
NeMF: Neural Motion Fields for Kinematic Animation
– Supplementary Material –

Chengan He
Yale University

chengan.he@yale.edu

Jun Saito
Adobe Research

jsaito@adobe.com

James Zachary
Adobe Research

zachary@adobe.com

Holly Rushmeier
Yale University

holly.rushmeier@yale.edu

Yi Zhou
Adobe Research

yizho@adobe.com

Contents

1 Method Details 1

1.1 Global Motion Predictor . 1

1.2 Network Architecture . 2

2 Experiment Details 3

2.1 Datasets . 3

2.2 Training & Optimization . 4

2.3 Motion Reconstruction & Synthesis . 4

2.4 Qualitative Metrics . 4

2.5 Baselines . 5

3 Additional Results 5

3.1 Motion Reconstruction . 5

3.2 Motion Composition . 6

3.3 Latent Space Interpolation . 6

3.4 Time Translation in Latent Space . 6

1 Method Details

1.1 Global Motion Predictor

Given the fact that the character’s global translation is conditioned on its local poses, similar to [14,
33], we design a fully convolutional network to generate the global translation r of the root joint
based on the local joint positions, velocities, rotations, and angular velocities as inputs. To eliminate
ambiguities in the output, instead of generating the root position directly, we try to predict its velocity

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ṙ, which can be integrated using the forward Euler method to compute r:

rt+1 = rt + ṙt∆t = r1 +

t∑
i=1

ṙi∆t. (1)

However, cumulative errors are inevitable during the integration process, and this becomes more
pronounced in the upward direction, where the character gradually moves into the air or under the
ground. To avoid this phenomenon, we directly predict the height rh of the root joint, which is
reasonable since it lies in a region bounded by the height of the character. Then, we measure the
differences on the generated velocities and integrated positions as the loss function to minimize:

L = Lvel + Ltrans (2)

Lvel =

T∑
t=1

∥ṙt − ˆ̇rt∥1, Ltrans =

T∑
t=1

∥rt − r̂t∥1. (3)

A Note on An Alternative Integrated Model. A simpler design choice is to predict the global
translation, orientation and local motion all at once, and we call it an integrated model. However,
in our experiments, we observed that this integrated model cannot fully decouple local and global
motion, which is more evident when applied in tasks like motion in-betweening. As shown in Figure 1
and our supplemental video, the integrated model tends to generate static local poses with global
translation for motion in the interval, thus causing sliding artifacts. While in the separate model, it
doesn’t have this artifact since this model explicitly decouples local and global motion.

Separate Model Integrated Model

Figure 1: Comparison between separate model and integrated model on motion in-betweening. The
two yellow poses are ground truth and the cyan poses are generated results in the interval.

A Note on Our Single-Motion NeMF Model. When training our single-motion NeMF model,
we train the MLP to fit both the local and global motion. Therefore, its loss function contains terms
both from Equation 5 of our main paper and Equation 2 above. While for our generative model,
we observe some artifacts as illustrated in Figure 1 and choose to train a standalone global motion
predictor to handle the global motion. Therefore, we drop the loss terms related to global motion
when training our VAE.

1.2 Network Architecture

Motion Encoders. We introduce two separate motion encoders to parameterize the latent space
of local motion and root orientation respectively. To encode local motion, we adopt the Skeleton
Convolution and Skeleton Pooling layers proposed in [1] to build a residual block with PReLU
activations [11] and group normalization [31]. The motion encoder contains 4 layers of these skeleton
convolution residual blocks with kernel size 4 to extract latent features from local pose parameters,
which are followed by 2 fully-connected layers to obtain the mean and variance of zl in 1024
dimensions. As for root orientation, its residual block is built on 1D convolution and 1D average
pooling layers with PReLU activations, and its encoder also contains 4 layers of residual blocks with
kernel size 4 to gradually upscale the root orientation in R6 to latent features in 128, 256, 512, and
512 dimensions. The fully-connected layers then map the latent features to the mean and variance of
zg in 256 dimensions.

2

MLP Decoder. Similar to [22], we build an MLP to predict local pose parameters and root
orientation based on latent variables and temporal coordinates with positional encoding. The MLP
contains 11 fully-connected layers with ReLU activations and layer normalization [3]. Each hidden
layer has the output size 1024, while a skip connection is introduced in each layer of the MLP to
emphasize the importance of the input and to help prevent posterior collapse [16].

Global Motion Predictor. Our global motion predictor has a similar architecture as our motion
encoder, where 3 layers of skeleton convolution residual blocks with kernel size 15 are applied to
to extract latent features from the local pose parameters. These latent features are then mapped to
root velocity and root height with 4 additional residual blocks composed of 1D convolution and 1D
average pooling layers with kernel size 15.

