
A Details of Datasets and in TorchSSL

We provide the details of datasets of TorchSSL in Table 10.

Table 10: Details of CV datasets and #labels used in TorchSSL. #Label per class represents the
number of chosen labeled data per class from the training data. The test data is kept unchanged except
for ImageNet where we use the validation dataset as the test dataset.

Dataset #Label per class #Training data #Test data #Class

CIFAR-10 4 / 25 / 100 50,000 10,000 10
CIFAR-100 4 / 25 / 100 50,000 10,000 100

SVHN 4 / 25 /100 604,388 26,032 10
STL-10 4 / 25 /100 100,000 10,000 10

ImageNet 100 1,281,167 50,000 1,000

B Correlation between TorchSSL and USB

Here we show the correlation between the mean error rates on TorchSSL and USB CV tasks. We
take the 14 algorithms considered in the main paper and show their mean performance on TorchSSL
versus that on USB CV tasks in Figure 5. Despite the fact that the Pearson correlation coefficient is
0.87, the final rank SSL algorithms is not consistent, which shows different adaptability of different
methods when using pre-trained ViTs. For example, FlexMatch shows the best mean performance on
USB while AdaMatch has the best mean performance on TorchSSL. Please refer to Table 8 for more
detailed rankings on CV, NLP, and Audio.

26 28 30 32 34 36
mean error rates on USB

10

20

30

40

50

m
ea

n
er

ro
r r

at
es

 o
n

To
rc

hS
SL

Pi Pseudo

MT
VAT

Mix

ReMix UDAFixDash
Co

CR FlexAda Sim

Pearson-Correlation between USB and TorchSSL

Figure 5: Correlation between TorchSSL and USB.

C Performance Results on ImageNet

Although we have excluded ImageNet from USB, we provide an evaluation on ImageNet of MAE
pre-trained ViT-B, using UDA [29], FixMatch [20], FlexMatch [21], CoMatch [60], and SimMatch
[47]. We train these algorithms using 10 labels per class and 100 labels per-class, i.e., a total of
10,000 labels and 100,000 labels respectively, corresponding to roughly 1% and 10% of the total
labeled data in ImageNet. For learning rate and weight decay, we follow the fine-tuning protocol in
MAE [33], where we use AdamW with a learning rate of 1e-3 and weight decay of 0.05. We use 16
A100 to train each algorithm and set the batch size to 256 for both labeled and unlabeled data. Other
algorithmic hyper-parameters stay the same as their original implementations.

We present the results on ImageNet in Table 11. UDA and Fixmatch are near the bottom, similar to
USB. SimMatch is still marked as one of the tops. Surprisingly, CoMatch does so well on ImageNet
when it ranked only 9th on the USB benchmark. Also, while FlexMatch is the best on USB, it’s pretty
firmly behind CoMatch and SimMatch on ImageNet.

18

Table 11: ImageNet accuracy results. We use MAE pre-trained ViT-B.
Method 1w Labels 10w Labels Rank

UDA 38.62 62.37 5
FixMatch 37.93 62.88 4
FlexMatch 39.13 63.09 3
CoMatch 44.32 65.80 2
SimMatch 46.48 67.61 1

Table 12: Swin-Transformer results on EuroSAT and Semi-AVES.
Dataset EuroSAT Semi-Aves

