both tasks require the model to accurately encode the positional information, which would be difficult
for RPE-based Transformers to capture. For both tasks, we use synthetic datasets with randomly
generated sequences. In detail, we vary the token vocabulary size from [10, 1000, 10000] and set
the sequence length to 128. We choose the vanilla Transformer as the base model and compare the
following ways to encode positional information: 1) no positional encodings (noPE); 2) T5-style
relative positional encoding (RPE) [54]; 3) URPE with T5-style RPE backbone Transformer. The
number of layers and the number of attention heads are set to 3 and 12, respectively. The hidden
dimension is set to 768.

Results. We use token-level accuracy as the evaluation metric. The experimental results are
shown in Figure 1. From the figure, it can be easily seen that the Transformer without PE and the
Transformer with T5-style RPE cannot perfectly solve the synthetic tasks (less than 60% accuracy).
On the contrary, the URPE-based Transformer achieves 100% accuracy on both tasks. Firstly, this
result clearly indicates that our proposed model outperforms the backbone T5-style RPE-based
Transformer by a large margin. Furthermore, we can see that even for such simple tasks, the
Transformer with T5-style RPE sometimes fails, while the URPE-based Transformer succeeds and
approximates the target function well, which is consistent with our theoretical findings. Lastly, we
provide visualizations of the learned Universal RPE (Eq.(8)) on both tasks in Figure 2, which show
that the matrix B and C capture different aspects of positional information.

5.2 Language Modeling

We use language modeling to study the effectiveness of the proposed URPE-based Attention. Lan-
guage modeling is an important practical application which usually requires the modelling of long-
term dependency between tokens. We conduct experiments on the WikiText-103 dataset [47], which
contains 103M training tokens from 28K articles, with an average length of 3.6K tokens per arti-
cle. Relative positional encoding methods are popularly used in language modelling. We choose
Transformer-XL model [10] as the backbone model of our URPE-based Transformer. Following [10],
the number of layers and the number of attention heads are set to 16 and 10 respectively. The
dimension of hidden layers and feed-forward layers are set to 410 and 2100. The detailed descriptions
of the baselines and training settings are presented in the appendix.
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Table 2: Mean Absolute Error (MAE) on ZINC test set. We use ∗ to indicate the best performance.

Model #Params Test MAE on ZINC-Subset Test MAE on ZINC-Full

GIN [66] 509,549 0.526±0.051 0.088±0.002
GraphSAGE [23] 505,341 0.398±0.002 0.126±0.003
GAT [62] 531,345 0.384±0.007 0.111±0.002
GCN [35] 505,079 0.367±0.011 0.113±0.002
MoNet [48] 504,013 0.292±0.006 0.090±0.002
GatedGCN-PE [5] 505,011 0.214±0.006 -
MPNN(sum) [20] 480,805 0.145±0.007 -
HIMP [17] 614,516 0.151±0.006 0.036±0.002
PNA [8] 387,155 0.142±0.010 -

GT [15] 588,929 0.226±0.014 -
SAN [37] 508,577 0.139±0.006 -

Graphormer [67] 489,321 0.122±0.006 0.052±0.005
Graphormer+URPE-based Attention (ours) 491,737 0.086±0.007∗ 0.028±0.002∗

Table 3: Results on PCQM4M from OGB-LSC. We use ∗ to indicate the best performance. The
results of the baselines are reported in [67, 29].

Model #Params Valid MAE

GCN [35] 2.0M 0.1691
GIN [66] 3.8M 0.1537
GCN-VN [35, 20] 4.9M 0.1485
GIN-VN [66, 20] 6.7M 0.1395
GINE-VN [6, 20] 13.2M 0.1430
DeeperGCN-VN [38, 20] 25.5M 0.1398

GT [15] 0.6M 0.1400
GT-Wide [15] 83.2M 0.1408

Graphormer [67] 12.5M 0.1264
Graphormer + URPE-based Attention (ours) 12.5M 0.1238∗

Results. We show the perplexity scores on both validation and test set of different models in Table
1. It can be easily seen that the Transformer-XL equipped with our URPE-based attention achieves
22.4 and 23.2 valid and test perplexity scores, respectively, which are 0.7 and 0.8 lower than the
backbone Transformer-XL model and also significantly better than other baselines. First, the results
suggest that our proposed URPE-based attention can be well applied to Transformer-XL in real-world
applications. Together with the observations in Section 5.1, we believe our URPE can be used in
other RPE-based architectures, such as [58, 26]. It is worth noting that our model has negligible
more parameters (about 4k) compared to the backbone Transformer-XL. Thus, the improvement in
the perplexity should be mostly attributed to the stronger expressiveness of the model.

