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Abstract

Conventional Federated Learning (FL) systems inherently assume a uniform pro-
cessing capacity among clients for deployed models. However, diverse client
hardware often leads to varying computation resources in practice. Such system
heterogeneity results in an inevitable trade-off between model complexity and
data accessibility as a bottleneck. To avoid such a dilemma and achieve resource-
adaptive federated learning, we introduce a simple yet effective mechanism, termed
All-In-One Neural Composition, to systematically support training complexity-
adjustable models with flexible resource adaption. It is able to efficiently construct
models at various complexities using one unified neural basis shared among clients,
instead of pruning the global model into local ones. The proposed mechanism
endows the system with unhindered access to the full range of knowledge scattered
across clients and generalizes existing pruning-based solutions by allowing soft
and learnable extraction of low footprint models. Extensive experiment results on
popular FL benchmarks demonstrate the effectiveness of our approach. The result-
ing FL system empowered by our All-In-One Neural Composition, called FLANC,
manifests consistent performance gains across diverse system/data heterogeneous
setups while keeping high efficiency in computation and communication.

1 Introduction

The success of deep learning is greatly empowered by the large datasets [1, 2]. However, when data
is scattered across a vast number of edge devices, and subject to privacy regulations, deep learning
will be unrealistic. To this end, Federated Learning (FL) [3, 4] provides a decentralized solution,
enabling a number of participants to jointly train a model without exchanging any raw data. Due to
such privacy-preserving property, FL is favorable and widely adopted in many applications [5, 6, 7, 8,
9, 10], including but not limited to face recognition [11], autonomous driving [12] and next-word
prediction [13].

When designing federated learning systems [14, 15, 16, 3, 17, 18], it is commonly assumed that
the local models share the same architecture as the global one. However, real-world deployments
can rarely satisfy this ideal assumption. Instead, participants in the wild often equip with diverse
devices (e.g., Internet of Things (IoT) devices, mobile phones, tablets and personal computers), which
greatly vary in computation resource budgets (including computation capacity, memory, storage,
and network bandwidth). Further, even if participants equip with identical devices, the resource
budgets may still vary due to e.g., other irrelevant programs consuming an arbitrary portion of the
resource, or reduced CPU frequency due to power-saving mode. This ubiquitous presence of system
heterogeneity becomes a major bottleneck for real-world FL applications, as it leads to an inevitable
trade-off between model complexity and data accessibility – service providers have to either sacrifice
model capacity to enable training on indigent devices, or exclude them along with their unique data.
Predictably, in such a dilemma, both choices will eventually harm the performance of the resulting
model.
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Figure 1: Comparison of different system-heterogeneous strategies. Schematics are demonstrated
using one hidden layer on two different types of devices A and B. (a) HeteroFL [19] and FjORD [20]
prune excessive parameters to adapt to a smaller device. In this case, a large portion (more than 90%)
of parameters between 0.25× and 1.0× nets cannot learn from the data on devices type B. (b) our
approach allows all parameters to leverage and learn from the full range of data.

The existing FL methods with heterogeneous clients, e.g.,HeteroFL [19] and FjORD [20] propose
to modify the width of deep neural networks, i.e., to extract low-footprint sub-models by pruning
excessive channels. However, we find their performance improvement is inconsistent, which could be
even worse than naively deploying the weakest network with the vanilla FedAvg [15]. As shown in
Figure 1, we use an FL setting with two types of devices A and B, where the high-end device type
A takes up 25% clients and can run the full model (1.0× in terms of the model width), while the
low-end device type B takes up the majority (75%) of participants but can only afford 0.25× of the
full model. A counter-intuitive result is observed with standard ResNet-18 [21] and CIFAR10 [22]
dataset: the Top-1 accuracy of both methods decrease from 86% to 84% when increasing model
capacity from 0.25× to 1.0×. Based on this, we conjecture that the extra 0.75× network capacity
does not benefit from all participants’ knowledge. Even if all participants contribute to the same
global model, pruning in fact limits the contribution of weakest devices to merely the 0.25× network,
leaving the majority of parameters under-optimized. This can be even more severe when there is data
heterogeneity, where inadequately trained parameters may lead to poor generalization against unseen
classes, and hence worse the overall performance.