Label 20 40 5,959

Supervised 44.32±1.10 34.40±1.44 38.76±0.21

Fully-Supervised 1.86±0.10 -

Π-Model 42.49±3.21 30.54±1.37 38.74±0.60

Pseudo-Labeling 42.49±3.21 30.54±1.37 38.74±0.60

Mean Teacher 35.85±1.95 19.62±3.28 33.37±0.06

VAT 40.63±2.68 29.94±1.87 35.84±0.36

UDA 18.15±5.70 12.09±1.26 29.28±0.20

FixMatch 17.19±3.46 12.57±1.28 28.88±0.22

Dash 18.04±1.21 12.98±1.27 28.69±0.39

CoMatch 13.65±1.42 10.17±0.68 37.71±0.31

CRMatch 30.28±1.64 22.39±1.41 29.22±0.21

FlexMatch 10.46±1.20 9.06±1.80 30.19±0.51

SimMatch 11.19±1.01 10.65±1.64 28.55±0.13

D Results with Different Pre-trained Backbones

In this section, we verify USB with different pre-trained backbones. Different pre-trained backbones
do affect the performance of SSL algorithms, which makes it important to report results with multiple
backbones. We will continuously update results with different backbones at https://github.com/
microsoft/Semi-supervised-learning. Here we report several results in Table 12, Table 13,
and Table 14. Across the tasks, there is a pretty clear distinction between the performance of
algorithms in the first half of the ranking list and the second half of the ranking list. While switching
out backbones does not change the membership of these two halves, it does seem like the relative
orderings within the top half can indeed vary a bit.

To compare different backbones on CV tasks, we fine-tune pre-trained public Swin-Transformer
[123] with USB. We keep all hyper-parameters the same as in Table 15, and mainly evaluate on
EuroSAT (32) and Semi-Aves (224). For EuroSAT, we change the input image size of the pre-trained
Swin-S from 224 to 32, and the window size from 7 to 4 to accommodate the adapted input image
size. For Semi-Aves, we adopt the original Swin-S. From the results in Table 12, one can observe,
that on EuroSAT (32), as we adopt 224 pre-trained Swin-S and change its input and window size,
the results are inferior to ViT-32 reported in the paper, whereas on Semi-Aves (224), the results are
better than ViT-S. An interesting finding is that CoMatch performs relatively better with Swin-S
while CrMatch performs worse. This also shows the importance of constantly updating the backbone
in the future development of USB.

For NLP tasks, we additionally experiment with RoBERTa [31]. We train RoBERTa using the same
hyper-parameters reported in Table 16. RoBerta generally performs better than Bert as expected. The
performance difference is both very close when using RoBerta or Bert.

Due to the fact that the audio tasks setting in the current version of USB being built upon raw
waveforms, there are not many pre-trained models available to use. We report the results of HuBert
[32] and Wave2Vecv2.0 [71] for audio tasks to compare different backbones. The difference between
these two backbones selected mainly lies in pre-training data. Wave2Vecv2.0 is pre-trained using
raw human voice data and HuBert is an improved model with a discrete clustering target. Thus
we can observe from the results, that on human voice tasks Superb-KS, Wave2Vecv2.0 has better
performance, whereas, on other tasks, HuBert is more robust and outperforms Wave2Vecv2.0.

19

https://github.com/microsoft/Semi-supervised-learning
https://github.com/microsoft/Semi-supervised-learning

Table 13: RoBERTa results on Yelp.
Dataset Yelp

Labels 250 1000

Supervised 42.56±1.15 39.00±0.16

Fully-Supervised 29.15±0.12

Pseudo-Label 48.26±0.02 40.56±0.16

MeanTeacher 49.41±0.03 44.36±1.04

Π-Model 49.16±2.04 42.93±0.88

VAT 43.04±0.02 39.24±0.06

AdaMatch 38.24±0.02 35.64±0.06

UDA 40.13±0.15 38.98±0.03

FixMatch 39.82±0.95 37.42±0.30

FlexMatch 39.11±0.02 36.84±0.01

Dash 39.86±1.01 36.23±0.21

CRMatch 40.08±1.28 35.85±0.38

CoMatch 39.95±0.86 36.89±0.22

SimMatch 38.76±0.68 36.39±0.34

Table 14: HuBert results on keyword Spotting and Wave2Vec2.0 results on FSDnoisy.
Dataset keyword Spotting FSDnoisy