5.3 Graph Learning

We further examine whether the proposed URPE-based Attention can serve as a versatile module to
improve the general RPE-based Transformers beyond language tasks. The Transformer-based models
have become increasingly popular in the graph learning area [67, 37, 15]. Among those models, the
recently proposed Graphormer [67] achieves state-of-the-art performance in many graph learning
tasks [68, 59]. In Graph Transformers, RPE is used rather than APE since RPE only calculates
distances between nodes, which naturally preserves many invariant and equivariant properties.

The attention computation in Graphormer also follows the Eq.(4) in Section 2. Specifically,
Graphormer calculates the shortest-path distance between any pair of nodes and encodes this in-
formation as a bias term in the softmax attention to reflect the relative position of any node in the
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Table 4: Comparison of RPE-based and UPRE-based Transformer-XL models of different sizes. We
report perplexity scores on WikiText-103 validation set. L denotes the number of layers.

Model L = 4 L = 8 L = 16

Transformer-XL 29.6 26.0 23.1
Transformer-XL + URPE-based Attention (ours) 28.7 25.2 22.4

Table 5: Inference Runtime (ms in log base 2) and Peak Memory Usage (GB) of RPE-based
Transformer and URPE-based Transformer. N denotes the input sequence length.

Model
Inference Runtime Peak Memory Usage

N = 128 N = 256 N = 512 N = 128 N = 256 N = 512

RPE-based Transformer 4.55 5.60 6.79 0.96 1.12 1.86
URPE-based Transformer (ours) 4.59 5.66 6.91 0.97 1.17 2.04

graph. We refer the readers to [67] for the detailed description of Graphormer. Similar to previous
experiments, we adapt the URPE-based Attention to the Graphormer and compare them on two
benchmark datasets covering graph representation learning tasks from small to large scale datasets:
ZINC from Benchmarking-GNNs [16] and PCQM4M from Open Graph Benchmark Large Scale
Challenge (OGB-LSC) [29]. For both tasks, we choose several competitive Transformer based models
and GNNs as our baselines. Details of the experimental settings are presented in the appendix.

ZINC. ZINC is a real-world dataset which consists of 250K molecular graphs. The task is to predict
the constrained solubility of a molecule which is an important chemical property for drug discovery.
We train our models on both the ZINC-Full and ZINC-Subset (12K selected graphs following [16]).
To demonstrate the power of our method and for fair comparison, we set the parameter budget of
the model to be less than 500K following [16, 67]. We build on the Graphormer [67] model which
consists of 12 layers. The dimension of hidden layers and feed-forward layers are set to 80. The
number of attention heads are set to 32.

PCQM4M. PCQM4M is a quantum chemistry regression task in OGB-LSC [29]. The PCQM4M
dataset contains more than 3.8 million molecular graphs in total, which is currently the largest
graph-level prediction dataset. The state-of-the-art architecture for this task is the Graphormer model
introduced above. We still follow [67] to set the hyper-parameters in the Graphromer model and
equip it with URPE. In detail, our Graphormer with URPE-based Attention consists of 6 layers and
32 attention heads. The dimension of hidden layers and feed-forward layers are set to 512.

Results. The experimental results on ZINC and PCQM4M are shown in Table 2 and 3, where
the score is averaged over four experiments with different seeds. It can be easily seen that the
Graphormer model equipped with our URPE-based Attention consistently outperforms the backbone
Graphormer model on both ZINC and PCQM4M tasks. In particular, our URPE-based Attention
enables the Graphormer model to reduce more than 40% relative mean absolute error on the test set of
ZINC-Subset and ZINC-Full. On the PCQM4M task, the improvement is around 0.003 mean absolute
error which is also a significant improvement under the quantum chemistry precision. It is worth
noting that our Graphormer model with URPE-based Attention achieves competitive performance
compared to the Graphormer Base model with 48.3M parameters reported in [67]. Therefore, we
believe our proposed architecture significantly improves the expressive power of the Transformer
backbones and can be well extended to practical scenarios beyond language tasks.

