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Abstract

We consider streaming principal component analysis when the stochastic data-
generating model is subject to perturbations. While existing models assume a fixed
covariance, we adopt a robust perspective where the covariance matrix belongs
to a temporal uncertainty set. Under this setting, we provide fundamental limits
on convergence of any algorithm recovering principal components. We analyze
the convergence of the noisy power method and Oja’s algorithm, both studied for
the stationary data generating model, and argue that the noisy power method is
rate-optimal in our setting. Finally, we demonstrate the validity of our analysis
through numerical experiments on synthetic and real-world dataset.

1 Introduction

Principal component analysis (PCA) is one of the most extensively studied methods for obtaining the
low-dimensional representation of observed data [22]. However, classical algorithms for PCA store
all the observations and use cubic-time complexity, thereby imposing prohibitively large computation-
time and space requirements.

Recently, several works on PCA have focused on the design and analysis of streaming algorithms
with near-optimal memory and storage complexity [25, 29, 40, 43]. These algorithms assume that all
the observations belong to the same low-dimensional space. However, this situation is unlikely when
the unknown/unexplored alterations corrupt a system’s observations. For instance, it is well known
that typical data attacks on power grids can significantly change the estimated covariance matrix of
the data observed from sensors [9, 10, 23]. Similarly, PCA can be used to explain stock returns in
terms of macroeconomic factors [27], and product pricing taking into account cross-product elasticity
and demands [45]. In all these scenarios, the underlying data-generating model changes every instant,
and the decisions are based on identifying the changed model.

Current work considers perturbations of the data lying in a fixed low-dimensional space [49]. They
determine the worst-case position of the adversarial data point to incur the maximum error in the
subspace estimated through PCA and measure the distance between the two subspaces using the
notion of the principal angle between them. Another line of work considers PCA through the lens of
stochastic optimization [5, 42, 51, 52]. Our work differs from these approaches since we assume that
the data-generating model changes at every time instant. Further, we propose near-optimal algorithms
for recovering principal components under this framework.

We assume a system relies on the time-series of p-dimensional vectors sampled from a time-varying
model. The available observations are the vectors (xt)

T
t=1

. The noisy observation xt 2 Rp is a vector
lying in the column space of an unobserved full-rank matrix At 2 Rp⇥k. Precisely, from the standard
spiked covariance model [35], we consider the time-dependent environment:

xt ⇠ N (0p⇥1 , AtA
>
t + �2Ip⇥p), (1)
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where At can vary with time. The parameter k ⌧ p is the desired number of principal components.
Assuming At belongs to a temporal uncertainty set (defined in the equation (2)), our goal is to recover
the top-k principal components of the terminal subspace AT . In financial applications, our model
captures the market evolution in terms of the changing AT with the ultimate goal of explaining the
market conditions for an appropriately chosen T .

Previous works on the stationary environment assume At=A for all t and have focused on computing
a basis for the column space of the matrix A using streaming algorithms [21, 29, 33, 36, 38, 43].
The accurate reconstruction of the principal components for the standard streaming PCA problem
depends on the magnitude of observation noise �, the dimension of observations p, the number of
principal components k of the matrix A, and the spectral gap � between k-th and k+1-th spectrums.
singular value of AA>. In a marked departure from previous work, we study the case when the
column space of A varies across time. This paper explores these avenues and proposes a tractable
analysis framework for the streaming PCA problem, robust to perturbations in the data-generating
model. Our contributions can be summarized as follows:

1. (Lower Bound; Section 4) Our first contribution is establishing a fundamental lower bound for
estimating the principal components when the covariance matrix belongs to a temporal uncertainty
set Tu(�,�). In Theorem 1, we derive the minimax bounds of the expected error for recovering
the top singular vectors for any streaming algorithm. Because the underlying distribution can vary,
observations from the far past become less important and the estimation of principal components
associated with AT should be determined by a subset of samples. Simultaneously, it becomes
imperative to find the block size B that can be used to recover the principal components. This is
in sharp contrast to the standard spiked covariance model. We show that:

• For T =O(�
92/3

), the minimax estimation error decreases as O(p1/2T 91/2
).

• On the other hand, for T = ⌦(�
92/3

), the error stagnates to O(p1/3�1/3
) and does not

decrease upon collecting more observations1.

