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Abstract

Pre-training on time series poses a unique challenge due to the potential mismatch
between pre-training and target domains, such as shifts in temporal dynamics,
fast-evolving trends, and long-range and short-cyclic effects, which can lead to
poor downstream performance. While domain adaptation methods can mitigate
these shifts, most methods need examples directly from the target domain, making
them suboptimal for pre-training. To address this challenge, methods need to
accommodate target domains with different temporal dynamics and be capable
of doing so without seeing any target examples during pre-training. Relative
to other modalities, in time series, we expect that time-based and frequency-
based representations of the same example are located close together in the time-
frequency space. To this end, we posit that time-frequency consistency (TF-C) —
embedding a time-based neighborhood of an example close to its frequency-based
neighborhood — is desirable for pre-training. Motivated by TF-C, we define a
decomposable pre-training model, where the self-supervised signal is provided by
the distance between time and frequency components, each individually trained by
contrastive estimation. We evaluate the new method on eight datasets, including
electrodiagnostic testing, human activity recognition, mechanical fault detection,
and physical status monitoring. Experiments against eight state-of-the-art methods
show that TF-C outperforms baselines by 15.4% (F1 score) on average in one-to-
one settings (e.g., fine-tuning an EEG-pretrained model on EMG data) and by 8.4%
(precision) in challenging one-to-many settings (e.g., fine-tuning an EEG-pretrained
model for either hand-gesture recognition or mechanical fault prediction), reflecting
the breadth of scenarios that arise in real-world applications. The source code and
datasets are available at https://github.com/mims-harvard/TFC-pretraining.

1 Introduction

Time series plays important roles in many areas, including clinical diagnosis, traffic analysis, and
climate science [1, 2, 3, 4, 5, 6]. While representation learning has considerably advanced analysis
of time series [7, 8, 9] more broadly [10], learning generalizable representations for temporal data
remains a fundamentally challenging problem [8, 11]. There are numerous immediate benefits from
generating such representations, of which pre-training capability is particularly desirable and of
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Figure 1: a. Illustration of Time-Frequency Consistency (TF-C). Time-based embedding zT
i and frequency-

based embedding zF
i of time series sample xT

i , along with z̃T
i and z̃F

i learned from augmentations of xT
i , should

be close to each other in the latent time-frequency space. b. Leveraging TF-C property in time series to optimize
a pre-training model F with parameters Θ that get fine-tuned to Φ on a small scenario-specific dataset.

great practical importance [12, 13]. Central to pre-training is a question of how to process time
series in a diverse dataset to greatly improve generalization on new time series coming from different
datasets [14, 15, 10]. By training a neural network model on a dataset and transferring it to a new
target dataset for fine-tuning, i.e., without explicit retraining on that target data, we expect the resulting
performance to be at least as good as that of state-of-the-art models tailored to the target dataset.

However, unfortunately, the expected performance gains are often not realized for a variety of reasons
(e.g., distribution shifts, properties of the target dataset unknown during pre-training) [16, 17] that
get compounded by the complexity of time series: large variations of temporal dynamics across
datasets, varying semantic meaning, irregular sampling, system factors (e.g., different devices or
subjects), etc. [18, 17]. This complexity of time series limits the utility of knowledge transfer for
pre-training [19, 20]. For example, pre-training a model on a diverse time series dataset with mostly
low-frequency components (smooth trends) may not lead to positive transfer on downstream tasks
with high-frequency components (transient events) [17]. Examining these challenges can provide
clues to what kind of inductive biases could facilitate generalizable representations of time series –
this paper offers a strategy for that through a novel time-frequency consistency principle.

In addition, target datasets are not available during pre-training (different from domain adaption [21];
Appendix A), requiring that the pre-training model captures a latent property that holds true for
previously unseen target datasets. At the center of this desideratum is the idea of a property that
would be shared between pre-training and target datasets and would enable knowledge transfer from
pre-training to fine-tuning. In computer vision (CV), pre-training is driven by findings that initial
neural layers capture universal visual elements, such as edges and shapes, that are relevant regardless
of image style and tasks [22]. In natural language processing (NLP), the foundation for pre-training
is given by linguistic principles of semantics and grammar shared across different languages [23].
However, due to the aforementioned temporal complexity, such a principle for pre-training on time
series has not yet been established. Moreover, supervised pre-training requires access to large
annotated datasets, which limits its use in domains where richly labeled datasets are scarce [24, 25].
For example, in medical applications, labeling data at scale is often infeasible or can be expensive and
noisy (experts can disagree on ground-truth labeling [26, 27], e.g., whether an ECG signal indicates a
normal vs. abnormal rhythm) [28, 29]. To mitigate these issues, self-supervised learning emerged as
a promising strategy to sidestep the lack of labeled datasets [30].
Present work. We introduce a strategy for self-supervised pre-training in time series by modeling
Time-Frequency Consistency (TF-C). TF-C specifies that time-based and frequency-based representa-
tions, learned from the same time series sample, should be closer to each other in the time-frequency
space than representations of different time series samples. Specifically, we adopt contrastive learn-
ing in time-space to generate a time-based representation. In parallel, we propose a set of novel
augmentations based on the characteristic of the frequency spectrum and produce a frequency-based
embedding through contrastive instance discrimination. This is the first work to develop frequency-
based contrastive augmentation to leverage rich spectral information and explore time-frequency
consistency in time series. The pre-training objective is to minimize the distance between time-based
and frequency-based embeddings using a novel consistency loss (Figure 1 (a)). The self-supervised
loss is used to optimize the pre-training model and enforce consistency between time and frequency
domains in the latent space. The learned relationship encoded in model parameters are transferred to
initialize the fine-tuning model and improve performance in datasets of interest (Figure 1 (b)).
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We evaluate the TF-C model on eight time series datasets under two evaluation settings (i.e., one-
to-one and one-to-many). The eight datasets cover a large set of variations: different numbers of
channels (from univariate to 9-channel multivariate), varying time series lengths (from 128 to 5,120),
different sampling rates (from 16 Hz to 4,000 Hz), different scenarios (neurological healthcare,
human activity recognition, mechanical fault detection, physical status monitoring, etc.) and diverse
types of signals (EEG, EMG, ECG, acceleration, and vibration). We compare TF-C approach to
eight state-of-the-art baselines. Results show that TF-C achieves positive transfer, outperforming all
baselines by a large margin of 15.4% (F1 score) on average. Further, the approach outperforms the
strongest baselines with an improvement of up to 7.2% in the F1 score. Finally, the TF-C approach
improves prior work by 8.4% in precision (when pre-training the model on sleep EEG signals and
fine-tuning it on hand-gesture recognition) in challenging one-to-many setups that apply the same
pre-trained model to multiple independent fine-tuning datasets.