5.4 More Analyses

URPE-based Attention consistently improves the performance of models of different sizes. We
conduct ablation experiments on the Language Modeling task and vary the number of layers in [4, 8,
16] to investigate different model sizes. Following the experiment settings in Section 5.2, the number
of attention heads is set to 10. The hidden dimension is set to 41. The dimension of the feed-forward
layer is set to 2100. The results are presented in Table 4. It can be easily seen that our URPE-based
Attention consistently reduces the perplexity scores of Transformer-XL models of different sizes,
which indeed demonstrates the versatility of our URPE-based Attention.
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Runtime and Memory Usage Evaluation. We further conduct memory and time costs profiling
experiments on our URPE-based Transformers. We choose the vanilla Transformer as the backbone
model. The number of layers and the hidden dimension are set to 12 and 768 respectively. The
number of attention heads is set to 12. The batch size is set to 32. We vary the sequence length from
[128, 256, 512]. We run profiling of all the models on a 16GB NVIDIA Tesla V100 GPU. Following
Combiner [55], we compare the inference speed and memory costs of the vanilla Transformer with
RPE and our URPE. The results are presented in Table 5, which show that our URPE only increases
minor computational costs.

Summary. In this section, we design a series of experiments to answer the questions on the
effectiveness and applicability of the proposed URPE-based Attention. All the experimental results
suggest that our theoretical findings are convincing, and Transformers with our modification are
effective, powerful, and widely applicable across different tasks.

6 Related Work

Expressive power of Neural Networks. Quantifying the capacity of neural networks is an important
research direction in the literature on deep learning. [9, 19, 27, 4] showed that a neural network with
one hidden layer and unbounded width can approximate arbitrary continuous functions on compact
support with arbitrarily small error. Many works also studied the width efficiency on the expressive
power of neural networks [44, 24, 40] and proved that ReLU networks with a bounded width but
unlimited depth can achieve universal function approximation. Recently, there has been increasing
interest in the theoretical understanding of Transformer models. Yun et al. [69] theoretically showed
that Transformers can approximate any continuous sequence-to-sequence functions (i.e., universal
approximation) on a compact domain by proving that stacking of self-attention layers can compute
contextual mappings of the input embeddings. Dong et al. [13] analyzed the limitations of attention-
only Transformers without considering FFN blocks, normalizations, and skip connections. Hron et al.
[28] analyzed the behavior of multi-head attention and connect it with the Gaussian process when the
number of heads tends to be infinity. In [7], it is proved that a multi-head attention layer with enough
heads is at least as expressive as any convolution layer. All works above consider Transformers with
absolute positional encoding, which is the main difference between them and our work.

Positional encoding methods in Transformers. In [61], the vanilla Transformer encodes the
positional information via the absolute positional encoding (APE). Shaw et al. [58] is the first to
introduce relative positional encoding (RPE) to Transformer. From then on, many works explored
different RPE strategies based on [58]. Transformer-XL [10] re-parameterizes the self-attention to
integrate relative positional encoding and enables long sequence modelling. T5 [54] simplifies the
vector representations of relative positions to scalars. Kitaev et al. [36] disentangles the positional
and content information in the Transformer encoder, which leads to an improved constituency
parser. Ke et al. [33] further shows that such disentanglement also improves Transformer in general
language pre-training and achieves superior performance on various downstream tasks. There are also
works that encodes the positional information via other tools like trees [60], complex numbers [63],
dynamic systems [41], Fourier features [39]. Compared to most previous works inspired by practical
scenarios, our URPE-based attention is theoretically motivated by investigating the expressive power
of RPE-based Transformers in a principled way.

7 Conclusion

In this paper, we first investigate the theoretical aspect of the RPE-based Transformers. In particular,
we study their expressive power and provide a surprising theoretical finding which shows that widely-
used Transformers with RPE are not universal function approximators. To design a more powerful
RPE-based Transformer, we present sufficient conditions on the attention module to achieve universal
function approximation and develop a novel Universal RPE-based Transformer using a new relative
positional encoding approach. We conduct carefully designed experiments on synthetic sequence data,
natural language, and graphs to show that our model brings consistent performance gains compared
with existing RPE-based Transformers. In the future, we will benchmark our Universal RPE on
other RPE-based Transformers and typical tasks to further verify its versatility as a basic module for
Transformer-based models.
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A Proof of Theorem 3

In this section, we provide the proof of the Theorem 3. First, we define a modified version of
Transformer blocks, which will be used in the subsequent proof. Then we present a few technical
lemmas. Finally, this section is completed with the proof of Theorem 3.

A.1 Modified Transformer blocks

Following [69, 70], we use a modified version of Transformer blocks in our construction first,
and show that such modified Transformer blocks can be approximated by the originally defined
T_blocksU up to arbitrary precision.
Definition 5 (Modified Transformer blocks). A modified Transformer block is defined as a composi-
tion of modified self-attention layer Attnm and modified feed-forward layer FFNm, where

Attnm(X) = X +

H∑
h=1

Ah(X)XW h
V W

h
O; (11)

FFNm(X) = X + ϕ(XW1)W2. (12)

In Eq.(11), the attention matrix Ah
U (X) = hardmax

(
Xu(Xu− c1)⊤

)
, where u ∈ Rd×1 and

c ∈ R are learnable parameters. Thus it expresses the hard attention operation.