2. (Algorithm Analysis; Section 5) We then analyze two algorithms to recover the principal compo-
nents extensively used in the standard streaming PCA setting; the noisy power method [29] and
Oja’s algorithm [48]. These algorithms represent two very different design principles for com-
puting principal components from data in streaming fashion, processing data in blocks vis-à-vis
single observations. We determine the optimal choice for critical parameters: the block size in the
noisy power method on Lemma 1 and the learning rate in Oja’s algorithm on Lemma 2. Next, we
leverage these results to obtain an upper bound on the convergence error for these algorithms in
Theorem 2 and 3, respectively. From these results, we have:

• The block size B for the noisy power method and inverse of the learning rate, ⇣�1 for Oja’s
algorithm, plays a similar role even in the non-stationary environment. In either case, the
optimal parameters scale with ⇥(�

�2/3
), where � is the perturbation budget.

• The derived upper bound on the estimation error for the noisy power method matches the
minimax error in terms of p, �, and � and becomes rate-optimal if it satisfies the mild
conditions.

Notation. We fix notation throughout the main body of the paper. Matrices are denoted by bold
uppercase letters (e.g. M) and vectors are denoted by bold lowercase letters (e.g. x). For M 2 Rp⇥k,
Mi denote the ith column of M, Mi:j denote the submatrix consists with ith⇠jth column of M
and Mi,j be the (i, j)-element of M. k · k denote matrix 2-norm or equivalently operator norm for
matrices and standard 2-norm for vectors. We use Stk(Rp

) for the class of orthogonal matrices in
Rp⇥k. b(M) is the orthogonal matrix where the columns form basis for ran(M). si(M) represents
the ith largest singular value of the matrix.

The singular value decomposition of M is defined as SVD(M) =UDV>, where U 2 Stp(Rp
),

V 2 Stk(Rk
), and D 2 Rp⇥k is a diagonal matrix whose ith diagonal element equals si(M).

Therefore, we assume without loss of generality that the singular values and respective singular
vectors are ordered from largest to smallest. We denote by M? the orthogonal projection onto the
orthogonal complement of the ran(M). Therefore, if rk(M) = r and SVD(M) =UDV>, M?
given by M? = I � U

1:rU
>
1:r. Moreover, when rk(M) = rk(M̃) and SVD(M̃) = ŨD̃Ṽ>, the

1For precise explanation for� and Tu(�,�) please refer to the Section 3.
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distance between ran(M) and ran(M̃) is defined by:

d(ran(M), ran(M̃)) = k b(M)b(M)
>
� b(M̃)b(M̃)

>
k = kU

1:kU
>
1:k � Ũ

1:kŨ
>
1:k k .

We denote d(ran(M), ran(M̃)) by d(M, M̃) whenever clear from the context.

The letter A stands for abbreviation of sequence of matrices (At)
T
t=1

. We write X⇠A when each
element xt in sequence X = (xt)

T
t=1

are drawn from N (0,AtA
>
t + �2Ip⇥p). We denote the

expectation of f(X ) over xt ⇠ N (0,AtA
>
t + �2Ip⇥p) as EX⇠A [f ].

We denote Õ, ⇥̃ as the O, ⇥ notation with ignore the multiplicative dependency of log(pT 2
) or

smaller.

2 Related Work

Principal component analysis (PCA) has been extensively studied across operations research, com-
puter science, and other communities. We highlight how our work differs from existing literature.

Robust PCA. Robust PCA deals with the problem of retrieving the principal components robust to
the presence of outliers in the data. The cornerstone work in this direction is the principal component
pursuit framework wherein they assume that the matrix of observations M can be decomposed in
terms of a low-rank matrix L and a sparse matrix (with entries of arbitrarily large magnitude) S [15].

Several works consider the robust PCA problem and propose algorithms in the offline, batch, and
online settings [17, 24, 26, 46]. Our work differs from this line of literature in two aspects: assump-
tions about the data-generating model and convex optimization techniques. First, our data generation
model is unrelated to those considered in the robust PCA literature. Further, rich theories from convex
optimization can be used in the PCA framework to design efficient algorithms, but our problem is not
amenable to such techniques.

Streaming PCA. Streaming algorithms for PCA have been proposed, among other works on PCA [2,
29, 34, 43, 60]. Algorithms analyzed in this work, such as the noisy power method [29] and Oja’s
algorithm [48], are iterative methods for estimating the principal components. These iterative schemes
are instances of stochastic approximation-based solutions for the optimization formulation of the
PCA problem [5]. The stochastic approximation is a root-finding framework extensively used for
stochastic optimization [11, 37]. Oja’s algorithm, originally proposed by [48], was the first such
scheme.