2 Related Work

Pre-training for time series. Although there are studies on self-supervised representation learning for
time series [7, 8, 31, 32] and self-supervised pre-training for images [33, 34, 35, 24], the intersection
of these two areas, i.e., self-supervised pre-training for time series, remains underexplored. In time
series, it’s not obvious what reasonable assumptions can bridge pre-training and target datasets.
Hence, pre-training models in CV [36, 37, 14] and NLP [10, 15, 38] are not directly applicable
due to data modality mismatch, and the existing results leave room for improvement [31, 39, 40].
Shi et al. [12] developed the only model to date that is explicitly designed for self-supervised time
series pre-training. The model captures the local and global temporal pattern, but it is not convincing
why the designed pretext task can capture generalizable representations. Although several studies
applied transfer learning in the context of time series [7, 8, 18, 41], there is no foundation yet of
which conceptual properties are most suitable for pre-training on time series and why. Addressing
this gap, we show that TF-C, designed to be invariant to different time-series datasets, can produce
generalizable pre-training models.

Unlike domain adaptation [21, 42] that requires access to target datasets during training, pre-training
models do not have access to fine-tuning datasets. As a result, one needs to identify a generalizable
time-series property to benefit from pre-training. Further, self-supervised domain adaptation does not
need labels in the target dataset but still requires labels for model training [43, 44]. In contrast, TF-C
does not need any labels during pre-training.

Contrastive learning with time series. Contrastive learning, a popular type of self-supervised
learning, aims to learn an encoder that maps inputs into an embedding space such that positive sample
pairs (original augmentation and another alternative augmentation/view of the same input sample)
are pulled closer and negative sample pairs (original augmentation and an alternative input sample
augmentation) are pushed apart [30, 45]. Contrastive learning in time series is less investigated in
comparison, partly due to the challenge of identifying augmentations that capture key invariance
properties in time series data. For example, CLOCS defines adjacent time segments as positive
pairs [41], and TNC assumes overlapping temporal neighborhoods have similar representations [46].
These methods leverage temporal invariance to define positive pairs which are used to calculate con-
trastive loss, but other invariances, such as transformation invariance (e.g., SimCLR [40]), contextual
invariance (e.g., TS2vec [47] and TS-TCC [48]) and augmentations are possible. In this work, we
propose an augmentation bank that exploits multiple invariances to generate diverse augmentations
(Sec. 4.1), which adds richness to the pre-training model [48]. Importantly, we propose frequency-
based augmentations by perturbing the frequency spectrum of time series (e.g., adding or removing
the frequency components and manipulating their amplitude; more details in Sec. 4.2) to learn better
representations by exposing the model to a local range of frequency variations. In previous work,
CoST processes sequential signals through the frequency domain, but the augmentations are still
implemented in time space [49]. Similarly, although BTSF [50] involves frequency domain, its data
transformation is solely implemented in the time domain using instance-level dropout. Additional
commentary on differences between CoST and BTSF is in Appendix B. To the best of our knowledge,
this is the first work that directly perturbs the frequency spectrum to leverage frequency-invariance
for contrastive learning. Further, we develop a pre-training model that subjects to TF-C upon two
individual contrastive encoders.
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3 Problem Formulation

We are given a pre-training dataset Dpret = {xpret
i | i = 1, . . . , N} of unlabeled time series samples

where sample xpret
i has Kpret channels and Lpret timestamps. Let Dtune = {(xtune

i , yi) | i = 1, . . . ,M}
be a fine-tuning (i.e., target; target and fine-tuning are used interchangeably) dataset of labeled time
series samples, each having K tune channels and Ltune timestamps. Furthermore, every sample xtune

i is
associated with a label yi ∈ {1, . . . , C}, where C is the number of classes. Without loss of generality,
in the following descriptions, we focus on univariate (single-channel) time series, while noting that
our approach can accommodate multivariate time series of varying lengths across datasets (shown in
experiments in Sec. 5.2). We use superscript symbol ˜ to denote contrastive augmentations. We note
that xT

i ≡ xi denotes an input time series sample, and xF
i denotes discrete frequency spectrum of xi.

Problem (Self-Supervised Contrastive Pre-Training For Time Series). Given are an unlabeled
pre-training dataset Dpret with N samples and a target dataset Dtune with M samples (M ≪ N ).
The goal is to use Dpret to pre-train a model F so that by fine-tuning model parameters on Dtune, the
fine-tuned model produces generalizable representations ztune

i = F(xtune
i ) for every xtune

i .