In Eq.(12), the activation ϕ is a (possibly discontinuous) piece-wise linear function with at most three
pieces.

We denote the function class of modified Transformer blocks by T_blocksm(H, dH , r).

A nice property of the modified Transformer blocks is that compositions of modified Transformer
blocks can be approximated by compositions of the originally defined T_blocksU up to arbitrary pre-
cision, which is proved in Lemma 9 of [69]. Another important property of the modified Transformer
blocks is that they can implement the following “selective shift” operator:
Lemma 6. For any real numbers a, bQ and b′Q satisfying bQ < b′Q and a vector z ∈ Rd, there exists
g ∈ T_blocksm(2, 1, 1) such that g(X) = X + aΨ(X; bQ, b

′
Q), where

Ψ(X; bQ, b
′
Q)i,1 =

{
max

k
Xkz −min

k
Xkz bQ < Xiz < b′Q,

0 otherwise
(13)

Ψ(X; bQ, b
′
Q)i,j = 0 (j ≥ 2), (14)

and Xk denotes the k-th row of X .

The proofs of Lemma 6 can be found in [69].

A.2 Input quantization

In this subsection, we show how to quantize any input X ∈ [0, 1]n×d to a δ-grid point in {0, δ, . . . , n−
δ}n×d. In fact, the quantization procedure can be conducted with d

δ modified Transformer blocks.

Lemma 7. Consider an entry-wise quantization mapping defined as gentry1 (t) = δ⌊ t
δ ⌋. There exists a

function g1 : [0, 1]d×n → Rd×n composed of d
δ modified Transformer blocks in T_blocksm(2, 1, 1),

which implements the entry-wise quantization mapping gentry1 over each entry of its input.

Proof. For each column in the input X ∈ Rn×d, we show how to use 1
δ stacked modified feed-

forward layers to quantize it while keeping all the other columns untouched. For the r-th row, we use
1
δ layers of the following form, in which the k-th layer is:

FFNm(X) = X + ϕ(Xe(r) − kδ1n)e
(r)⊤, (15)

where e(r) = (0, · · · , 0, 1, 0, · · · )⊤ is the r-th d-dimensional one-hot vector and ϕ(t) = −t10≤t<δ

is a piece-wise linear activation function.
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Therefore, we can construct d
δ modified Transformer blocks, where the modified self-attention layers

express the identity mapping, and the
(
r−1
δ + k

)
-th modified feed-forward layer is defined as Eq.(15),

to implements the entry-wise quantization mapping gentry1 .

A.3 Injecting positional information with the position-aware condition

In this subsection, we introduce new techniques to leverage the position-aware condition defined in
Theorem 3 and inject positional information into the Transformer block. Note that the new techniques
we use are non-trivial since we do not rely on any explicit absolute positional encoding in the
definition of the position-aware condition.
Lemma 8. Assume H, dH , r ∈ N∗ and that Ah

U satisfies the position-aware condition defined in The-
orem 3. Then there exists u = (u1 · · · un)

⊤ ∈ Rn and a Transformer block g2 ∈ T_blocksU(2, 1, 4)
such that

• |ui − uj | > 1 for any i ̸= j;

• g1(X) = X +U , where U = u1⊤
d and 1d is a d-dimensional all-one vector.

Proof. By leveraging the position-aware condition, we can construct a self-attention layer such that
the attention matrix in each head satisfies Ah

U (X)1 = v, where v ∈ Rn is a row vector with n
distinct entries.

We rewrite the generalized self-attention layer (Eq.(6)) with explict bias term as

AttnU(X) = X +

H∑
h=1

(
Ah

U(X)(XW h
V + chV 1)

)
W h

O + 1ch⊤O , (16)

where W h
V ∈ Rd×1, W h

O ∈ R1×d, chV ∈ R and ch⊤O ∈ Rd (note that dH = 1 and H = 2 in this
lemma). To obtain the desired mapping g2, we set

W h
V = 0, W h

O = 1⊤
d , c

h
V = 1/min

i ̸=j
|vi − vj |, ch⊤O = 0 (h = 1, 2). (17)

Assume that u = (u1 · · · un)
⊤ = Hc1V v. Then u is an n-dimensional vector in which |ui−uj | > 1

for any i ̸= j. Besides, we have

H∑
h=1

(
Ah

U(X)(XW h
V + chV 1)

)
W h

O + 1ch⊤O =


u1 u1 · · · u1

u2 u2 · · · u2

...
...