This framework is also used to analyze gradient-type and proximal-type incremental methods akin to
algorithms for convex optimization. Stochastic gradient descent-based algorithms for the streaming
PCA problem, where a single observation is used at every point in time to update the principal
components’ estimate, have been extensively studied. Along this line, [30] propose GRASTA, an
incremental online gradient method for learning over different subspaces. Similarly, [6] proposes
GROUSE, based on the idea of gradient updates over the Grassmannian manifold. These and other
related works consider Oja’s algorithm for the standard streaming PCA problem [1, 16, 31, 31, 53,
59, 62]. However, all these works are based on a completely different modeling assumption than this
paper and do not provide theoretical guarantees for our setting.

Streaming and robust PCA algorithms are used in the presence of outliers or data with a lot of
missing entries [18, 55]. From this literature, the closest to our work is the work on robust subspace
tracking [2, 30, 60]. However, the robustness considered there is against erasures or sparse outliers.
While these algorithms provide theoretical guarantees in that setting, those guarantees cannot be
extended to our model. Considerations of erasures and outliers under the model proposed in this
paper are beyond the scope of this work and remain an interesting future direction.

3 Mathematical Framework

Observations from the standard spiked covariance model belong to a fixed k-dimensional column
space A 2 Rp. Previous work has focused on reconstructing this space from the observed time
series. Under our framework, we assume that the sequence of observations (xt)

T
t=1

follows the
time-dependent spiked covariance model (1). We consider the problem of computing top-k singular
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vectors of AT . We formulate this model by addressing minimax optimization as a robust optimization
problem.

When the adversary is allowed to select a completely arbitrary sequence of matrices (At)
T
t=1

, it is
impossible to accurately recover the column space of AT . Instead, we define temporal uncertainty
sets to restrict the power of the adversary.

Definition 1. Let �, � � 0. We only allow the sequence of matrices (At)
T
t=1

that lie in an temporal
uncertainty set Tu(�,�) defined as:

Tu(�,�) :=
�
(At)

T
t=1

: sk(AtA
>
t ) � � , kAtA

>
t �At�1

A>
t�1
k  �,

 
. (2)

We constrain the difference between any two consecutive covariance matrices of the underlying
process by �. The assumption sk(AtA

>
t ) � � is crucial for establishing bounds of estimation error.

It is also justified in any setting where the underlying phenomenology guarantees covariance of rank
k; the stated lower bound excludes pathological cases of near-rank k�1 or smaller.

Having described the constraints on the perturbation power, we present the algorithms and the
performance metric of interest. In particular, we consider (i) streaming algorithms, i.e., make a single
pass through the time series in chronological order; only the previous samples are stored at any point
in the past. These characteristics model the behavior of an algorithm that receives data in real-time
and only stores samples in limited memory. Among those streaming algorithms, we consider (ii)
the algorithms whose output is a set of k orthonormal vectors in Rp. Let us denote by � the family
of algorithms just described. The output of algorithm � 2 � for a given observations X = (xt)

T
t=1

sampled using model (2) is a set of k orthonormal vectors, which we denote by �X . We will also
view �X as a matrix in Rp⇥k or the subspace generated by �X .

Following definition 2 illustrates how we treat the lower bound and when we call the algorithm
optimal. We note that this formulation has been widely studied [14, 57, 58].
Definition 2. Let A = (At)

T
t=1
2 Tu(�,�), and � 2 �.

1. The estimation error of � given X ⇠ A is the distance between the space spanned by �X
and the column space of AT (d(ran(AT ),�X )). The metric can be easily extended to the
cumulative error. Refer Appendix A for the discussion.

2. R
� is the maximum expected estimation error of � under A over all A 2 Tu(�,�).

R
�

:= sup

A2Tu(�,�)
EX⇠A

⇥
d
�
ran(AT ),�X

�⇤
.

3. R
⇤ is the minimax estimation error defined as the minimum of the largest expected estima-

tion error incurred by � 2 �:

R
⇤
:= inf

�
R

�
= inf

�
sup

A2Tu(�,�)
EX⇠A

⇥
d
�
ran(AT ),�X

�⇤
.