We follow an established setup, e.g., [41]: for pre-training, only the unlabeled dataset Dpret is available
while, for fine-tuning, a small labeled dataset Dtune can be used. In short, a model F is pre-trained on
the unlabeled time series dataset Dpret and its optimized model parameters Θ are fine-tuned to go
from F(·,Θ) to F(·,Φ) using the dataset Dtune. The Φ denotes fine-tuned model parameters. Note
that this problem (i.e., Dpret is independent of the target dataset) is distinct from domain adaptation as
fine-tuning dataset Dtune is not accessed during pre-training. As a result, the pre-trained model can be
used with many different fine-tuning datasets without re-training.
Rationale for Time-Frequency Consistency (TF-C). The central idea is to identify a general
property that is preserved across time series datasets and use it to induce transfer learning for
effective pre-training. The time domain shows how sensor readouts change with time, whereas the
frequency domain shows how much of the signal lies within each frequency component over the entire
spectrum [51]. Explicitly considering the frequency domain can provide an understanding of time
series behavior that cannot be directly captured solely in the time domain [52]. However, existing
contrastive methods (e.g., [47, 48]) focus exclusively on modeling the time domain and ignore the
frequency domain altogether. One can argue that approach is sufficient in the case of high-capacity
methods as time and frequency domains are different views of the same data [53], which can be
cross-translated using transformation, such as Fourier and inverse Fourier [54, 52]. The relationship
between the two domains, grounded in signal processing theory, provides an invariance that is valid
regardless of the time series distribution [55, 56] and thus can serve as an inductive bias for pre-
training. Appendix C provides a commentary with analogies for images. Approaching this invariance
through the lens of representation learning, we next formulate Time-Frequency Consistency (TF-C).
The TF-C property postulates there exists a latent time-frequency space such that for every sample
xi, time-based representation zT

i and frequency-based representation zF
i of the same sample, together

with their local augmentations (defined later), are close to each other in the latent space.

Representational Time-Frequency Consistency (TF-C). Let xi be a time series and F be a model
satisfying TF-C. Then, time-based representation zT

i and frequency-based representation zF
i as well

as representations of xi’s local augmentations are proximal in the latent time-frequency space.

Our strategy is to use dataset Dpret to induce TF-C in F’s model parameters Θ, which, in turn, are
used to initialize the target model on Dtune and produce generalizable representations for downstream
prediction. The invariant nature of TF-C means that the approach can bridge Dpret and Dtune even
when large discrepancies exist between them (in terms of temporal dynamics, semantic meaning,
etc.), providing a vehicle for a general pre-training on time series.

To realize TF-C, our model F has four components (Figure 2): a time encoder GT, a frequency
encoder GF, and two cross-space projectors RT and RF that map time-based and frequency-based
representations, respectively, to the same time-frequency space. Together, the four components
provide a way to embed xi to the latent time-frequency space such that the time-based embedding
zT
i = RT(GT(x

T
i )) and the frequency-based embedding zF

i = RF(GF(x
F
i)) are close together.
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Figure 2: Overview of TF-C approach. Our TF-C pre-training model F has four components: a time encoder
GT, a frequency encoder GF, and two cross-space projectors RT and RF. For an input time series xi, the model
produces time-based representations (i.e., zT

i and z̃T
i of input xi and its augmented version, respectively) and

frequency-based representations (i.e., zF
i and z̃F

i of input xi and its augmented version, respectively). The TF-C
property is realized by promoting the alignment of time- and frequency-based representations in the latent
time-frequency space, providing a vehicle for transferring F to a target dataset not seen before.

4 Our Approach

Next, we present the architecture of the developed self-supervised contrastive pre-training model F .
Unless specified otherwise, the data mentioned in this section are from pre-training dataset and the
superscript pret is omitted for simplification. Here we describe the model using univariate time series
as an example, but our model can be straightforwardly applied to multivariate time series (Sec 5).

4.1 Time-based Contrastive Encoder

For a given input time series sample xi, we generate an augmentation set X T
i through a time-based

augmentation bank BT : xT
i → X T

i . Each element x̃T
i ∈ X T

i is augmented from xi based on
the temporal characteristics. Here, the time-based augmentation bank includes jittering, scaling,
time-shifts, and neighborhood segments, all well-established in contrastive learning [40, 48, 41].
We develop an augmentation bank to produce diverse augmentations (rather than a single type of
augmentation) and expose the model to complex temporal dynamics, which produces more robust
time-based embeddings [48].

For the input xi, we randomly select an augmented sample x̃T
i ∈ X T

i and feed into a contrastive
time encoder GT that maps samples to embeddings. We have hT

i = GT(x
T
i ) and h̃T

i = GT(x̃
T
i ). As

x̃T
i is generated based on xT

i , after passing through GT, we assume the embedding of xT
i is close to

the embedding of x̃T
i but far away from the embedding of xT

j and x̃T
j that are derived from another

sample xT
j ∈ Dpret [34, 47, 41]. In specific, we select the positive pair as (xT

i , x̃
T
i ) and negative pairs

as (xT
i ,x

T
j) and (xT

i , x̃
T
j) [34].

Contrastive time loss. To maximize the similarity within a positive pair and minimize the similarity
within a negative pair, we adopt the NT-Xent (the normalized temperature-scaled cross entropy loss)
as distance function d which is widely used in contrastive learning [34, 40]. In specific, we define the
loss function of the time-based contrastive encoder in terms of sample xT

i as:

LT,i = d(hT
i , h̃

T
i ,Dpret) = −log

exp(sim(hT
i , h̃

T
i )/τ)∑

xj∈Dpret 1i ̸=jexp(sim(hT
i , GT(xj))/τ)

, (1)

where sim(u,v) = uTv/ ∥u∥ ∥v∥ denotes the cosine similarity, the 1i ̸=j is an indicator function
that equals to 0 when i = j and 1 otherwise, and τ is a temporal parameter to adjust scale. The
xj ∈ Dpret refers to a different time series sample or its augmented sample. This loss function
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urges the time encoder GT to generate closer time-based embeddings for positive pairs and push the
embeddings for negative pairs apart from each other.