Given heterogeneous devices, how to unleash the full potential of resource capacity without sacrificing
data accessibility? In this paper, we propose All-In-One Neural Composition, a new scheme for
run-time resource-adaptive model construction, which formulates networks at different capacities
(thus footprint and data transfer cost) as linear combinations of one unified set of parameters, namely
neural basis. It is designed to be compact, and regularized to be linearly independent, and hence is
efficient in training and communication, as well as more faithful model constructions. With such
scheme incorporated, the resulting FL framework (called FLANC) provides systematic support
for training complexity-adjustable neural networks, and thus enables efficient and more effective
resource-adaptive federated learning. Different from pruning-based methods [19, 20], it makes
knowledge contribution from clients to model parameters unhindered from both computational
resource constraints and model architectural complexity. Our method can be seen as a generalization
of existing solutions by extending hard-coded weight masks to soft and learnable extractions of
lower footprint models. In addition, similar to previous approaches [19, 20], original models can be
pre-composed for inference and executed as normal networks without any run-time overhead.

To validate our approach, we conduct extensive experiments under both statistical data heterogeneity
(IID and non-IID distribution) and system heterogeneity (static and dynamic) settings. We evaluate
our method on commonly used datasets, i.e., Fashion-MNIST [23], CIFAR10 and CIFAR100 [22] for
image classification, as well as Shakespeare [24] for next-character prediction. Although the proposed
mechanism is simple in its formulation, it is stable in training, while consistently and significantly
outperforming the previous system-heterogeneous strategies [19, 20] across different architectures.

2 The Proposed Method

2.1 System Heterogeneity

As aforementioned, conventional FL systems assume a uniform processing capacity for all participants.
Nevertheless, edge devices in the wild often equip with diverse hardware and may have very different
computational resources and data transfer budgets. Thus, it is crucial to properly model system
heterogeneity. When reflecting this concept to the deep networks, resource constraints can be
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Figure 2: All-In-One Neural Composition using the shared neural basis Vshare and capacity-specific
tensor Up. Note, in the rightmost reshaping operation, Sp = R1 × Sp/R1.

expressed in multiple aspects, such as depth (number of layers) and width (number of hidden
channels). In this paper, we follow [19, 20] and choose to adjust width for resource adaptation.
Compared to reducing depth, a reduction in width can more effectively reduce parameters and
memory footprint during inference, which is beneficial to the edge devices. Meanwhile, the resulting
networks belong to the same model class and share similar intrinsic characteristics, which is preferred
for stabilizing training and model aggregation [19, 20, 25, 26].

We denote the ratio p as a rescaling factor of the number of active channels in a layer W ∈ RS×T .
Both the model size and computational cost of a slimmer p-width model will be reduced by p2. To
model device in the wild, one can assign each device k with a maximum affordable capacity ratio
pk according to its hardware configuration. Since it is impractical to exhaustively list all possible
values of p due to the diversity of edge devices1, we consider a set of representative capacities P
(e.g. {0.25, 0.5, 0.75, 1}) by pre-clustering participating devices into |P| resource groups according
to their capacity.

2.2 All-In-One Neural Composition

Previous research suggests that the weights of fully-connected and convolution layers are usually
over-parameterized, and lie on a low-rank subspace [27]. This makes it possible to express these
layers in the low-rank tensor format using decomposition techniques [28, 29]. Given a convolution
weight W k2×S×T with filter size k, input channel number S and output channel number T , we can
approximate it as W = V · U with V ∈ Rk2×S×R, U ∈ RR×T , and R ≤ T . The factorization for
fully-connected layer is equivalent as the k = 1 case. Such low-rank approximation is effective for
model compression in order to reduce model size and computation cost [30, 31, 32, 33]. Similarly,
we speculate federated learning with system heterogeneity could benefit from tensor decomposition.