4. An algorithm � 2 � is rate-optimal if R�
 C · R

⇤ , where constant C > 0 is independent
of the problem parameters T , �, p, k, and �.

In this work, we establish the minimax estimation error R⇤ and propose rate-optimal sublinear-time,
single-pass algorithms for robust streaming PCA.

4 Minimax Lower Bound

When A = (At)
T
t=1

belongs to the temporal uncertainty set Tu(�,�) (Definition 1), an algorithm
designed to recover the principal components of AT from the observations cannot guarantee zero
estimation error. Our first goal is to obtain the minimax lower bound on the estimation error in the
problem parameters T , �, p, k, and �.

In order to establish the lower bound, we leverage the fundamental limit of hypothesis tests [57].
The crux of the proof lies in constructing the set of worst-case hypotheses and establishing a lower
bound on the probability of error in distinguishing between these hypotheses using observed data.
The complete proof is provided in Appendix D.
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Theorem 1 (Lower Bound). Assume � > � � 0 and p > 2k + 1. For any algorithm � 2 �, there
exists a sequence A 2 Tu(�,�) such that EX⇠A

⇥
d
�
ran(AT ),�X

�⇤
has lower bound with order:

⇥

 
min

(
1 ,

1
p
T

✓
p�2

(�2
+ �)

�2

◆1/2

+

✓
�

�

◆1/3✓p�2
(�2

+ �)

�2

◆1/3
)!

. (3)

By taking inf�2�, we get the same lower bound for R⇤.

For the standard streaming PCA problem (Theorem 1 with the case of � = 0), the fundamental
limit is ⇥((�/�)(p(�2

+ �)/T )1/2) , which has the expected ⇥(1/
p
T ) dependence [14, 58]. On

the other hand, in the presence of perturbations (�>0), the lower bound exhibits a phase transition
phenomenon, with the first term representing the effect of model ambiguity. To this end, define the
critical time Tc as

Tc :=

✓
�

�

◆�2/3✓p�2
(�2

+ �)

�2

◆1/3

. (4)

For T =O(Tc), the lower bound decreases with the rate of 1/
p
T . However, when T =⌦(Tc), the

first term dominates the second term, and R
⇤ becomes independent of the number of observations T .

In this regime, the error stagnates to O((�/�)1/3
�
p�2

(�2
+ �)/�2

�1/3
). Therefore, as our intuition

suggests, the information quickly becomes stale in a dynamic environment.

Theorem 2 and 3 will prove that the noisy power method and Oja’s algorithm attain a near-optimal
bound on the convergence guarantee. Theorem 2 guarantees that if s1(AtA

>
t ) = ⇥(�), the upper

bound for estimation error on the noisy power method is of the following order:

R
NPM

= Õ

✓⇣
�

�

⌘1/3⇣ (p�2
+ k�)(�2

+ �)

�2

⌘1/3◆
. (5)

That is, if p�2 dominates k�, the noisy power method becomes rate-optimal under the controlled
uncertainty with Tu(�,�). This regime is the case of noisy practical situations, with �2

6⌧ �.

5 Convergence Analysis

In this section, we analyze two algorithms for the robust streaming PCA problem. A generic template
for algorithms, � 2 � of interest to us is as follows: (i) � is initialized with a random matrix with
orthonormal columns Û 2 Rp⇥k; (ii) a running estimate of the principal components is maintained as
the columns of Û; (iii) observations are projected onto the column space of Û to update this estimate.

We consider two algorithms: a robust version of the noisy power method (Algorithm 1) and Oja’s
algorithm (Algorithm 2). The critical difference between the noisy power method and Oja’s algorithm
is the data used to estimate the principal components. In the noisy power method, the estimates
are updated after a batch of observations, whereas in Oja’s algorithm, the estimates are updated
after scaling every observation with the learning rate. Therefore, the parameters determining the
performance of these algorithms are the batch size B for the robust power method and the learning
rate ⇣ for Oja’s algorithm.

The analysis of these algorithms cannot be readily established with existing techniques when the
covariance matrix belongs to a temporal uncertainty set since they rely on showing that the estimates
improve every iteration. Further, applying many concentration results requires random matrices to be
bounded, which is not the case when the observations are sampled from (1). Therefore, in order to
simplify the analysis of both algorithms, we introduce Assumption 1, adapted from [34].