2 Experiment Details

2.1 Datasets

We train our model on the AMASS dataset1 [19] for human motion, which is a motion capture
database that aggregates mocap data from multiple datasets and normalizes them into a uniform
format. We then leverage the data processing scripts provided by HuMoR [25] to filter some outlier
data and unify their frame rates to 30 fps. Here, we plot the duration distribution of the processed
AMASS data in Figure 2 and collect some detailed statistics in Table 1.

0

2000

4000
total

0
500

1000

female

0 50 100 150 200
0

1000

2000

male

0.0 0.2 0.4 0.6 0.8 1.0
Duration (second)

0.0

0.2

0.4

0.6

0.8

1.0

Co
un

ts

AMASS Data Duration Distribution

Figure 2: Duration distribution of AMASS data.

From the statistics we collect, the duration of AMASS data has a large variance while most of them
are between 0 and 50s. To be more specific, only more than 50.98% of the data are longer than 5s.
Therefore, to fully utilize the AMASS data, we choose to chop the sequences into clips with 128
frames (4.3s) and set the batch size to be 16 throughout experiments. Then we split these processed

1For the license of AMASS, please check: https://amass.is.tue.mpg.de/license.html.

3

https://amass.is.tue.mpg.de/license.html

data into training, validation and testing sets, where the training set contains data from CMU [29], MPI
Limits [2], TotalCapture [28], Eyes Japan [18], KIT [20], BMLrub [27], BMLmovi [8], EKUT [20],
ACCAD [6], BMLhandball [12], DanceDB [5], DFaust [4], and SSM [19], the validation set contains
data from MPI HDM05 [23], SFU [30], and MPI Mosh [17], and the testing set contains data from
HumanEva [26] and Transitions [19]. This split results in 11, 642 sequences in the training set, 1, 668
sequences in the validation set and 164 sequences in the testing set, roughly 20 hours in total for use.

Table 1: Detailed statistics collected from the AMASS data.

AMASS Data Statistics
Total motion sequences 11, 831
Total Duration 119, 661.40s
Minimal Duration 0.97s
Maximal Duration 224.57s
Average Duration 10.11s
Sequences longer than 5s 6, 031 (50.98%)
Sequences longer than 10s 2, 739 (23.15%)
Male Data 7, 400 (Duration: 73, 989.10s)
Female Data 4, 431 (Duration: 45, 672.30s)

We additionally train our model for
the reconstruction experiments on
a quadruped motion dataset [32],
which contains 30 minutes of dog
motion capture. Similar to [13], we
manually filter those clips on uneven
terrain and the remaining data are all
in 60 fps with various lengths from
155 to 13, 399 frames.

2.2 Training & Optimization

We train our model and conduct all
the experiments on a cluster with 8
Intel® Xeon® Gold 6136 CPUs @
3.00GHz, 64GB memory, and 2 NVIDIA Tesla V100 GPUs. Our code is implemented with Python
3.9.7 and PyTorch 1.9.0.

Training. We employ Adam optimizer throughout the training for all NeMF architectures with
the learning rate of 0.0001. We train our single-motion NeMF for 500 iterations to fit a 32-frame
sequence, and scale the number of iterations proportionally as the sequence length increases to make
sure that our model is sufficiently trained for each length of sequences. As for our generative NeMF
and global motion predictor, we train their architectures for 1, 000 epochs with weight decay 0.0001.

Test-Time Optimization. Our test-time optimization utilizes Adam with the initial learning rate of
0.1. In all experiments, our method converges within 600 iterations with proper initialization, and we
decay the learning rate to 0.07 and 0.049 at iteration 200 and 400, respectively.

Hyperparameters. In all of our experiments, we set the weights λrot to 1.0, λori to 1.0, and λpos to
10.0. In training our generative NeMF, we initially set λKL to 1e−5. To combat posterior collapse,
we adopt the cyclical annealing schedule [7] to linearly anneal λKL from 1e−7 to its full value every
50 epochs. For the energy functions formulated during test-time optimization, we set the weights
λtrans to 1.0, λsim to 0.5, λtraj to 1.0, and λangle to 1.0.

2.3 Motion Reconstruction & Synthesis

In the ablation study and comparison, we evaluate both the reconstruction and synthesis capability
of our generative NeMF. For motion reconstruction, we use the trained network to directly infer the
164 samples in the testing set and compute some deterministic metrics to measure the reconstruction
errors. For motion synthesis, we generate 400 samples through latent space sampling and introduce
three additional metrics to measure the quality of motion.

2.4 Qualitative Metrics

In our experiments, we employ the following three metrics to measure the motion characteristics that
reconstruction errors cannot capture, namely Fréchet Inception Distance (FID), diversity (Diversity)
and foot skating (FS).