Thus, we introduce All-In-One Neural Composition, that employs low-rank approximation to repre-
sent networks in different widths with a unified expression. For an arbitrary p-width network, we
decouple its weight Wp ∈ Rk2×Sp×Tp as a shared tensor Vshare and capacity-specific tensor Up, i.e.,

Wp ≈ Vshare · Up (1)

However, Eq. (1) cannot be directly used as varying p not only changes the output channel but
also rescales the input channel S by p, which makes sharing Vshare of default shape k2 × S × R
inapplicable. We address this issue by adjusting Vshare to be more fine-grained. We demonstrate
this process in Figure 2. Specifically, given Vshare with shape k2 ×R1 ×R2, we select R1 from the
common divisors of all possible input channel Sp with p ∈ P . Correspondingly, the capacity-specific
tensor Up has the shape R2 × (Sp/R1 × Tp). Their multiplication result is a reshaped weight matrix
W p ∈ Rk2×(R1×Sp/R1)×Tp and can be used for the original p-width network.

Eq. (1) in fact means to compose Wp with a shared basis Vshare and coefficients Up through linear
combination. Specifically, every weight fragment Wi,p ∈ Rk2×R1 of W p is explicitly written as the
weighted sum of R2 bases Vshare = {Vj |j ∈ {1, . . . , R2}} with coefficients Ui,p, i.e.,

Wi,p =

R2∑
j=1

uj,i,pVj (2)

where Ui,p is the i-th column of Up, and Vj ∈ Rk2×R1 is the j-th basis vector in Vshare.

1For example, there are 24,000 unique Android devices by 2015.
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Eq. (2) reveals an outstanding property that the knowledge learned by Vshare can be propagated to all
parameters. In the context of FL, this enables every parameter to access the full range of knowledge
by training the basis Vshare on all devices. In addition, our formulation also reduces both computation
and communication cost as the low-rank tensor format is inherently more efficient.

Comparison to low-rank model compression. Low-rank factorization is generally applied as a
post-processing step to the pre-trained weights for model compression [34, 28, 30, 29]. Most methods
produce a single compressed model and require access to the labelled data for fine-tuning. Hence,
in the context of FL, the standard compression techniques neither address system heterogeneity nor
reduce the footprint and data transfer cost, because they are only applied after the training process.
Moreover, the requirement of fine-tuning is often infeasible for privacy-preserving applications. In
contrast, our method is applied during the training process, and is able to flexibly construct multiple
networks and can be stably learned from scratch without post-calibration.

Comparison to pruning-based FL strategies. Current system-heterogeneous strategies [19, 20]
are pruning-based and can be viewed as a specific instantiation of Eq. (1), by setting Vshare to the
largest weight Wpmax and the coefficients Up to be a hard-coded mask with 0 and 1 entries, indicating
whether a parameter is pruned or not. From this viewpoint, our method generalizes existing solution
by allowing (1) a more compact basis Vshare, which ensures high efficiency and reduces data transfer
cost; and (2) learnable soft coefficients Up, which makes both access to the full range of knowledge
and adaptive utilization possible. Namely, unlike pruning-based methods [19, 20] where the excluded
parameters cannot benefit from data on smaller devices, our approach enables every parameter at all
width p ∈ P to leverage the full range of knowledge from all clients, no matter whether it can be
trained on that device or not.

2.3 Orthogonal Regularization for Enhancing Representation Capacity

The low-rank tensor format of Eq. (2) can also be interpreted as adaptively searching for parameters
from a low-rank subspace S = span{Vshare}. Spontaneously, if we enforce these basis vectors to be
linearly independent, they can form a more expressive subspace and are capable to cover a broader
range of knowledge. Nevertheless, according to our observation, this preferable property cannot be
obtained implicitly with standard training objectives alone.

To this end, we introduce an extra orthogonal regularizer, which enforces the columns of V T
share to

be mutually orthogonal with unit norm. We achieve this by reducing the L2 norm of the difference
between Gram matrix2 and identity matrix. To train a p-width network, one can jointly optimize the
orthogonal regularizer and the original classification objective, which can be expressed as:

Lp = Lcls(x, y;Vshare, Up) + λ

L∑
l=1

∥Vshare[l] · Vshare[l]
T − I∥2 (3)

Here for simplicity, we use Vshare and Up to denote the collections of basis and coefficients over all
layers. Lcls is the classification loss. l is the layer index and λ is a balancing parameter.

2.4 Federated Learning with All-In-One Neural Composition (FLANC)

In this subsection, we employ our composition technique into the FL framework to enable resource-
adaptive federated training. We abbreviate our framework as “FLANC” for convenience.