Assumption 1. Let (At)
T
t=1
2 Tu(�,�). For �̃ � � and M,V > 0, we consider the observations xt

for t 2 [T ] satisfy the following:

1. E[xtx
>
t ] = AtA

>
t + �2Ip⇥p while kAtA

>
t k  �̃,

2. kxtx
>
t � (AtA

>
t + �2Ip⇥p)k M a.s., and

3.
��E
⇥
(xtx

>
t � (AtA

>
t + �2Ip⇥p))

2
⇤��  V .
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When the observations follow model (1), we condition our analysis on the high-probability event E.

Definition 3. Let SVD(AtA
>
t + �2Ip⇥p)=UtDtUT

t and xt=UtD
1/2
t zt, where zt⇠N (0, Ip⇥p).

We define the event E as:

E :=

n
zt 2

h
�

p
2 log(2pT 2),

p
2 log(2pT 2)

i p
; 8t 2 [T ]

o
.

The observations from model (1) satisfy Assumption 1 with M = 2(k�̃+p�2
)(1+⇥(log(pT 2

)/T )),
V = 2M(�̃ + �2

) with probability P[E] � 1 � 1/T . Although after conditioning E[xtx
>
t |E] 6=

AtA
>
t + �2Ip⇥p, we can use all the results in Section 5.1 and 5.2 with a multiplicative logarithmic

factor. Please refer to Appendix B for the details.

5.1 Noisy Power Method

Algorithm 1 Noisy Power Method with block size B [29]

1: Input: Stream of vectors: (xt)
T
t=1

, block size: B, dimensions: p, k
2: Sample each element of Û(0) in N (0, 1)
3: for ` = 1 : L = bT/Bc do
4: Y(`) 0 2 Rp⇥k

5: for t = (`� 1)B + 1 : `B do
6: Y(`) Y(`) + 1

Bxtx
>
t Û(`� 1)

7: end for
8: Û(`) Gram-Schmidt(Y(`))
9: end for

10: Output: Û(L)

The noisy power method is an iterative algorithm for computing the top-k principal components
of a matrix. Starting from the random matrix Û(0) in Rp⇥k, the algorithm runs for L iterations,
each processing B samples. By repeating this procedure, we expect the algorithm to reconstruct the
covariance matrix if the observations are derived from the fixed distribution.

When observations are drawn from model (1) under Assumption 1, the later observation can be
sampled from distributions with shifted covariance. Unlike the standard case, for any algorithm
� 2 �, the presence of perturbation prevents the convergence of the columns of Û(`) to the singular
vectors of the final covariance matrix U(`). The main difficulty here is that the columns of Û(`) do
not converge towards a fixed set of vectors but keep tracking the time-varying principal components.
Recall that our ultimate objective is to recover the principal components associated with the terminal
observation. Hence, we decompose the covariance matrix in terms of the last observation and the
remaining samples. For `-th block, we denote the covariance matrix for `B-th observation as M(`)
and have:

1

B

`BX

t=(`�1)B+1

xtx
>
t = E[x`Bx

>
`B ] + E(`) = A`BA

>
`B + �2I| {z }

M(`)

+E(`) . (6)

Due to perturbations in the robust model, E(`) is a non-zero mean random variable. Therefore, we
first decompose E(`) in terms of the contribution due to inherent noise and the perturbations the robust
model allows. Then, in Lemma 1, we decompose the error kE(`)k with respect to the block size B
and the allowed perturbations � in the robust model. We provided complete proof in Appendix E.
Lemma 1 (Spectral norm of noise). Assume that the observations (xt)

T
t=1

generated according to
the Assumption 1. With probability greater than 1� 1/T , the matrices E(`) in the equation (6) are
bounded by:

max
1`L

kE(`)k 
1 + 3

p
2

3

r
V log(2pT 2)

B
+

B�

2
. (7)

when the block size B is larger than M
2
log(2pT 2

)/V .

Lemma 1 highlights the effect of allowing perturbations in the data generation model. From classical
results in statistics, our intuition tells us that the effect of noise washes out as the block size increases,
i.e., the error decays with the ‘inverse square root’ of the block size. Hence, barring memory and
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data issues, a larger block size is better when � = 0. In contrast, covariance perturbations add errors
proportional to the block size. Consequently, we have a trade-off between two terms in this case, and
an optimal block size exists depending on the �.