4.2 Frequency-based Contrastive Encoder

We generate the frequency spectrum xF
i from a time series sample xT

i through a transform operator
(e.g., Fourier Transformation [54]). The frequency information in time series is universal and plays
a key role in classic signal processing [57, 53, 55], but it is rarely investigated in self-supervised
contrastive representation learning for time series [58]. In this section, we develop augmentation
method to perturb xF

i based on characteristics of frequency spectra and show how to generate
frequency-based representations.

As every frequency component in the frequency spectrum denotes a basis function (e.g., sinusoidal
function for Fourier transformation) with the corresponding frequency and amplitude, we perturb
the frequency spectrum by adding or removing frequency components. A small perturbation in the
frequency domain may cause large changes to the temporal patterns in the time domain [55]. To make
sure the perturbed time series is still similar to the original sample (not only in frequency domain
but also in time domain; Figure 6), we use a small budget E in the perturbations where E denotes
the number of frequency components we manipulate. While removing frequency components, we
randomly select E frequency components and set their amplitudes to 0. While adding frequency
components, we randomly choose E frequency components from the ones have smaller amplitude
than α · Am, and increase their amplitude to α · Am. The Am is the maximum amplitude in the
frequency spectrum and α is a pre-defined coefficient to adjust the scale of the perturbed frequency
component (α = 0.5 in this work). We produce an augmentation set X F

i for xF
i through frequency-

augmentation bank BF : xF
i → X F

i . As described above, we have two augmentation methods (i.e.,
removing or adding frequency components) in BF, |X F

i | = 2. Details on the exploration of frequency
augmentation strategies are covered in Appendix J.

We utilize a frequency encoder GF to map the frequency spectrum (e.g., xF
i ) to a frequency-based

embedding (e.g., hF
i = GF(x

F
i)). We assume the frequency encoder GF can learn similar embedding

for the original frequency spectrum xF
i and a slightly perturbed frequency spectrum x̃F

i ∈ X F
i . Thus,

we set the positive pair as (xF
i , x̃

F
i) and the negative pairs as (xF

i ,x
F
j) and (xF

i , x̃
F
j).

Contrastive frequency loss. We calculate frequency-based contrastive loss for sample xi as:

LF,i = d(hF
i , h̃

F
i ,Dpret) = −log

exp(sim(hF
i , h̃

F
i)/τ)∑

xj∈Dpret 1i̸=jexp(sim(hF
i , GF(xj))/τ)

. (2)

In preliminary experiments, we find that the value of τ has little effect on performance and use the
same τ throughout all experiments. The LF,i yield a frequency encoder GF producing embeddings
invariant to frequency spectrum perturbations.

4.3 Time-Frequency Consistency

We develop a consistency loss item LC,i to urge the learned embeddings to satisfy TF-C: for a given
sample, its time-based and frequency-based embeddings (and their local neighborhoods) are supposed
to be close to each other (see Sec. 3 for justification). To make sure the distance between embeddings
is measurable, we map hT

i from time space and hF
i from frequency space to a joint time-frequency

space through projectors RT and RF, respectively. In specific, for every input sample xi, we have
four embeddings, which are zT

i = RT(h
T
i ), z̃

T
i = RT(h̃

T
i ), z

F
i = RF(h

F
i), and z̃F

i = RF(h̃
F
i). The first

two embeddings are generated based on temporal characteristics and the latter two embeddings are
produced based on the properties of frequency spectrum.

To enforce the embeddings in the time-frequency space subject to TF-C, we design a consistency loss
LC,i that measures the distance between a time-based embedding and a frequency-based embedding.
We use STF

i = d(zT
i , z

F
i ,Dpret) to denote the distance between zT

i and zF
i ). Similarly, we define STF̃

i ,
S T̃F
i , and S T̃F̃

i . Note, in this time-frequency space, we don’t consider the distance between zT
i and z̃T

i
where the two embeddings are from the same domain (i.e., time domain). The same applies to pair
the distance between zF

i and z̃F
i . We have already considered information of above two pairs in the

calculation of LT,i and LF,i.
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Next, let’s closely observe STF
i and STF̃

i that involve three embeddings: zT
i , zF

i , and z̃F
i . Here, zT

i and
zF
i are learned from the original sample (xT

i and xF
i ) while z̃F

i is learned from the augmented x̃F
i . Thus,

intuitively, zT
i should be closer to zF

i in comparison to z̃F
i . Motivated by the relative relationship, we

encourage the proposed model to learn a STF
i that is smaller than STF̃

i . Inspired by the triplet loss [59],
we design (STF

i − STF̃
i + δ) as a term of consistency loss LC,i where δ is a given constant margin

to keep negative samples far apart [60]. This term optimizes the model towards a smaller STF
i and

relatively larger STF̃
i . Similarly, STF

i is supposed to be smaller than S T̃F
i and S T̃F̃

i . In summary, we
calculate the consistency loss LC,i for sample xi by:

LC,i =
∑
Spair

(STF
i − Spair

i + δ), Spair ∈ {STF̃
i , S T̃F

i , S T̃F̃
i }, (3)

where Spair
i denotes the distance between a time-based embedding (e.g., zT

i or z̃T
i ) and a frequency-

based embedding (e.g., zF
i or z̃F

i ). In each pair, there is at least one embedding that is derived from
augmented sample instead of the original sample. The δ is a pre-defined constant. By combining
all the triplet loss items, LC encourages the pre-training model to capture the consistency between
time-based and frequency-based embeddings in model optimization. Note, although the Eq. 3 does
not explicitly measure the loss across different time series samples (e.g., xi and xj), the cross-sample
relationships are implicitly covered in the calculation of STF

i and Spair
i .