...
un un · · · un

 = U . (18)

Finally, we set all the learnable parameters in the subsequent feed-forward layer to be 0. In this case,
the feed-forward layer is equivalent to an identity mapping due to the skip connection. Therefore,
g2(X) = FFN(AttnU(X)) = X +U .

With the position-aware condition satisfied, the Lemma 8 indeed shows that the positional information
can be injected into the (quantized) input X and further be fed into the subsequent Transformer
blocks, since U is composed of n distinct rows which help to distinguish each position.

A.4 Contextual mapping with the attentive condition

In this subsection, we follow [69, 70] to show that the modified attention layer with the (hard) attentive
condition can implement “contextual mapping” defined in [69] and achieves universal approximation.

The concept of “contextual mapping” is defined as below.
Definition 9 (Contextual mapping [69]). Consider a finite set L ⊂ Rn×d. A map q : L → Rn defines
a contextual mapping over L if and only if the map satisfies the following properties:

• For any L ∈ L, the entries of q(L) are all distinct.
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• For any L,L′ ∈ L satisfying L ̸= L′, all entries of q(L) and q(L′) are distinct.

With this concept, we present the following lemma:
Lemma 10. Assume n and δ−1 are two positive integers and that n, δ−1 ≥ 2. Suppose that the
matrix U = u1⊤

d , where u is an n-dimensional vector satisfying |ui − uj | > 1 for any i ̸= j. Then,
there exist a function g3 : {0, δ, 2δ, · · · , 1}n×d → Rn×d composed of stacked modified attention
blocks, and a vector z ∈ Rd, such that the mapping q(X) = g3(X +U)z is a contextual mapping
over {0, δ, 2δ, · · · , 1}n×d.

Proof. This proof mainly follows and extends the technique in [69].

We sort the entries in u and define u(1) < · · · < u(n) to be a permutation of (u1, · · · , un). Without
the loss of generality, we assume that u(n) = un.

Define z = (1, δ−1, · · · , δ−d)⊤ and sr = u(r)

d−1∑
k=0

δ−k.

By leveraging Lemma 6, we construct nδ−d modified Transformer blocks, where the (rδ−d + k)-
th block express the mapping X 7→ X + Ψ

(
X; sr + kδ − δ

2 , sr + kδ + δ
2

)
for 0 ≤ r < n and

0 ≤ k < δ−d. Given an input X , we denote the output of these stacked layers by X̃ . With a similar
argument to that in Lemma 6 of [69], one can show that the mapping from (X1z X2z · · · Xnz)

to X̃nz is one-to-one.

Finally, we add an extra modified Transformer block, in which the modified feed-forward layer
expresses an identity mapping, and the modified self-attention layer is

Attnm(X) = X +
(
Xu(Xu)⊤

)
Xu(nδ−(n+1)d−1e(1)⊤).

Note that we only use one attention head here and all the parameters in the other attention head are
set to 0. This block shifts all the layers by nδ−(n+1)d−1X̃nz, and ensures that any input X would
be mapped to a unique number q(X), thus implementing a contextual mapping.

A.5 Function value mapping via FFN

Once obtaining a contextual mapping, we can use stacked feed-forward layers to implement the
function value mapping and obtain the desired sequence-to-sequence function.
Lemma 11 (Lemma 8 in [70]). Given δ > 0 a mapping h : Rn×d → Rn×d and assume there exists a
vector u such that the mapping q(X) = h(X)z is a contextual mapping over {0, δ, 2δ, · · · , 1}n×d.
Then for any f : Rn×d → Rn×d, there exists a function g4 : Rn×d → Rn×d which is compositions
of modified Transformer blocks in T_blocksm(2, 1, 1), such that

g4(h(X)) = f(X) (∀X ∈ {0, δ, 2δ, · · · , 1}n×d).

A.6 Finishing the Proof of Theorem 3

With the preparations in the previous subsections, we present the proof of Theorem 3.

Proof. Without the loss of generality, assume that D ⊆ [0, 1]n×d. Applying the Tietze extension
theorem [18], one obtain an extended mapping f : [0, 1]n×d → Rn×d. Therefore, it suffices to prove
the theorem for any continuous sequence-to-sequence f : [0, 1]n×d → Rn×d.