We establish the convergence guarantee of the robust power method in Theorem 2. In the proof of
Theorem 2 (Appendix F), we bound the distance, d

�
U(L), Û(L)

�
between the output of Algorithm 1,

Û1:k(L) and k-orthonormal vectors spanning the column space of AT ,U1:k(L). We identify the
optimal block size B, the unique parameter for the noisy power method, and establish an upper bound
on the estimation error of the noisy power method.
Theorem 2 (Robust power method). Assume that � � 0.71�2 and � = O(�3/(V log(2pT 2

))). When
the observations (xt)

T
t=1

satisfies the assumption 1, for B = ⇥(V
1/3

log(2pT 2
)
1/3/�2/3

) we have:

d(ran(AT ),NPMX ) = O

✓
(V� log(2pT 2

))
1/3

�
+0.7T/B

◆
, (8)

with probability 1� 2/T � c⌦(p�k+1)
� e�⌦(p).

When � = ⌦(�3/(V log(2pT 2
))) we have that (V� log(2pT 2

))
1/3/� = ⌦(1). Therefore, the condi-

tion on � in Theorem 2 is necessary to avoid a trivial upper bound ⇥(1). This condition encompasses
several applications of interest alluded to earlier. For example, in the financial applications alluded to
earlier, individual market changes of interest happen on a millisecond time scale. It is of significant
interest to terminally detect incremental market changes. Our results hold on to the large value of
cumulative changes and allow us to study them. They further imply that the noisy power method is
rate-optimal for non-trivial values of �. When the observations follow model (1), under the event E�,
Theorem 2 shows that the robust power method can achieve an estimation error of:

R
NPM

= Õ

 ✓
�

�

◆1/3✓
(p�2

+ k�)(�2
+ �)

�2

◆1/3
!

, (9)

if T = ⌦(max(Tc , �(p�2
)
�1

)), � = ⌦((c⌦(p�k+1)
+ e�⌦(p)

)�2(p�2
)
�1

), and �̃ = ⇥(�).

Then it becomes order-wise identical to the fundamental limit established in Theorem 1 when p�2

dominates k�. The first condition on T illustrates when past observations become less critical. The
probability for the upper bound on the noisy power method [29] with random initialization should not
be small to construct expectation bounds from the high probability bound. We address this regime by
condition on �, which is coarse due to exponential terms and (p�2

)
�1.

Establishing bounds on the estimation error when the underlying singular vectors change is intricate
since the subspace to which consecutive observations belong is potentially different. Conventional
proofs that analyze noisy power methods or Oja’s algorithm show that under a variety of assumptions
at every iteration `, the distance between the estimated and true subspace, d(U(`), Û(`)) decreases.
For instance, the proof in [29] requires kE(`)U(`)k = O(

p
k/p), which does not hold under our

model since kM(`) �M(`�1)k is, in general, greater than
p

k/p. Similarly, the concentration
approach in [33] can be used only when the covariance matrix is time-invariant. We briefly describe
our proof technique to establish Theorem 2, deferring details to Appendix F. Let M(L) denotes
the product

QL
`=1

�
M(`) + E(`)

�
. Then, the output of the algorithm Û1:k(L) is an orthonormal

basis of M(L)Û(0), which estimates the first k principal components U1:k of the M(L). To address
this, we construct sequences of k and (p�k)-dimensional subspaces of Rp from observations
{(xt)

`B
t=(`�1)B}

L
`=1

, denoted by {N(`)
}
L
`=1
2 Stp�k(Rp

) and {W(`)
}
L
`=1
2 Stk(Rp

) respectively,
such that for all iterations `:

1. ran
�
(M(`)+E(`))N(`)

�
✓ ran

�
N(`+1)

�
and ran

�
(M(`)+E(`))W(`)

�
✓ ran

�
W(`+1)

�
,

2. k(M(`) + E(`))N(`)
k · k((M(`) + E(`))W(`)

)
�1
k < 1,

3. d(U1:k(`),W(`+1)
) , d(Uk+1:p(`),N(`+1)

) = O(kE(`)k).

The initial random matrix Û1:k(0) consists of both N(1) and W(1) with high probability. From the
first two properties, at every iteration `, the projection of Û1:k(`�1) in W(`) is amplified more than
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that on N(`) and thus Û1:k(L) becomes very close to W(L) after sufficiently large L. From the last
property, we can conclude that W(L) is close to U1:k(L), where the distance between W(L) and
U1:k(L) is proportional to kE(L)k. Combining these ideas with Lemma 1 establishes the results.

