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Abstract

The Adam optimization algorithm has proven remarkably effective for optimization
problems across machine learning and even traditional tasks in geometry processing.
At the same time, the development of equivariant methods, which preserve their
output under the action of rotation or some other transformation, has proven to
be important for geometry problems across these domains. In this work, we
observe that Adam — when treated as a function that maps initial conditions to
optimized results — is not rotation equivariant for vector-valued parameters due
to per-coordinate moment updates. This leads to significant artifacts and biases
in practice. We propose to resolve this deficiency with VectorAdam, a simple
modification which makes Adam rotation-equivariant by accounting for the vector
structure of optimization variables. We demonstrate this approach on problems in
machine learning and traditional geometric optimization, showing that equivariant
VectorAdam resolves the artifacts and biases of traditional Adam when applied to
vector-valued data, with equivalent or even improved rates of convergence.

1 Introduction

Over the last decades, gradient-based optimization has enabled rapid progress in machine learning
and related fields. To tackle the problems caused by large variance of network weight gradients,
researchers have developed adaptive variants of stochastic gradient descent such as Adam [11], which
adaptively rescale the step size based on per-scalar gradient statistics to accelerate convergence.

In the field of computer graphics and geometry processing, we also see an increasing use of Adam to
optimize geometric energies. For example, the progress in differentiable rendering made derivatives
on rendering parameters such as geometry, lighting and texture parameters amenable to these gradient-
based optimization techniques. Two recent differentiable rendering works [20, 14] default to Adam
for their experiments. Recently, we also see the successful use of a customized Adam algorithm for
optimizing geometric interpolation weights [31]. This work taps into this trend and takes a closer
look at the use of Adam in geometric optimization problems in geometry processing and machine
learning.

Another important concern in geometric learning is the design of equivariant functions, which have
the property that rotating the input to the function causes the output to rotate in the same way. This
property is natural for many geometric problems, where the choice of coordinate system is arbitrary.
In this work we adopt the perspective that the optimization process is itself a function, mapping initial
conditions to optimized results, and it is likewise expected that this function be equivariant. The
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widely-used Adam algorithm lacks this property, because its per-scalar statistics do not account for
vector structure in the optimization variables. In particular, we show that Adam updates depend on
the coordinate system chosen to represent vector-valued data, even if the minimized loss function is
coordinate invariant. This leads to unexpected coordinate-dependent artifacts and biases, even when
optimizing simple geometric regularization energies.

We propose VectorAdam, a solution that extends Adam’s per-scalar operations to vectors. We test
VectorAdam on a number of machine learning and geometric optimization problems including
geometry and texture optimization through differentiable rendering, adversarial descent, surface
parameterization, and Laplacian smoothing. We find that like regular Adam, VectorAdam outperforms
traditional first-order gradient descent, yet unlike regular Adam it is provably rotation equivariant.

2 Related Work

Many techniques have been proposed for gradient-based optimization in machine learning and in
numerical computing more broadly (see [28] for a general survey). We will primarily consider first
order methods, which take as input only the gradient of the objective function with respect to the
unknown parameters, and produce as output updated parameters after the optimization step. For large
neural networks, loss gradients are often estimated stochastically on a subset of the loss function [25],
however optimizers are generally agnostic to how the input gradients are computed. VectorAdam is
no exception and works with stochastic samples or full gradients.

Numerical Optimization The most direct approach is to simply update the parameters directly
via (stochastic) gradient descent, but this approach can be improved in many respects. In numerical
optimization literature, techniques like momentum [18] and line search [21] offer accelerated conver-
gence over basic gradient descent. More advanced techniques such as BFGS [8, 16] and conjugate
gradient [10] make higher-order approximations of the objective landscape, while still taking only
gradients as input.

Optimization in Machine Learning Machine learning, and in particular the training of deep
neural networks, demands optimizers which have low computational overhead, scale to very high
dimensional problems, avoid full loss computation, and naturally escape from shallow local minima.
Here, many optimizers have been developed following the basic pattern of tracking O(1) additional
data associated with each parameter to smooth and rescale gradients to generate updates [6, 34,
30, 11]. All of these methods can be shown to have various strengths, but Adam [11] has emerged
as a particularly popular black-box optimizer for machine learning. The crux of our work is to
identify a key flaw in Adam when optimizing geometric problems in machine learning and beyond,
and to present a simple resolution. We focus primarily on Adam due to its ubiquity and recent
relevance in geometric optimization more broadly, but our core insights could be applied to many
other gradient-based optimization schemes in much the same way.