4.4 Implementation and Technical Details

The overall loss function in pre-training has three terms. First, the time-based contrastive loss LT

urges the model to learn embeddings invariant to temporal augmentations. Second, the frequency-
based contrastive loss LF promotes learning of embeddings invariant to frequency spectrum-based
augmentations. Third, the consistency loss LC guides the model to retain the consistency between
time-based and frequency-based embeddings. In summary, the pre-training loss is defined as:

LTF-C,i = λ(LT,i + LF,i) + (1− λ)LC,i (4)
where λ controls the relative importance of the contrastive and consistency losses. We calculate the
total loss by summing LTF-C,i across all pre-training samples. In implementation, the contrastive
losses are calculated within the batch. From our problem definition, the model F we want to learn is
the combination of neural networks GT, RT, GF, and RF. When pre-training is completed, we store
parameters of entire model, and denote it as F(·,Θ) where Θ represents all trainable parameters.
When a sample xtune

i is presented, fine-tuned model F generates an embedding ztune
i via concatenation

as: ztune
i = F(xtune

i ,Φ) = [ztune,T
i ; ztune,F

i ] where Φ are fine-tuned model’s parameters.

5 Experiments

We compare the developed TF-C model with 10 baselines on 8 diverse datasets. We investigate the
time series classification tasks in the context of one-to-one and one-to-many transfer learning setups
(the many-to-one setting is fundamentally different as discussed in Appendix K). We also assess
TF-C in extensive downstream tasks including clustering and anomaly detection.

Datasets. (1) SLEEPEEG [61] has 371,055 univariate brainwaves (EEG; 100 Hz) collected from 197
individuals. Each sample is associated with one of five sleeping stages. (2) EPILEPSY [62] monitors
the brain activities of 500 subjects with single-channel EEG sensor (174 Hz). A sample is labeled in
binary based on whether the subject has epilepsy or not. (3) FD-A [63] gathers the vibration signals
from rolling bearing from a mechanical system aiming at fault detection. Every sample has 5,120
timestamps and an indicator for one out of three mechanical device states. (4) FD-B [63] has the
same setting as the FD-A but the rolling bearings are performed in different working conditions (e.g.,
varying rotational speed). (5) HAR [64] has 10,299 9-dimension samples from 6 daily activities.
(6) GESTURE [65] includes 440 samples that are collected from 8 hand gestures recorded by an
accelerometer. (7) ECG [26] contains 8,528 single-sensor ECG recordings with sorted into four
classes based on human physiology. (8) EMG [66] consists of 163 EMG samples with 3-class labels
implying muscular diseases. Dataset labels are not used in pre-training. Further dataset statistics are
in Appendix D and Table 3.

Baselines. We consider 10 baseline methods. This includes 8 state-of-the-art methods: TS-SD [12],
TS2vec [47], CLOCS [41], Mixing-up [18], TS-TCC [48], SimCLR [40], TNC [46], and CPC [30].
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Table 1: One-to-one pre-training evaluation (Scenario 3). Pre-training is performed on HAR, followed by
fine-tuning on GESTURE. Results for other three scenarios are shown in Tables 4-6.

Models Accuracy Precision Recall F1 score AUROC AUPRC
Non-DL (KNN) 0.6766±0.0000 0.6500±0.0000 0.6821±0.0000 0.6442±0.0000 0.8190±0.0000 0.5231±0.0000

Random Init. 0.4219±0.0865 0.4751±0.0925 0.4963±0.1026 0.4886±0.0967 0.7129±0.1206 0.3358±0.1194

TS-SD 0.6937±0.0533 0.6806±0.0496 0.6883±0.0525 0.6785±0.0495 0.8708±0.0305 0.6261±0.0790

TS2vec 0.6453±0.0260 0.6287±0.0339 0.6451±0.0218 0.6261±0.0294 0.8890±0.0054 0.6670±0.0118

CLOCS 0.4731±0.0229 0.4639±0.0432 0.4766±0.0266 0.4392±0.0198 0.8161±0.0068 0.4916±0.0103

Mixing-up 0.7183±0.0123 0.7001±0.0166 0.7183±0.0123 0.6991±0.0145 0.9127±0.0018 0.7654±0.0071

TS-TCC 0.7593±0.0242 0.7668±0.0257 0.7566±0.0231 0.7457±0.0210 0.8866±0.0040 0.7217±0.0121

SimCLR 0.4383±0.0652 0.4255±0.1072 0.4383±0.0652 0.3713±0.0919 0.7721±0.0559 0.4116±0.0971

TF-C (Ours) 0.7824±0.0237 0.7982±0.0496 0.8011±0.0322 0.7991±0.0296 0.9052±0.0136 0.7861±0.0149

The TS2Vec, TS-TCC, SimCLR, TNC, and CPC are designed for representation learning on a single
dataset rather than for transfer learning, so we apply them to fit our settings and make the results
comparable. As the training of TNC and CPC are very time-consuming and relatively less competitive
(Table 4), we only compare them in the one-to-one setting (scenario 1) while not in other experiments.
To examine the utility of pre-training, we consider two additional approaches that are applied directly
to fine-tuning datasets without any pre-training: Non-DL (a non-deep learning KNN model) and
Random Init. (randomly initializes the fine-tuning model). The evaluation metrics are accuracy,
precision (macro-averaged), recall, F1 score, AUROC, and AUPRC.
Implementation. We use two 3-layer 1-D ResNets [67] as backbones for encoders GT and GF.
Our datasets contain long time series (samples in FD-A and FD-B have 5,120 observations), and
preliminary experiments identified ResNet as a better option than a Transformer variant [68]. We use
2 fully-connected layers for RT and RF, with no sharing of parameters. We set E = 1 and α = 0.5
in frequency augmentations and τ = 0.2, δ = 1, λ = 0.5 in loss functions. Reported are mean and
standard deviation values across 5 independent runs (both pre-training and fine-tuning) on the same
data split. Results for KNN (K=2) do not change so the standard deviation is zero. Method details
and hyper-parameter selection are in Appendix E.