5.2 Oja’s Algorithm

Algorithm 2 Oja’s Algorithm with learning rate ⇣ [48]

1: Input: Stream of vectors: (xt)
T
t=1

, learning rate: ⇣, and dimensions: p, k
2: Sample each element of Û(0) in N (0, 1)
3: for t = 1 : T do
4: Û(t) Gram-Schmidt((Ip⇥p + ⇣xtx>

t )Û(t� 1))

5: end for
6: Output: Û(T )

We now establish the convergence guarantee for Oja’s Algorithm (Algorithm 2) when observations
follow the equation (1). Unlike the noisy power method, Oja’s Algorithm is multiplicative in its
construction of the estimated subspace. We extend the existing analysis for Oja’s algorithm [3, 33, 34]
by considering a virtual block with B=B⇣=⇣�1 observations. Building upon the analysis framework
for the noisy power method and intuition from binomial approximation (1 + ⇣x)1/⇣ ' (1 + x) we
establish the convergence guarantees for Oja’s algorithm. Like the previous section, we decompose
the block with target M(`) and error matrix E

0
(`) as:

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ E[xtx
>
t ]) =

`BY

t=(`�1)B+1

(Ip⇥p + ⇣ E[x`Bx
>
`B ]) + E(`) = MOja(`) + e�̃+�2

E
0
(`) . (10)

where E
0 is scaled error matrix. In Lemma 2, we provide bound for scaled error matrix with respect

to the learning parameter ⇣, or the virtual block size B⇣ = ⇣�1 similar to Lemma 1. The proof is
provided in Appendix G.
Lemma 2 (Spectral norm of noise, Oja’s algorithm case). Assume that the observations (xt)

T
t=1

generated according to the Assumption 1. With probability greater than 1� 1/T , the matrices E 0
(`)

on the equation (10) are bounded by:

max
1`L

kE
0
(`)k 

s
2e2M2 log(pT 2)

B⇣
+

B⇣�

2
+O(B⇣�) , (11)

when the virtual block size B⇣ = ⇣�1 is larger than 2M
2
log(pT 2

).

The difference in parameter M, rather than V , as in the case of Lemma 1 arises due to the use of
a different concentration inequality. The estimator of the noisy power method averages the outer
product of vectors (equation (10)), making it straightforward to use Bernstein’s inequality. On the
other hand, Oja’s algorithm averages the product of random matrices rather than the sum of random
matrices. Therefore, we introduce the multiplicative concentration inequality [32], which requires
the (probabilistic) norm bound for matrices. Combining multiplicative concentration inequalities
with Lemma 2 and the techniques developed for the noisy power method, we obtain a convergence
guarantee for Oja’s algorithm in Theorem 3. The complete proof is provided in Appendix H.

Theorem 3 (Oja’s algorithm). Assume that � � 0.71 and � = O(�3/(e3(�̃��)
M

2
log(pT 2

))). When
the observations {xt}

T
t=1

satisfies the assumption 1, for ⇣�1
= ⇥(M

2/3
log(pT 2

)
1/3/�2/3

) we
have:

d(ran(AT ),OjaX ) = Õ

✓
e�̃

(M
2
� log(pT 2

))
1/3

�
+0.7⇣T

◆
, (12)

with probability 1� 2/T � c⌦(p�k+1)
� e�⌦(p).

Unlike the noisy power method, the upper bound in Theorem 3 is O(p2/3) rather than the optimal-
dependence of O(p1/3) from Theorem 1. It is unclear whether the upper bound can be improved.
Sharpening our analysis with a two-phase strategy [33, 39] (wherein the first phase identifies a good
initial point and the second phase establishes convergence given an initial point) might be an excellent
direction for future investigation.
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6 Numerical Results

Key observations from Theorem 2 and 3 on each algorithm illustrate; (i) the existence of the optimal
block size B and the learning rate ⇣ to obtain the minimum recovery error, and (ii) ��3/2 dependencies
of that optimal B and 1/⇣. In order to verify the established results for both algorithms, this section
provides the performance of algorithms for various environments. We synthesized the A = (At)

T
t=1

and sample X = (xt)
T
t=1

from A. We generate (At)
T
t=1
2 Rp⇥k as the product of three matrices,

Ut 2 Stp(Rp
),Dt 2 Rp⇥k(; diagonal), and Vt 2 Stk(Rk

). To obtain the matrix of the next step,
we rotate the first matrix as Ut = Ut�1Rt (Rt 2 SO(p)). The vectors xt are sampled from the
model (1). More details for experimental setup are described in Appendix I.