Fréchet Inception Distance (FID). FID is a statistical metric which has been widely used for
measuring the image quality, while Guo et al. [9] and Petrovich et al. [24] have transferred it to
the motion domain and employ it in tasks such as action recognition. To evaluate FID, we use a

4

pre-trained feature extractor to extract motion features from real and generated motions, then the FID
is computed from the distribution of these feature vectors.

Diversity. Diversity was first introduced by Guo et al. [9] to measure the variance of generated
motions. To evaluate diversity, we randomly split all generated data into two subsets with equal size.
Feature vectors are then extracted from them respectively, and diversity is computed as the mean
Euclidean distance between these feature vectors.

Foot Skating (FS). To measure the foot skating artifact, we use the metric proposed in [16, 32]. To
be specific, this metric measures the accumulated drift on the ankle and toe joints when their height h
is within a certain threshold H . Their velocity is first projected onto the horizontal plane to compute
the magnitude v, which is further weighted with the formula s = v(2 − 2

h
H). In our experiments,

we set H according to the values provided by HuMoR [25], which are 4cm for toe joints and 8cm
for ankle joints. This parameter setting leads to an average foot skate of 0.512cm per frame in the
ground truth data.

To build the feature extractor for FID and diversity, we train an auto-encoder that maps the input
motion parameters to feature vectors. The auto-encoder has a similar architecture as our VAE, except
that it takes both local and global motion as input and the fully-connected layer outputs latent vectors
directly instead of their mean and variance. Similar to [9, 24], we randomly pick 100 samples from
the generated data to evaluate these plausible metrics in each iteration, and perform 20 iterations with
different random seeds. We then report the mean value of these metrics in our tables.

2.5 Baselines

HM-VAE [14]. We use the pre-trained HM-VAE model released by the authors. The model was
trained on the AMASS dataset with a sequence length of 64. To accommodate longer sequences, we
use the concatenation method in their open-source code2 to connect each sub-sequence.

HuMoR [25]. We use the pre-trained HuMoR model released by the authors3.

Robust Motion In-betweening (RMI) [10]. We choose an open-source implementation of RMI4

since Ubisoft does not release their official code. We modified this unofficial implementation and
trained it on the AMASS dataset to fit our experiment setup.

3 Additional Results

3.1 Motion Reconstruction

In Figure 3 we show our reconstruction result on the quadruped motion. This sequence contains
4, 336 frames at 60 fps (73s), which takes 8, 000 iterations to converge. From the visualization in
Figure 3 and our supplemental video, our predicted motion is almost identical to the ground truth.

Figure 3: Quadruped motions generated from single-motion NeMF, where the cyan skeleton indicates
our generated result and the yellow skeleton is the ground truth motion.

2https://github.com/lijiaman/hm-vae
3https://github.com/davrempe/humor
4https://github.com/xjwxjw/Pytorch-Robust-Motion-In-betweening

5

https://github.com/lijiaman/hm-vae
https://github.com/davrempe/humor
https://github.com/xjwxjw/Pytorch-Robust-Motion-In-betweening

3.2 Motion Composition

Since we disentangle the latent space for local motion and root orientation, we can create interesting
motion editing results as in Figure 4, where we cancel the spinning motion of a pirouette jump by
assigning different zg to the same zl.

zl(jumping) + zg(spinning) zl(jumping) + zg(no spinning)

Figure 4: Orientation editing by assigning different zg to the same zl.

3.3 Latent Space Interpolation

To examine the smoothness of the latent space and see whether our model can blend different styles
of motion at the sequence level, we linearly interpolate z from two existing motion sequences and
infer the novel ones as shown in Figure 5.

Figure 5: Latent space interpolation.

3.4 Time Translation in Latent Space

As a motion prior, different motion clips will be mapped to different positions in the latent space.
Therefore, it would be interesting to examine the latent patterns formed by those clips which share a
large portion of overlap while containing some temporal offsets.

We then set up an experiment by first picking 3 different sequences from AIST++ [15], each containing
about 200 to 300 frames. For each sequence, we use a sliding window with an offset of 10 to obtain
clips with 118-frame overlap, and then encode these clips with our encoder. The latent variables
are projected to 3D with UMAP [21] and visualized in Figure 6. In the cases we test, the clips with
overlapping frames are mapped to nearby positions and even form some interesting patterns, thus
suggesting that they maintain certain connection in the latent space.

References
[1] Kfir Aberman, Peizhuo Li, Sorkine-Hornung Olga, Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen.