5.1 Results: One-to-One Pre-Training Evaluation

Setup. In one-to-one evaluation, we pre-train a model on one pre-training dataset and use it for
fine-tuning on one target dataset only. Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1Scenario 1 (SLEEPEEG → EPILEPSY): Pre-training is done on
SLEEPEEG and fine-tuning on EPILEPSY. While both datasets describe a single-channel EEG, the
signals are from different channels/positions on scalps, track different physiology (sleep vs. epilepsy),
and are collected from different patients. Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2Scenario 2 (FD-A → FD-B): Datasets describe mechanical
devices that operate in different working conditions, including rotational speed, load torque, and
radial force. Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3Scenario 3 (HAR → GESTURE): Datasets record different activities (6 types of human
daily activities vs. 8 hand gestures). While both datasets contain acceleration signals, HAR has 9
channels while GESTURE has 1 channel. Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4Scenario 4 (ECG → EMG): While both are physiological
datasets, the ECG records the electrical signal from the heart whereas EMG measures muscle response
in response to a nerve’s stimulation of the muscle. We note that the discrepancies between pre-training
and fine-tuning datasets in the above four scenarios are substantial, and they cover a diverse range of
variation in time series datasets: varying semantic meaning, sampling frequency, time series length,
number of classes, and system factors (e.g., number of devices or subjects). The setup is further
challenged by the relatively small number of samples available for fine-tuning (EPILEPSY: 60; FD-B:
60; GESTURE: 480; EMG: 122). Further details are in Appendix F.
Results. The results for the four scenarios are shown in Table 1 and Tables 4-6. Overall, our TF-C
model has won 16 out of 24 tests (6 metrics in 4 scenarios) and is the second-best performer in
only 8 other tests. We report all metrics but discuss the F1 score in the following. On average, our
TF-C model claims a large margin of 15.4% over all baselines. Although the strongest baseline
is varying (such as TS-TCC in Scenario 2; Mixing-up in Scenario 3), our model outperforms the
strongest baselines by 1.5% across all scenarios. Specifically, as shown in Table 1 (HAR → GESTURE;
Scenario 3), TF-C achieves the highest performance of 79.91% in F1 score, which yields a margin
of 7.2% over the best baseline TS-TCC (74.57%). One potential explanation is that Scenario 3
involves a complex dataset (HAR has 6 classes while GESTURE has 8 classes) that can be difficult
to model. The complexity of Scenario 3 is further verified by poor performance of all models
(±80%) relative to performance on other Scenarios (±90%): TF-C shows strong robustness by
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Table 2: One-to-many pre-training evaluation. Pre-training is performed on SLEEPEEG, followed by an
independent fine-tuning on EPILEPSY, FD-B, GESTURE, and EMG.

Scenarios Models Accuracy Precision Recall F1 score AUROC AUPRC

SLEEPEEG
↓

EPILEPSY

Non-DL (KNN) 0.8525±0.0000 0.8639±0.0000 0.6431±0.0000 0.6791±0.0000 0.6434±0.0000 0.6279±0.0000

Random Init. 0.8983±0.0656 0.9213±0.1369 0.7447±0.1135 0.7959±0.1208 0.8578±0.2153 0.6489±0.1926

TS-SD 0.8952±0.0522 0.8018±0.2244 0.7647±0.1485 0.7767±0.1855 0.7677±0.2452 0.7940±0.1825

TS2vec 0.9395±0.0044 0.9059±0.0116 0.9039±0.0118 0.9045±0.0067 0.9587±0.0086 0.9430±0.0103

CLOCS 0.9507±0.0027 0.9301±0.0067 0.9127±0.0165 0.9206±0.0066 0.9803±0.0023 0.9609±0.0116

Mixing-up 0.8021±0.0000 0.4011±0.0000 0.5000±0.0000 0.4451±0.0000 0.9743±0.0081 0.9618±0.0104

TS-TCC 0.9253±0.0098 0.9451±0.0049 0.8181±0.0257 0.8633±0.0215 0.9842±0.0034 0.9744±0.0043

SimCLR 0.9071±0.0344 0.9221±0.0166 0.7864±0.1071 0.8178±0.0998 0.9045±0.0539 0.9128±0.0205

TF-C (Ours) 0.9495±0.0249 0.9456±0.0108 0.8908±0.0216 0.9149±0.0534 0.9811±0.0237 0.9703±0.0199

SLEEPEEG
↓

FD-B

Non-DL (KNN) 0.4473±0.0000 0.2847±0.0000 0.3275±0.0000 0.2284±0.0000 0.4946±0.0000 0.3308±0.0000

Random Init. 0.4736±0.0623 0.4829±0.0529 0.5235±0.1023 0.4911±0.0590 0.7864±0.0349 0.7528±0.0254

TS-SD 0.5566±0.0210 0.5710±0.0535 0.6054±0.0272 0.5703±0.0328 0.7196±0.0113 0.5693±0.0532

TS2vec 0.4790±0.0113 0.4339±0.0092 0.4842±0.0197 0.4389±0.0107 0.6463±0.0130 0.4442±0.0162