Suppose δ is a positive real number such that δ−1 ∈ Z. Applying Lemma 7, Lemma 8, Lemma
10 and Lemma 11, we obtain g̃1 (the quantization mapping), g2 (the positional mapping), g̃3 (the
contextual mapping) and g̃4 (the function value mapping), such that

g̃4 ◦ g̃3 ◦ g2 ◦ g̃1(X) = f(X) (∀X ∈ {0, δ, 2δ, · · · , 1}n×d). (19)

Note that g2 is an originally defined generalized Transformer blocks in T_blocksU(2, 1, 4), while
g̃1, g̃3 and g̃4 are all compositions of modified Transformer blocks in T_blocksm(2, 1, 1). Applying

18



Lemma 9 in [69], there exist compositions of originally defined generalized Transformer blocks g1,
g3 and g4, such that (∫

D
∥g(X)− g̃(X)∥ppdX

) 1
p

<
ε

2
, (20)

where g = g4 ◦ g3 ◦ g2 ◦ g1 ∈ Ω2,1,4
U and g̃ = g̃4 ◦ g̃3 ◦ g2 ◦ g̃1.

Define g̃ as a piece-wise linear approximation of f , such that f(X) = f̄(X) for any X ∈
{0, δ, 2δ, · · · , 1}n×d. Then, by choosing δ to be sufficiently small, we have(∫

D
∥f(X)− g̃(X)∥ppdX

) 1
p

<
ε

2
. (21)

The proof is completed by combining Eq.(20) and (21).

B Proof of Proposition 4

Proof. Recall that the Universal RPE-based Attention is defined as

AU(X) = softmax
(
XWQ(XWK + 1c⊤K)⊤ +B

)
⊙C, (22)

where 1 is an n-dimensional all-one vector and 1c⊤K is the omitted bias term in Eq.(8). It suffices to
show that AU defined in Eq.(22) satisfies the two conditions in Theorem 3.

Attentive condition. Note that the all-one matrix 11⊤ is a Toeplitz matrix by definition. There-
fore, we can set WQ = WK = u, cK = c and C = 11⊤, and obtain Ah

U (X) =
softmax

(
Xu(Xu− c1)⊤

)
.

Position-aware condition. First we set C as a upper triangular Toeplitz matrix:

C =


1 1 · · · 1
0 1 · · · 1
...

...
...

0 0 · · · 1

 (23)

Then we set WQ = WK = cK = 0. It’s also easy to see that for any parametrization of B descibed
in Section 2, we can force B = 0 by properly setting all the learnable parameters to 0. In this case,
for any X ∈ Rn×d we have

softmax
(
XW h

Q(XW h
K + 1c⊤K)⊤ +B

)
=

1

n
11⊤; (24)

⇒ Ah
U (X)1 =

1

n
C1 =

(
1 n−1

n · · · 1
n

)⊤
. (25)

To sum up, AU defined in Eq.(22) satisfies the two conditions in Theorem 3, which completes the
proof.
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C Experiments

C.1 Synthetic Tasks
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Figure 3: Results on the Position Identification task with input sequences with different lengths: (1)
Sequence length n = 256 (Left Panel); (2) Sequence length n = 512 (Right Panel). With input
sequences with different lengths, our URPE-based Transformer model consistently solves the task
while other methods fail.

Baselines. We choose the vanilla Transformer as the base model and compare the following ways
to encode positional information: (1) no positional encodings (noPE); (2) T5-style relative positional
encoding (RPE) [54]; (3) URPE with T5-style RPE backbone Transformer.

Settings. For both the Position Identification (PI) and Even Token Prediction (ETP) tasks mentioned
in Section 5.1, we use synthetic datasets with randomly generated sequences. In detail, we vary the
token vocabulary size from [10, 1000, 10000] and set the sequence length to 128. The number of
layers and the number of attention heads are set to 3 and 12, respectively. The hidden dimension is set
to 768. We use Adam [34] as the optimizer, and set its hyperparameters ϵ to 1e− 8 and (β1, β2) to
(0.9, 0.999). The peak learning rate is set to 7e− 5 with a 6K-step warm-up stage. After the warm-up
stage, the learning rate decays linearly to zero. The model is trained for 40K steps in total with the
batch size as 512. We set the dropout probability, gradient clip norm and weight decay to 0.0. All
models are trained on 4 NVIDIA Tesla V100 GPUs.

Ablation Study on the length of input sequences. To comprehensively investigate the approxima-
tion capability of RPE-based Transformer and our URPE-based Transformer, we vary the sequence
length in [256, 512] on the Position Identification task. The results are presented in Figure 3. Together
with the results in Figure 1, we can see that our URPE-based Transformer consistently achieves
100% accuracy, while the Transformer without PE and the Transformer with T5-style RPE perform
worse when the task becomes more difficult (i.e., the input sequences become longer). The above
results serve as further evidences that our URPE-based Transformer is consistent with our theoretical
findings in Section 4.