(a) Distance between true column space of AT (; U1:k)
and estimated space at t=T (; Û1:k) as � varies.

(b) Empirical optimal block size B and learning rate ⇣
as � varies.

Figure 1: Numerical results with synthesized streams of vectors. We used the setting (�, �, p, k)=
(0.15, 1.0, 100, 5).

Our first observation in Figure 1a is that convergence error decreases as the block size increases
without any covariance perturbation (�=0). This behavior is expected since increasing the number
of past information results in better accuracy guarantees for the recovered space in the absence of a
covariance shift. However, if the covariance perturbation exists (�>0), the optimal learning parameter
exists, and we have the smaller optimal block size with stronger perturbation. This phenomenon is
also expected since an increase in the adversarial budget implies that the past information becomes
less relevant. Our observations also corroborate our theoretical results in Theorem 1.

In Figure 1b, we focus on the optimal value of the block size B and the inverse of the learning rate
1/⇣ and its variation with the perturbation budget �. We plot the empirically optimal learning rate for
the case of the noisy power method and Oja’s algorithm with �

�2/3. We observe that the optimal
block size and the inverse learning rate are proportional to �

�2/3. This experimental dependency of
�
�2/3 verifies the theoretically prescribed results in Theorem 2 and 3.

6.1 Experiments on Stock Price Dataset

We provide the real-world benchmark using the S&P500 stock market dataset [44] in Kaggle to test
our findings in the non-stationary environment. Refer the Appendix J for the non-stationarity of
environments and further experimental details that do not appear in the main paper.

The stream of vectors consisted of 133(=p) companies’ normalized daily returns. Since each company
in S&P500 has a different time horizon of available information, we considered 133 companies with
the cost information from Mar.18, 1980, to Jul.22, 2022 (T =10677). Then we calculated the ‘daily
return,’ which is the difference of adjusted close cost between two days; normalized by the adjusted
close cost of the day. The stream of vectors from the environment can be seen as sampled from
time-varying distributions with � ' 0.17.

The objective is to predict the principal components of the covariance matrix of daily returns as
in [4, 54, 61]. We tested the noisy power method and Oja’s algorithm on the preprocessed stream.
For the target space AT , we used the k-dimensional subspace consisting of top-k singular vectors of
covariance estimator calculated with the final 500 samples (k=1, . . . , 5).
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Figure 2: S&P500 stock market daily return prediction, for k = 1, 2, . . . , 5.
The results in Figure 2 indicate that our findings are also valid in the real-world environment with
covariance shifts. First, each result shows optimal parameters regimes observed at the U-shaped
curves on recovery errors. Furthermore, the result on the noisy power method with varying block
size B is akin to the recovery error on Oja’s algorithm, plotted with scaled inverse learning rate ⇣�1.
These two observations support the main findings in Figure 1a. We also note that different scaling for
each k is natural since we have different spectral gaps � between k-th and k+1-th spectrums.

7 Conclusion
On the streaming PCA settings with time-varying covariance, we analyzed the fundamental lower
bound of the minimax error and estimation errors for the noisy power method and Oja’s algorithm.
Under this framework, when no perturbation exists (�=0), our theoretical result on a lower limit
coincides with the order of the traditional outcome. Furthermore, when perturbation exists (�>0), we
have a non-avoidable positive minimax recovery error, although the time horizon becomes arbitrarily
long. Next, we found that the noisy power method order-wisely achieves this recovery error and
becomes rate-optimal if the �2

= ⌦(k�/p). For the optimal learning parameters B or ⇣�1, we
showed that optimal block size and inverse learning rate minimizing recovery error are similar up to
a multiplicative factor and proportional to �

�3/2. Experimental results both on the synthetic data and
real-world environments support the theoretical findings on the learning parameters.

Although our analysis requires the spectral gap assumption, a recent line of literature considers
effective rank [12, 50] as a crucial metric. Therefore, establishing guarantees for robust streaming
PCA in terms of effective rank is a perfect direction for future work.
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