As aforementioned, the first step of our framework is to obtain a feasible set P of device capacity
by clustering participants into |P| groups based on their available resource. Meanwhile, the server
also assigns each client k with a corresponding capacity pk based on the clustering results. Next, the
server initializes the shared basis V 0

share as well as all capacity-specific coefficients U0
p with p ∈ P .

It is worth noting that our server does not need to explicitly maintain the global networks during
training. The data transfer cost is further reduced with the efficient tensor format.

A communication round t starts by determining a set of joining devices Kt. After that, the server
broadcasts the basis V t

share to each client k ∈ Kt along with the associated resource-specific coeffi-
cients U t

pk
for ad-hoc adaption. On the client side, each client updates the model with their private

data for N local iterations. For each training step, pk-width network is adaptively constructed using

2To compute the Gram matrix, neural bases are first transposed into columns, i.e., V T
share
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Algorithm 1: Federated Learning with All-In-One Neural Composition (FLANC)

Input: V 0
share neural basis; U0

p1U
0
p2 , ..., U

0
pn with pi ∈ P , |P| capacity-specific coefficients; T

communication rounds; N local iterations
1 for t← 0 to T − 1 do // Global communication rounds
2 Server determines a set of joining devices Kt;
3 Server broadcasts the neural basis V t

share and coefficients U t
pk to each client k ∈ Kt

4 for k ∈ Kt do // do in parallel among clients
5 for n← 0 to N − 1 do // local iterations for every client
6 Client composes the pk-width network using Eq. (1);
7 Client computes the loss objective using Eq. (3), and then updates V t,k

share and U t,k
pk ;

8 end
9 Client uploads the updated neural basis and capacity-specific coefficients to the server;

10 end
11 Server collects the updates of the shared basis and coefficients using Eq. (4);
12 end

Eq. (1). Therefore, the basis Vshare can be optimized by all clients with their local data. At the end of
training, the clients send the basis and coefficients back to the server.

The server finishes a communication round by updating the shared basis and coefficients using local
training results from clients. In our approach, the basis is fully trained on all participating devices.
On the other hand, capacity-specific coefficients are updated by the devices with the corresponding
resource group. To account for this difference, we provide the following aggregation rule:

V t+1
share =

1

|DKt |
∑
k∈Kt

|Dk|V t,k
share and U t+1

p =
1

|DKt,p |
∑

k∈Kt,p

|Dk|U t,k
p (4)

where DKt
= ∪k∈Kt

Dk is the union of datasets of current participants. And Kt,p = {k|k ∈
Kt, pk = p} is a subset of Kt with the device capacity equals p. The complete workflow of our
method is summarized in Algorithm 1.

3 Experiments

Datasets. In this paper, we evaluate our method for image classification tasks on three popular
datasets with increasing complexity: Fashion-MNIST [23], CIFAR10 and CIFAR100 [22]. Fashion-
MNIST is a relatively simple dataset containing 60,000 examples of 10 classes. CIFAR10 and
CIFAR100 are the common classification benchmarks with 50,000 training images with 10 and 100
classes respectively. CIFAR100 is the most challenging dataset as each class only has 500 images.
Our approach is generally applicable to not only vision tasks, but also natural language processing
tasks. To show this, we further conduct experiments on Shakespeare, which is a text dataset built
from Shakespeare Dialogues [35], and the task is next-character prediction. More details about these
datasets can be found in the supplementary material.

Data Partition. In our experiment, we follow [19] and consider both cases of IID and non-IID data
partition, in order to comprehensively showcase the performance. For IID partition, we uniformly
sample a same number of data for each client. For non-IID case, we assume label shifts and distribute
a subset of classes for each client. Specifically, the number of classes is set to 3 for Fashion-MNIST
and CIFAR10, 30 for CIFAR100. For Shakespeare, we follow the partition method in [24]. We refer
the underlying distribution of raw data (each speaking role) as the non-IID partition and each data
point is equally likely to be sampled in the IID partition.