CLOCS 0.4927±0.0310 0.4824±0.0316 0.5873±0.0387 0.4746±0.0485 0.6992±0.0099 0.5501±0.0365

Mixing-up 0.6789±0.0246 0.7146±0.0343 0.7613±0.0198 0.7273±0.0228 0.8209±0.0035 0.7707±0.0042

TS-TCC 0.5499±0.0220 0.5279±0.0293 0.6396±0.0178 0.5418±0.0338 0.7329±0.0203 0.5824±0.0468

SimCLR 0.4917±0.0437 0.5446±0.1024 0.4760±0.0885 0.4224±0.1138 0.6619±0.0219 0.5009±0.0477

TF-C (Ours) 0.6938±0.0231 0.7559±0.0349 0.7202±0.0257 0.7487±0.0268 0.8965±0.0135 0.7871±0.0267

SLEEPEEG
↓

GESTURE

Non-DL (KNN) 0.6833±0.0000 0.6501±0.0000 0.6833±0.0000 0.6443±0.0000 0.8190±0.0000 0.5232±0.0000

Random Init. 0.4219±0.0629 0.4751±0.0175 0.4963±0.0679 0.4886±0.0459 0.7129±0.0166 0.3358±0.1439

TS-SD 0.6922±0.0444 0.6698±0.0472 0.6867±0.0488 0.6656±0.0443 0.8725±0.0324 0.6185±0.0966

TS2vec 0.6917±0.0333 0.6545±0.0358 0.6854±0.0349 0.6570±0.0392 0.8968±0.0123 0.6989±0.0346

CLOCS 0.4433±0.0518 0.4237±0.0794 0.4433±0.0518 0.4014±0.0602 0.8073±0.0109 0.4460±0.0384

Mixing-up 0.6933±0.0231 0.6719±0.0232 0.6933±0.0231 0.6497±0.0306 0.8915±0.0261 0.7279±0.0558

TS-TCC 0.7188±0.0349 0.7135±0.0352 0.7167±0.0373 0.6984±0.0360 0.9099±0.0085 0.7675±0.0201

SimCLR 0.4804±0.0594 0.5946±0.1623 0.5411±0.1946 0.4955±0.1870 0.8131±0.0521 0.5076±0.1588

TF-C (Ours) 0.7642±0.0196 0.7731±0.0355 0.7429±0.0268 0.7572±0.0311 0.9238±0.0159 0.7961±0.0109

SLEEPEEG
↓

EMG

Non-DL (KNN) 0.4390±0.0000 0.3772±0.0000 0.5143±0.0000 0.3979±0.0000 0.6025±0.0000 0.4084±0.0000

Random Init. 0.7780±0.0729 0.5909±0.0625 0.6667±0.0135 0.6238±0.0267 0.9109±0.1239 0.7771±0.1427

TS-SD 0.4606±0.0000 0.1545±0.0000 0.3333±0.0000 0.2111±0.0000 0.5005±0.0126 0.3775±0.0110

TS2vec 0.7854±0.0318 0.8040±0.0750 0.6785±0.0396 0.6766±0.0501 0.9331±0.0164 0.8436±0.0372
CLOCS 0.6985±0.0323 0.5306±0.0750 0.5354±0.0291 0.5139±0.0409 0.7923±0.0573 0.6484±0.0680

Mixing-up 0.3024±0.0534 0.1099±0.0126 0.2583±0.0456 0.1541±0.0204 0.4506±0.1718 0.3660±0.1635

TS-TCC 0.7889±0.0192 0.5851±0.0974 0.6310±0.0991 0.5904±0.0952 0.8851±0.0113 0.7939±0.0386

SimCLR 0.6146±0.0582 0.5361±0.1724 0.4990±0.1214 0.4708±0.1486 0.7799±0.1344 0.6392±0.1596

TF-C (Ours) 0.8171±0.0287 0.7265±0.0353 0.8159±0.0289 0.7683±0.0311 0.9152±0.0211 0.8329±0.0137

learning more generalizable representations. Additionally, we visualize the learned representations in
time-frequency space (Appendix I), and the analyses provide further support for the TF-C property.

5.2 Results: One-to-Many Pre-Training Evaluation

Setup. In one-to-many evaluation, pre-training is done using one dataset followed by fine-tuning
on multiple target datasets independently without starting pre-training from scratch. Out of eight
datasets, SLEEPEEG has most complex temporal dynamics [69] and is the largest (371,055 samples).
For that reason, we pre-train a model on SLEEPEEG and separately fine-tune a well-pre-trained model
on EPILEPSY, FD-B, GESTURE, and EMG.
Results. Results are shown in Table 2. As there are fewer commonalities between EEG signals
vs. vibration, and acceleration vs. EMG, we expect that transfer learning will be less effective for
them than one-to-one evaluations. The pre-training and fine-tuning datasets are largely different in
the bottom three blocks (SLEEPEEG → {FD-B, GESTURE, EMG}). The large gap reasonably leads
to a deterioration in baseline performances, however, our model has a noticeably higher tolerance
to knowledge transfer across datasets with large gaps. Notably, We find that the proposed model
with TF-C earned the best performance in 14 out of 18 settings in the three challenging settings:
indicating our TF-C assumption is universal in time series. For example, our approach outperforms
the strongest baseline by 8.4% (in precision) when fine-tuning on GESTURE. Our model has great
potential to serve as a universal model when there is no large pre-training dataset that is similar to the
small fine-tuning dataset. Furthermore, the TF-C consistently outperforms KNN and Random Init.
(which are not pre-trained) by a large margin of 42.8% and 25.1% (both in F1 score) on average.
Ablation study. We evaluate how relevant the model components are for effective pre-training.
As shown in Table 9 (SLEEPEEG → GESTURE; Appendix H), removing LC, LT, and LF result
in performance degradation (precision) of 6.1%, 7.2%, and 6.7%, respectively. To validate that
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the performance increment is not solely brought by a third loss term no matter what consistency it
measures, we replaced consistency loss LC with a loss term measuring the consistency within time
space (named LTT-C) or within frequency space (named LFF-C). Results show our consistency loss
outperforms LTT-C and LFF-C by 5.3% and 7.2% (accuracy), respectively.