Variants of Adam A number of variants have been proposed to improve Adam’s performance in
training neural networks. For example, NAdam [5] incorporates Nestorov momentum into Adam’s
formulation to improve rate of convergence, and RAdam [17] introduces a term to rectify the variance
of the adaptive learning rate, among many others. Most similar to this work, Zhang et al. [37]
(also published as [36]) propose ND-Adam, which preserves the direction of weight vectors during
updates to improve generalization. Like our approach, Zhang et al. explicitly leverage the vector
structure of optimization variables. However, their approach does so for the sake of generalization
and memory savings rather than equivariance, and it produces magnitude-only updates to vectors
which are unsuitable for geometric problems where points must move freely through space.

Adam in Geometry Recent work in 3D geometry processing has leveraged Adam to great effect,
adjusting the algorithm for the problem domain. Nicolet et al. [19] proposed UniformAdam, which
takes the infinity norm of the second momentum term, improving performance for differentiable
rendering tasks. Wang et al. [31] customized their own Adam optimizer by resetting the momentum
terms regularly in the optimization process, outperforming traditional L-BFGS on a challenging
benchmark. This work aims to further this trend of Adam as a general optimization tool by modifying
it to have the rotation-equivariance properties which are fundamental to geometric computing.
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Rotation Invariance and Equivariance This work contributes to the fruitful study of invariance
and equivariance in geometric machine learning [1]. When some transformation is applied to the
input, an invariant method produces the same output, while an equivariant produces equivalently-
transformed output. In our context, one expects that if the input to a geometric optimization problem
is rotated, the output will be identical up to the same rotation—the optimizer is equivariant. Many
novel invariant and equivariant layers, architectures, losses, and regularizers have been developed
across geometric machine learning (see [29, 32, 7, 12, 3, 23, 35, 9, 15, 4], among many others). In
this work, we argue that optimizers deserve the same treatment.

3 Background and Motivation

3.1 Adaptive Moment Estimation (Adam)

Given an objective function f parameterized by � and its gradient g, the first-order optimization
algorithm Adam adaptively rescales gradients of its tth iteration using rolling estimations of first (m)
and second moments (v) dictated by the following rules: for each scalar variable �i,
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where �1; �2; � are Adam’s hyperparameter constants[11] and � is the specified learning rate.

Adam’s optimization step is invariant to any uniform re-scaling of the gradients’ magnitudes. The
gradient is adjusted take a value of roughly �1, bounding the effective step size by the learning rate
�. This makes it particularly suitable for problems with gradients of large variance and unknown
scaling, such as neural network optimization.

3.2 Problems in Geometry Optimization

        Adam VectorAdam

Figure 1: Geometric optimization results
on two sample inputs arising in a differ-
entiable rendering task. Ordinary Adam
results in axis-aligned artifacts, which are
resolved by using VectorAdam instead.

In recent years, we also see an increasing use of Adam
in geometry optimization problems such as differen-
tiable rendering [13, 20, 14]. In this problem domain,
the target parameters are usually geometric quantities
such as vertex positions of a triangle mesh, surface
normal vectors, and camera positions. For all of these
quantities, the vector form of their gradients encodes
important geometric information that are tied to the
specific coordinate system in which the problem is em-
bedded.

Traditional Adam, originally devised for network
weight optimization, does not account for the vector na-
ture of gradients in geometry problems. The optimiza-
tion process is thus not rotation equivariant—a funda-
mental property expected in practice—and furthermore
optimization may be more unstable. Figure 1 shows an
example of traditional Adam’s component-wise oper-
ations creating self-intersections and axis-aligned arti-
facts, observed in an inverse rendering problem.

When we consider gradients vector-wise, regular Adam’s uniform re-scaling does not preserve the
norm and the direction of the gradients. In most cases, Adam’s algorithm re-scales gradient to the
magnitude of �1, restricting each optimization step within a trust region of the current parameter
defined by the size of the learning rate � [11].

This, however, is problematic in a geometry optimization context. When all components of a gradient
vector are re-scaled to be of magnitude 1, the gradient vector snaps to the diagonal direction of
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