Model Architecture. Our approach can seamlessly work with both convolutional and fully-connected
layers. In this paper, we evaluate it across several different architectures. Specifically, we adapt
the standard ResNet-18 [21] for CIFAR10 and CIFAR100. For Fashion-MNIST, we adopt a simple
4-layer CNN. For next-character prediction, we apply our approach upon a 1-layer RNN. Further
details can be found in the supplementary file.

Client Partition. For all experiments, we follow previous conventions [15] and assume totally 100
clients with 10% of them being active for each communication round. To model system heterogeneity,
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Figure 3: Test results for static system-heterogeneous setting. Top-1 (↑) accuracy and negative
perplexity (↑) are used for image classification and next-character prediction tasks respectively.

we construct 4 different complexity levels with P = {0.25, 0.5, 0.75, 1.0}. To fully demonstrate the
effectiveness of our approach, we consider both the static and dynamic capacity distribution. For
static setting, we uniformly assign a capacity level for each client, and then client keeps this budget
throughout the training. For dynamic setting, we allow each client to randomly increase/decrease
its capacity at every communication round. This is also a realistic scenario as devices’ capacity can
vary drastically due to other irrelevant system processes or CPU frequency changes led by the battery
status.

Baseline Methods and Implementation Details. We compare our method with two state-of-the-art
system-heterogeneous solutions – HeteroFL[19] and FjORD[20]. Both approaches are similar in
design and are based on model pruning. Other generic FL algorithms [15, 14, 36] are inapplicable
with the presence of heterogeneous devices due to broken assumptions. Since the official code
for FjORD [20] is absent, we re-implement this method following the author’s descriptions and
use the default parameter settings including the uniform dropout rate. For hyper-parameter tuning,
we split a subset of 10% training examples as the validation set. After selecting the parameters,
validation data are merged back to the training set, and then we retrain the model for final performance
evaluation. For our method, the selection of λ, R1 and R2 depends on architecture and tasks. We
implement the proposed approach using PyTorch 1.8.2 on Nvidia A5000 GPUs. Detailed descriptions
of hyper-parameters and training can be found in the Appendix.

3.1 Main Performance Evaluation

Here we compare our approach with HeteroFL [19] and FjORD[20] on standard benchmarks. All
results with static setup are shown in Figure 3. Results with dynamic setting are reported in Table 1.

In both system-heterogeneous settings, our approach consistently outperforms both HeteroFL and
FjORD on all entries. The improvements is further magnified when dealing with heterogeneous
data. Specifically, we found the performance of HeteroFL [19] and FjORD [20] very close in many
cases. This is consistent with our expectation as both methods are based on parameter pruning, even
if FjORD [20] in addition allows large devices to randomly switch to a smaller sub-model through
ordered dropout. However, we do not observe consistent improvements with this dropout technique,
and in some cases it further harms the performance of the larger models. And both HeteroFL and
FLANC are compatible with this technique. Furthermore, when switching from IID to non-IID data
partition, both approaches suffer from significant performance drop. For example, on CIFAR10,
the overall performance of both FjORD and HeteroFL drops to 60% even with their largest model.
This is mainly because pruning restricts parameters to have a limited access to the full range of data
and thus may not transfer to unseen distributions. In contrast, our approach allows every parameter
to leverage a full range of knowledge through the shared basis, and hence is more robust to data
heterogeneity. As a result, our FLANC achieves around 13% and 9% performance gain compared to
HeteroFL and FjORD respectively.
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Table 1: Experimental results with dynamic system-heterogeneity. For image classification, we use
the standard Top-1 accuracy (%) as the metric. Perplexity is used as the metric on Shakespeare. The
‘M’ and ‘K’ denote ×106 and ×103 respectively.

Top-1↑ / Perplexity↓: IID Top-1↑ / Perplexity↓: Non-IID Communication Cost

Width HeteroFL FjORD FLANC HeteroFL FjORD FLANC p-width FLANC

CIFAR10 with ResNet-18
×0.25 81.9 85.1 85.1 59.9 51.7 63.7 0.7M 0.5M
×0.50 85.0 86.4 87.9 54.6 58.4 69.7 2.8M 1.2M
×0.75 87.4 86.8 88.8 57.5 66.2 70.6 6.3M 2.4M
×1.0 88.1 86.7 89.5 56.7 65.7 73.0 11.1M 4.0M