5.3 Additional Downstream Tasks: Clustering and Anomaly Detection

Clustering Task. We evaluate the clustering performance of TF-C taking SLEEPEEG → EPILEPSY
as an example. Specifically, we added a K-means (K=2), as Epilepsy has 2 classes, on top of
ztune
i in fine-tuning. We adopt commonly used evaluation metrics: Silhouette score, Adjusted Rand

Index (ARI), and Normalized Mutual Information (NMI). Table 7 shows our TF-C obtains the best
clustering surpassing the strongest baseline (TS-TCC) by a large margin (5.4% in Silhouette score).
It conveys that TF-C can capture more distinctive representations with the knowledge transferred
from pre-training, which is consistent with the superiority of TF-C in the above classification tasks.
Anomaly Detection Task. We assess how TF-C performs on a sample-level anomaly detection task.
Note we work on the sample-level rather than the observation-level anomaly detection. Based on
global patterns, the former aims to detect abnormal time series samples instead of outlier observations
in a sample (as in BTSF [50] and USAD [70]) which emphasizes local context. Specifically, In the
scenario of FD-A → FD-B, we built a small subset of FD-B with 1,000 samples, of which 900 are
from undamaged bearings, and the remaining 100 are from bearings with inner or outer damage.
Undamaged samples are considered “normal,” and inner/outer damaged samples are “outliers.” In
fine-tuning, we used one-class SVM on top of learned representations ztune

i . The experimental results
(Table 8) show that our TF-C outperforms five competitive baselines with 4.5% in F-1 Score. Results
show that the proposed TF-C is more sensitive to anomalous samples and can effectively detect the
abnormal status in mechanical devices.

6 Conclusion

We develop a pre-training approach that introduces time-frequency consistency (TF-C) as a mecha-
nism to support knowledge transfer between time-series datasets. The approach uses self-supervised
contrastive estimation and injects TF-C into pre-training, bringing time-based and frequency-based
representations and their local neighborhoods close together in the latent space.
Limitations and future directions. TF-C property can serve as a universal property for pre-training
on diverse time series datasets. Additional generalizable properties, such as temporal autoregressive
processes, could also be helpful for pre-training on time series. Further, while our method expects
as input a regularly sampled time series, it can handle irregularly sampled time series by using an
encoder (such as Raindrop [71] and SeFT [72]) that can embed irregular time series. For frequency
encoder inputs xF

i , alternatives include resampling or interpolation to obtain regularly sampled signals
and using regular or non-uniform FFT operations. Furthermore, TF-C’s current embedding strategy
and loss functions are favorable for classification, leveraging global information over tasks that use
local context (e.g., forecasting). Results show that the TF-C approach performs well across broad
downstream tasks, including classification, clustering, and anomaly detection (Sec. 5.3).
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Broader Impacts

Our approach for self-supervised pre-training improves classification performance on target datasets
in different application scenarios. The recognition of time-frequency consistency as a universal
property specific to time series data is a weak assumption that enables effective, task- and domain-
agnostic transfer learning. We believe our work will inspire the research community to uncover other
universal properties for transfer learning. We also hope our work will also attract more researchers
to the more general problem of time series representation learning which is still underappreciated
relative to problems from CV and NLP fields.

On the society level, our work, along the line of transfer learning, can facilitate more efficient use of
time series data in various settings. For example, in medical settings, some diseases of clinical interest
may have very small labelled dataset. In this case, unlabelled data from patients of different diseases
but with similar underlying physiological conditions can be used to pre-train the model. However,
practitioners need to be aware of the limitations of the model, including that it may make biased
predictions. Specifically, bias may exist in the source dataset used for pre-training due to an imbalance
of samples from subjects of different demographic attributes. Also, the standardized medical protocols
for collecting these datasets might be unsuitable for subjects with certain physiological attributes,
creating unforeseen bias that may be transferred to fine-tuning.

All datasets in this paper are publicly available and are not associated with any privacy or security
concern. Furthermore, we have followed guidelines on responsible use specified by primary authors
of the datasets used in the current work.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] In abstract and introduction, we claim that TF-C is
a generalizable property of time series that can support pre-training, which is well-
justified in Sec. 3 and experimentally demonstrated in Sec. 5 (our model consistently
performs comparatively to or above baseline methods).

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Broader Impact on Page 10.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Yes, we include
an anonymous link (see Abstract) that provides the source codes with all implementa-
tion details, implementation of baselines, and eight datasets. The link will be updated
to an non-anonymous link after acceptance.

(b) Did you specify all the training details (e.g., data splits, hyper-parameters, how they
were chosen)? [Yes] See implementation details in Sec. 5. See Appendix E for baseline
architectures and hyper-parameter settings. More details can be found in the included
URL.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We run experiments for 5 times and report the average
value with standard deviation. See Table 1, Tables 4-6, and Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
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(a) If your work uses existing assets, did you cite the creators? [Yes] We used eight
existing datasets and 6 state-of-the-art baselines in contrastive learning and pre-training
for time series. We cited the creators for every exist asset we used. See Sec. 5.

(b) Did you mention the license of the assets? [Yes] All dataset licenses are mentioned in
the Appendix D.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
See the anonymous link in Abstract.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] All data we use is freely available for download, without any
requirement to re-contact the data curator.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Our datasets are public, well-established, and
do not contain PII or offensive content

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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