C.2 Language Modeling

Baselines. We choose the Transformer-XL as the base model and compare the following ways
to encode positional information: (1) Transformer-XL style relative positional encoding [10]; (2)
URPE with Transformer-XL style RPE backbone model. Besides, we also include results of several
competitive sequence models: (1) LSTM [21]; (2) Temporal Convolutional Network (TCN) [2];
(3) Gated Convolutional Neural Network (GCNN) [11]; (4) LSTM with Neural Cache [21]; (5)
Quasi-Recurrent Neural Network [46]; (6) Hebbian Learning with Neural Cache [53].

Settings. We conduct experiments on the WikiText-103 dataset [47], which contains 103M training
tokens from 28K articles, with an average length of 3.6K tokens per article, which allows testing the
ability of long-term dependency modeling. We build our model based on the Transformer-XL Base
model which consists of 16 decoder layers. The number of attention head is set to 10. The hidden
dimension is set to 41. The dimension of feed-forward layer is set to 2100. The dropout ratio and the
weight decay are set to 0.1 and 0.01, respectively. We use Adam [34] as the optimizer, and set its
hyperparameters ϵ to 1e− 8 and (β1, β2) to (0.9, 0.999). The peak learning rate is set to 2.5e− 4.
The total training steps is set to 200K. All models are trained on 4 NVIDIA Tesla V100 GPUs.
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C.3 Graph Learning

We conduct experiments on three benchmark datasets covering graph and node representation
learning tasks from small to large scale datasets: ZINC from Benchmarking-GNNs [16], PCQM4M
and MAG24M from Open Graph Benchmark Large-Scale Challenge (OGB-LSC) [29].

C.3.1 ZINC

ZINC is a real-world dataset which consists of 250K molecular graphs. The task is to predict the
constrained solubility of a molecule which is an important chemical property for drug discovery. We
train our models on both the ZINC-Full and ZINC-Subset (12K selected graphs following [16]).

Baselines. To demonstrate the power of our method and for fair comparison, we set the param-
eter budget of the model to be less than 500K following [16, 67]. We include results of several
competitive GNNs: (1) Graph Isomorphism Network (GIN) [66]; (2) GraphSAGE [23]; (3) Graph
Attention Network (GAT) [62]; (4) Graph Convolutional Network [35]; (5) Mixture Model Net-
work (MoNet) [48]; (6) Gated Graph Convolutional Network [5] with Positional Encodings [16]
(GatedGCN-PE); (7) Message Passing Neural Network (MPNN(sum)) [20]; (8) Hierarchical Inter
Message Passing (HIMP) [17]; (9) Principal Neighbourhood Aggregation (PNA) [8]. Two repre-
sentative Transformer-based models GraphTransformer (GT) [15] and Spectral Attention Network
(SAN) [37] are also compared.

Settings. We build on the Graphormer [67] model which consists of 12 layers. The dimension
of hidden layers and feed-forward layers are set to 80. The number of attention heads are set to
32. The batch size is selected from [128, 256, 512]. We use Adam [34] as the optimizer, and set
its hyperparameter ϵ to 1e− 8 and (β1, β2) to (0.9, 0.999). The peak learning rate is selected from
[4e− 4, 5e− 4]. The model is trained for 600k and 800k steps with a 60K-step warm-up stage for
ZINC-Subset and ZINC-Full respectively. After the warm-up stage, the learning rate decays linearly
to zero. The dropout ratio is selected from [0.0, 0.1]. The weight decay is selected from [0.0, 0.01].
All models are trained on 4 NVIDIA Tesla V100 GPUs.

C.3.2 PCQM4M

PCQM4M is a quantum chemistry regression task in OGB-LSC [29]. The PCQM4M dataset contains
more than 3.8 million molecular graphs in total, which is currently the largest graph-level prediction
dataset. The state-of-the-art architecture for this task is the Graphormer [67] model introduced above.

Baselines. Following [67], we include results of several competitive baselines: (1) Graph Con-
volutional Network [35]; (2) Graph Isomorphism Network (GIN) [66]; (3) Graph Convolutional
Network [35] with Virtual Node [20]; (4) Graph Isomorphism Network [66] with Virtual Node [20];
(5) Graph Isomorphism Network with Edge feature and Virtual Node (GINE-VN) [6, 20]; (6) Deeper
Graph Convolutional Network (DeeperGCN) [38]; (7) GraphTransformer [15].