Avg 85.6 86.3 87.8 56.2 60.5 69.3 5.2M 2.0M

CIFAR100 with ResNet-18
×0.25 49.2 52.5 54.2 44.2 46.7 48.3 0.7M 0.5M
×0.50 56.5 54.9 61.8 50.6 47.5 54.7 2.8M 1.2M
×0.75 61.3 55.8 64.2 52.1 49.2 56.5 6.3M 2.4M
×1.00 63.6 55.8 65.5 52.7 48.8 57.1 11.1M 4.0M

Avg 57.7 54.8 61.4 49.9 48.1 54.2 5.2M 2.0M

Fashion-MNIST with CNN
×0.25 89.4 88.3 90.5 81.3 81.6 82.0 43K 33K
×0.50 90.5 88.6 91.1 83.7 83.1 85.7 106K 63K
×0.75 90.5 89.1 91.2 83.1 85.5 86.0 186K 98K
×1.00 91.1 89.1 91.4 84.6 83.7 86.8 285K 136K

Avg 90.4 88.8 91.1 83.2 83.5 85.1 155K 83K

Shakespeare with RNN
×0.25 5.54 5.54 5.17 5.55 5.54 5.21 49K 48K
×0.50 5.07 5.06 4.74 5.09 5.05 4.80 214K 187K
×0.75 4.86 4.87 4.64 4.92 4.94 4.65 443K 417K
×1.00 4.64 4.67 4.52 4.69 4.73 4.54 787K 740K

Avg 5.03 5.04 4.77 5.06 5.07 4.80 373K 348K

In terms of efficiency, all three methods are able to straightforwardly reduce the amount of data to
transfer and the cost of computation by switching to smaller p-width models. However, benefiting
from the efficient tensor decomposition format, our approach can further reduce the model size,
resulting in the best communication efficiency.

3.2 Robustness with Imbalanced Device Distribution

In practice, there is usually no guarantee that different types of devices will be equally distributed.
Here we conduct experiments to compare the robustness towards imbalanced device distributions.
To make things more challenging, we also assume there is a large capacity gap between clients.
Specifically, we consider two types of clients A and B, where A can run the full model with p=1 and
B has a limited support of p=0.25 . We consider two scenarios where A accounts for 25% and 75%
of total devices respectively.
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Figure 4: Comparison with HeteroFL and FjORD
for imbalanced client distributions. Results are
reported on CIFAR10 under dynamic system het-
erogeneity and IID data partition. (a) Majority
participants are indigent devices of type B. (b) Ma-
jority clients are high-end devices of type A.

The results are illustrated in Figure 4. It is noted
that, with a limited number of available devices
of type A, HeteroFL and FjORD cannot effec-
tively improve the accuracy by increasing the
capacity, but instead suffer from performance
degradation. This is not surprising as the major-
ity of parameters (>90%) is under-trained with
only 1/4 portion of all data available. In con-
trast, our approach is still able to obtain perfor-
mance gain with additional parameters. This
proves that our approach indeed is more favor-
able for addressing system heterogeneity issues
for FL. On the other hand, when the majority of
devices can run the original model, the perfor-
mance gap between ours and HeteroFL shrinks
as expected, since in this case most of the pa-
rameters can directly access all data. In contrast,
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(a) Layer 1, p = 0.25 (b) Layer 1, p = 0.5 (c) Layer 1, p = 0.75 (d) Layer 1, p = 1.0

(e) Layer 3, p = 0.25 (f) Layer 3, p = 0.5 (g) Layer 3, p = 0.75 (h) Layer 3, p = 1.0

Figure 5: Statistics of mean coefficient value. Results for the first convolution in the corresponding
residual layer are reported.

(a) Layer 1 (w/o Orth.) (b) Layer 2 (w/o Orth.) (c) Layer 3 (w/o Orth.) (d) Layer 4 (w/o Orth.)

(e) Layer 1 (w/ Orth.) (f) Layer 2 (w/ Orth.) (g) Layer 3 (w/ Orth.) (h) Layer 4 (w/ Orth.)

Figure 6: Visualization of the Gram matrix (of every first convolution in each residual layer) when w/
or w/o orthogonal regularization. Gram matrices for Layer 2-4 are shown as histograms because they
are too large to clearly visualize.