Skeleton-aware networks for deep motion retargeting. ACM Transactions on Graphics (TOG), 39(4):62,
2020. 2

6

6.5
7.0

7.5
8.0

8.5
9.0

9.5 0.5

1.0

1.5

2.0
2.5

3.0
3.5

8.0

8.5

9.0

9.5

10.0

10.5

Latent Distribution of zl

2.0
2.5

3.0
3.5

4.0
4.5

4.5
5.0

5.5
6.0

6.5
7.0

7.5

6.5

7.0

7.5

8.0

8.5

9.0

Latent Distribution of zg

Figure 6: Latent distribution of clips with time translation. Different colors refer to different AIST++
sequences.

[2] Ijaz Akhter and Michael J. Black. Pose-conditioned joint angle limits for 3D human pose reconstruction.
In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, June 2015. 4

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 3

[4] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black. Dynamic FAUST: Registering
human bodies in motion. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), July 2017.
4

[5] DanceDB. Dance motion capture database. 4

[6] Advanced Computing Center for the Arts and Design. Accad mocap dataset. 4

[7] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. Cyclical
annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145, 2019.
4

[8] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad Kording, Douglas James Cook, Gunnar
Blohm, and Nikolaus F Troje. Movi: A large multipurpose motion and video dataset. arXiv preprint
arXiv:2003.01888, 2020. 4

[9] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and
Li Cheng. Action2motion: Conditioned generation of 3d human motions. In Proceedings of the 28th ACM
International Conference on Multimedia (MM ’20), 2020. 4, 5

[10] Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. Robust motion in-betweening.
ACM Trans. Graph., 39(4), jul 2020. 5

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015. 2

[12] Fabian Helm, Nikolaus F Troje, and Jörn Munzert. Motion database of disguised and non-disguised team
handball penalty throws by novice and expert performers. Data in brief, 15:981–986, 2017. 4

[13] Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. Moglow: Probabilistic and controllable
motion synthesis using normalising flows. ACM Trans. Graph., 39(6), nov 2020. 4

[14] Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang, Zhengfei Kuang, Hao Li, and Yajie Zhao. Task-
generic hierarchical human motion prior using vaes. 2021. 1, 5

[15] Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa. Ai choreographer: Music conditioned 3d
dance generation with aist++, 2021. 6

[16] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. Character controllers using motion
VAEs. ACM Trans. Graph., 39(4):40:1–40:12, July 2020. 3, 5

[17] Matthew M. Loper, Naureen Mahmood, and Michael J. Black. MoSh: Motion and shape capture from
sparse markers. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6):220:1–220:13, November
2014. 4

[18] Eyes JAPAN Co. Ltd. Eyes japan mocap dataset. 4

[19] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. AMASS:
Archive of motion capture as surface shapes. In International Conference on Computer Vision, pages
5442–5451, October 2019. 3, 4

7

[20] Christian Mandery, Ömer Terlemez, Martin Do, Nikolaus Vahrenkamp, and Tamim Asfour. The kit
whole-body human motion database. In International Conference on Advanced Robotics (ICAR), pages
329–336, 2015. 4

[21] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform manifold approxi-
mation and projection. The Journal of Open Source Software, 3(29):861, 2018. 6

[22] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020. 3

[23] Meinard Müller, Tido Röder, Michael Clausen, Bernhard Eberhardt, Björn Krüger, and Andreas Weber.
Documentation mocap database hdm05. 2007. 4

[24] Mathis Petrovich, Michael J. Black, and Gül Varol. Action-conditioned 3D human motion synthesis with
transformer VAE. In International Conference on Computer Vision (ICCV), pages 10985–10995, October
2021. 4, 5

[25] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and Leonidas J. Guibas.
Humor: 3d human motion model for robust pose estimation. In International Conference on Computer
Vision (ICCV), 2021. 3, 5

[26] L. Sigal, A. Balan, and M. J. Black. HumanEva: Synchronized video and motion capture dataset and
baseline algorithm for evaluation of articulated human motion. International Journal of Computer Vision,
87(1):4–27, March 2010. 4

[27] Nikolaus F Troje. Decomposing biological motion: A framework for analysis and synthesis of human gait
patterns. Journal of vision, 2(5):2–2, 2002. 4

[28] Matt Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John Collomosse. Total capture:
3d human pose estimation fusing video and inertial sensors. In 2017 British Machine Vision Conference
(BMVC), 2017. 4

[29] Carnegie Mellon University. Cmu graphics lab motion capture database. 4

[30] Simon Fraser University and National University of Singapore. Sfu motion capture database. 4

[31] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pages 3–19, 2018. 2

[32] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural networks for quadruped
motion control. ACM Trans. Graph., 37(4), jul 2018. 4, 5

[33] Yi Zhou, Jingwan Lu, Connelly Barnes, Jimei Yang, Sitao Xiang, et al. Generative tweening: Long-term
inbetweening of 3d human motions. arXiv preprint arXiv:2005.08891, 2020. 1

8