Settings. To demonstrate the power of our method and for fair comparison, We set the parameter
budget of the model to be less than 12.5M. We still follow [67] to set the hyper-parameters in the
Graphromer model and equip it with URPE. In detail, our Graphormer with URPE-based Attention
consists of 6 layers and 32 attention heads. The dimension of hidden layers and feed-forward layers
are set to 512. The batch size is 512. We use Adam [34] as the optimizer, and set its hyperparameters
ϵ to 1e−8 and (β1, β2) to (0.9, 0.999). The peak learning rate is set to 3e−4. The model is trained for
1M steps with a 60k-step warm-up stage. After the warm-up stage, the learning rate decays linearly
to zero. The dropout ratio for the input embedding, attention matrix and the hidden representation are
set to 0.0, 0.1, 0.0 respectively. The weight decay is set to 0.0. All models are trained on 8 NVIDIA
Tesla V100 GPUs.

C.3.3 MAG240M

The MAG240M dataset contains a large-scale heterogeneous academic graph with more than 240
million nodes and 1.7 billion edges. This giant graph is extracted from the Microsoft Academic
Graph (MAG) [64]. Given arXiv papers situated in the heterogeneous graph, the task requires the
model to automatically annotate the topics of those papers, i.e., predicting the primary subject area of
each arXiv paper. Thus, it can be formulated as a node representation learning task.
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Table 6: Results on MAG240M from OGB-LSC. We use ∗ to indicate the best performance. The
results of the baselines are reported in [29].

Model #Params Valid Acc

MLP [29] 0.5M 0.5267
LabelProp [29] 0 0.5844
SGC [65] 0.7M 0.6582
SIGN [56] 3.8M 0.6664
MLP+C&S [31] 0.5M 0.6698
GraphSAGE [23] 4.9M 0.6679
GAT [62] 4.9M 0.6715

R-GraphSAGE [23, 57] 12.2M 0.6986
R-GAT [62, 57] 12.3M 0.7002

Graphormer [67] 11.0M 0.7013
Graphormer + URPE-based Attention (ours) 11.0M 0.7074∗

Baselines. We include results of several competitive baselines: (1) graph-agnostic MLP (MLP) [29];
(2) Label Propagation [29]; (3) Simplified Graph Convolution [65]; (4) Scalable Inception Graph
Neural Network (SIGN) [56]; (5) MLP with Correct and Smooth Procedure (MLP+C&S) [31];
(6) GraphSAGE [23]; (7) Graph Attention Network [62]. Due to the heterogeneous property of
the academic graph, we also choose two baselines from [29] which learn distinct weights for each
individual relational type: R-GraphSAGE [23, 57] and R-GAT [62, 57].

Settings. To demonstrate the power of our method and for fair comparison, We set the parameter
budget of the model to be less than 12.5M. We build on the Graphormer [67] model which consists
of 6 layers. The dimension of hidden layers and feed-forward layers are set to 512. The number of
attention heads are set to 32. The batch size is 1024. We use Adam [34] as the optimizer, and set its
hyperparameter ϵ to 1e− 8 and (β1, β2) to (0.9, 0.999). The peak learning rate is set to 3e− 4. The
model is trained for 100k steps with a 6k-step warm-up stage. After the warm-up stage, the learning
rate decays linearly to zero. The dropout ratio and the weight decay is set to 0.5 and 0.01 respectively.
We also employ the stochastic depth [30] and set the probability to 0.1. We follow the sub-graph
sampling strategy from [29]. All models are trained on 32 NVIDIA Tesla V100 GPUs.

Results Table 6 summarizes performance comparisons on MAG240M dataset. It can also be easily
seen that the URPE-based Attention consistently improve the performance of the Graphormer model
on the MAG240M node classification task. The validation accuracy of the Graphormer model is
improved by 0.06, which is currently the state-of-the-art single model performance on the leaderboard
of MAG240M dataset.

C.4 URPE-based Transformers v.s. Transformers with both APE and RPE

We conduct experiments on the Language Pre-training task to evaluate different positional encoding
strategies. It is worth noting that in some competitive pre-training methods like UniLMv2 [3], APE
and RPE have already been used together. Thus, we choose this task as the benchmark. We mainly
test three model variants: Transformers with both APE and RPE, Transformers with RPE only, and
our URPE-based Transformers. For all the models, RPE is set to the T5 [54] version, following
UniLMv2. We roughly keep the number of parameters of different models to the same and train the
models in the BERT-base setting using the same hyper-parameters. We choose the validation loss
(masked language modeling loss after 1M iterations on a hold-out validation set) in the pre-training
stage as the metric. We observed that the validation losses of the Transformers with both APE
and RPE, Transformers with RPE only, our URPE-based Transformers are 1.86, 1.94, and 1.87,
respectively. The results show that our URPE Transformer is competitive with Transformers with
both APE and RPE and is much better than Transformers with RPE only. Together with the above
observations on the synthetic dataset in Section 5.1, we can see that URPE is competitive or even
superior to previous APE and RPE or their combinations.
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