FjORD squeezes its performance into some intermediate points due to dropout. While it improves
the performance of the smaller model, the benefits from larger capacity become marginal.

3.3 Knowledge Sharing

Here we study the effectiveness of FLANC in terms of knowledge sharing. One can imagine that if
all values in a set of coefficients (a column of Up) are close to zero, the proposed neural composition
will degenerate to pruning. To show that this is not the case, we report the statistics of the mean
absolute value for each column in the coefficient matrices Up. As shown in Figure 5, most values
are not small and zero-centered, indicating knowledge stored in the basis can be well-shared across
models.

3.4 Ablation Study

Orthogonality. Orthogonal regularizer reduces the redundancy and dependency within neural bases
and improves the expressiveness of neural composition. To demonstrate its effectiveness, we remove
the orthogonality regularization and compare the performance on CIFAR10. As shown in Figure 7a,
one can observe that our regularizer constantly improves performance across all model capacities.
We further visualize the Gram matrix of the learned basis in Figure 6. It can be seen that the Gram
matrices of our approach are very close to the diagonal matrices, demonstrating the basis is indeed
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orthogonal. It is worth noting that such property cannot be learned naturally with purely classification
loss.
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Figure 7: Ablation study of FLANC. Results are
reported on CIFAR100 with IID data partition and
dynamic system heterogeneity.

Basis Size R1. In our implementation, we set
the basis size R1 as the common divisor of the
input channels over all models. Thus, we can
compose all networks with one unified basis. To
study our model’s sensitivity to the choice of
R1, we set it to 25%, 50%, 100% of the smallest
incoming channel, respectively. As shown in
Figure 7b, using fine-grained basis can slightly
improves the accuracy. The performance peaks
at 50% of the smallest incoming channel.

Number of Bases R2. Increasing the number
of bases inherently enlarges the dimensionality
of the subspace and may improve performance
by providing better representational capacity. We study its effect and consider R2 to be 25%, 50%
and 75% width of the original model, respectively. As shown in Figure 7c Results suggest that a
larger number of bases can improve the performance but the benefit becomes marginal when further
increasing from 50% to 75%. In addition, using more bases also linearly increases the model size.
For our architectures, we select R2 with the best trade-off between the performance and the number
of parameters.

4 Related Works

Data Heterogeneity in FL. In the de facto FL algorithm (FedAvg [15]), clients conduct local training
with the received parameters from a central server. Then the server collects all the locally trained
models and aggregates them into a new global model. The design of FedAvg [15] relies on the
assumption that data is uniformly distributed across clients. However, the assumption does not hold in
real-world scenarios where the underlying data distribution is unknown and very likely non-IID. The
non-IID distribution of clients’ local data is one notorious trap in federated learning and results in the
non-negligible client drift issue, which can jeopardize the convergence rate and model performance
when the data similarity decreases [37]. Tackling the statistical data heterogeneity attracts extensive
attention in recent years. Pioneer works, like FedProx [38], introduce additional regularizers on the
local training objective to prevent the local models from diverging due to the non-IID data distribution.
Later on, several works propose inter-client variance reduction techniques [36, 16, 39] by amending
the client drift issue with the predicted model updating direction. Personalized FL [40, 41, 42, 43]
is another strategy to allow a model to better fit the local data distribution on a specific client.
One can fine-tune the global model on the local data [44], perform MAML-based personalized
approaches [40, 41], or achieve the personalization by local batch normalization layers [14]. Our
proposed method is perpendicular to the above studies and potentially can be combined with them
for further improvement.

System Heterogeneity in FL. In contrast to the substantial effort devoted to data heterogeneity,
addressing FL system heterogeneity is largely under-explored. The majority of existing methods only
focus on reducing communication cost, so that the data transfer cost can be affordable by those edge
devices with constrained bandwidth and energy consumption. For example, several advanced FL
optimizers [16, 36, 45, 46] have been proposed to improve the convergence rate, and thus reduce data
transfer cost by decreasing the number of required communication rounds. Other methods [47, 48, 49,
50] improve communication efficiency by combining quantization [47, 49] and sparse training [48, 51]
techniques. For example, LotteryFL [43] and FedMask [42] learn personalized sparse sub-networks
to achieve high communication efficiency. However, all aforementioned approaches still assume
a uniform processing capacity among all participants, which cannot be guaranteed for real-world
scenarios. One promising way to remove this assumption is to leverage knowledge distillation
(KD) for learning the central model instead of conventional coordinate-wise averaging. While such
methods [52, 53, 54, 55, 56] allow different local models, applying KD often requires additional
access to some common public datasets to alleviate the difficulty in knowledge transmission [57],
which is impractical in FL. For the most recent methods, Split-Mix [58] explores model ensemble by
re-mixing universally-budget-compatible sub-networks at inference time, where its effectiveness is
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potentially constrained by the insufficient capacity of individual sub-models. FedHM [59] explicitly
factorizes global models into low-rank sub-models to accommodate client capacity, which has shown
to be effective in reducing computation and communication costs. However, the SVD scheme
preserves feature width before and after decomposition and thus are lack the ability to scale (peak)
memory footprint and may harm the performance by introducing additional factorization error. Our
method is most related to HeteroFL [19] and FjORD [20], which allow federated training of local
models in different widths adaptively “pruned” from a global model. Nevertheless, as discussed
before, they cannot fundamentally resolve the challenges and still suffer from degraded performance
similar to many conventional FL methods.

Compression Techniques. Both our approach and previous heterogeneous-system solutions are
related to model compression techniques [34, 30, 29, 60, 61, 62], a classic research field to reduce the
run-time storage and the latency of deep neural networks. Some of the most representative techniques
include quantization [62, 63], neural pruning [60, 61], and tensor decomposition [34, 30, 29]. In the
context of FL, these techniques are first studied and demonstrated to be effective in reducing the
communication cost [47, 48, 49, 50]. To handle system heterogeneity, current approaches [19, 20]
extend model pruning techniques to extract sub-models to fulfill the resource requirements. However,
as discussed, pruning simply drops model parameters, preventing the dropped ones from leveraging
complete knowledge scattered across various devices. On the other hand, our method can be
connected to tensor decomposition, where we express layers as a unified neural basis representing
shared knowledge and capacity-specific coefficients for linear composition. In this way, it not only
allows resource-adaptive model training through composition, but also naturally ensures the complete
knowledge effectively propagates to models at various complexities.

Factorization-based FL Methods. In this work, the low-rank nature of deep models provides a
foundation for using a unified neural basis to express knowledge and compose heterogeneous models.
Compared to existing factorization-based approaches [59, 64], our approach does not perform explicit
low-rank decomposition but instead only uses this notion conceptually, i.e., FLANC directly learns
the basis and coefficients from scratch rather than factorizes them from existing kernels.

This brings several advantages compared to previous approaches performing real low-rank decom-
position: (1) FLANC avoids approximation errors of factorization, which will potentially harm the
performance. Meanwhile, it can be applied to every layer for better complexity scaling. In contrast,
SVD based factorization inevitably introduces an approximation error that will be accumulated
and propagated to subsequent layers. This limits their applicability to the last several layers and
reduces practicality for real-world deployment, as early layers can also become computational and
memory bottlenecks, for example, when dealing with large images. (2) FLANC can handle system
heterogeneity by constructing client models with different widths, whereas factorization methods
cannot achieve the same. Explicit factorization requires the resulting tensors to have aligned input
and output dimensions (e.g., m× r and r × n) with the original kernel (e.g., m× n), which cannot
change run-time width to effectively adjust memory consumption. FedDLR [64] and FedPara [50]
further assume a uniform processing capacity over devices, making them infeasible for dealing with
system heterogeneity.

5 Conclusion

The assumption of uniform processing capacity in conventional federated learning contradicts the
varying computation resources in practice. As a result, these methods suffer from an inevitable
dilemma between model complexity and data accessibility. To overcome this problem, we propose
a simple yet effective mechanism, termed All-In-One Neural Composition to systematically sup-
port resource-adaptive federated learning. Unlike previous methods, our method enables flexible
constructions of models in different complexities, and allows unhindered access to the full range
of knowledge scattered across clients. Comprehensive experimental results on vision and language
tasks demonstrate the effectiveness of our method, manifesting consistent performance gain across
different setups.
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