Label 50 400 1,772

Supervised 8.95±1.62 6.31±0.46 33.54±1.65

Fully-Supervised 2.41±0.15 -

Π-Model 87.86±2.88 72.89±3.23 35.97±0.84

Pseudo-Labeling 25.59±2.88 13.02±2.47 35.23±0.78

Mean Teacher 89.79±0.30 90.01±0.02 40.13±1.70

VAT 2.27±0.07 2.43±0.02 34.21±0.31

UDA 11.76±0.06 2.23±0.16 33.09±1.03

FixMatch 11.63±0.24 8.93±2.04 33.09±0.64

Dash 11.88±0.15 8.25±4.22 33.02±1.39

CoMatch 15.96±1.02 10.34±1.52 30.24±0.55

CRMatch 5.85±1.19 3.66±0.33 30.48±0.65

FlexMatch 10.22±1.10 5.10±3.70 32.66±4.09

SimMatch 9.43±0.63 5.47±2.72 29.57±0.52

E Details of Datasets in USB

E.1 CV Tasks

CIFAR-100 The CIFAR-100 [39] dataset is a natural image (32×32 pixels) recognition dataset
consisting 100 classes. There are 500 training samples and 100 test samples per class.

STL-10 The STL-10 [40] dataset is a natural color image (96×96 pixels) recognition dataset
consisting 10 classes. Particularly, each class has 500 training samples and 800 test samples. Apart
from the labeled samples, STL-10 also provides 100,000 unlabeled samples. Note that the unlabeled
samples contain other classes in addition to the ones in the labeled data.

EuroSat EuroSAT [43, 44] dataset is based on Sentinel-2 satellite images covering 13 spectral
bands and consisting of 10 classes with 27,000 labeled and geo-referenced samples. Following [124],
we use the dataset with the optical R, G, B frequency bands, thus each image is of size 64× 64× 3.
We take the first 60% images from each class as training set; the next 20% as val set, and the last 20%
as test set.

TissueMNIST TissueMNIST [41, 42] is a medical dataset of human kidney cortex cells, segmented
from 3 reference tissue specimens and organized into 8 categories. The total 236,386 training samples
are split with a ratio of 7 : 1 : 2 into training (165,466 images), validation (23,640 images) and test
set (47,280 images). Each gray-scale image is 28× 28 pixels.

20

Semi-Aves Semi-Aves [45] is a dataset of Aves (birds) classification, where 5,959 images of 200
bird species are labeled and 26,640 images are unlabeled. As class distribution mismatch hurts the
performance [85], we do not use out-of-class unlabeled data. This dataset is challenging as it is
naturally imbalanced. The validation and test set contain 10 and 20 images respectively for each of
the 200 categories in the labeled set.

E.2 NLP Tasks

IMDB The IMDB [49] dataset is a binary sentiment classification dataset. There are 25,000 reviews
for training and 25,000 for test. IMDB is class balanced which means the positive and negative
reviews have the same number both for training and test. For USB, we draw 12,500 samples and
1,000 samples per class from training samples to form the training dataset and validation dataset
respectively. The test dataset is unchanged.

Amazon Review The Amazon Review [52] dataset is a sentiment classification dataset. There are
5 classes (scores). Each class (score) contains 600,000 training samples and 130,000 test samples.
For USB, we draw 50,000 samples and 5,000 samples per class from training samples to form the
training dataset and validation dataset respectively. The test dataset is unchanged.

Yelp Review The Yelp Review [53] sentiment classification dataset has 5 classes (scores). Each
class (score) contains 130,000 training samples and 10,000 test samples. For USB, we draw 50,000
samples and 5,000 samples per class from training samples to form the training dataset and validation
dataset respectively. The test dataset is unchanged.

AG News The AG News [50] dataset is a news topic classification dataset containing 4 classes.
Each class contains 30,000 training samples and 1,900 test samples. For USB, we draw 25,000
samples and 2,500 samples per class from training samples to form the training dataset and validation
dataset respectively. The test dataset is unchanged.

Yahoo! Answer The Yahoo! Answer [51] topic classification dataset has 10 categories. Each class
contains 140,000 training samples and 6,000 test samples. For USB, we draw 50,000 samples and
5,000 samples per class from training samples to form the training dataset and validation dataset
respectively. The test dataset is unchanged.

E.3 Audio Tasks

GTZAN The GTZAN dataset is collected for music genre classification of 10 classes and 100
audio recordings for each class. The maximum length of the recordings is 30 seconds and the original
sampling rate is 22,100 Hz. We split 7,000 samples for training, 1,500 for validation, and 1,500 for
testing. All recordings are re-sampled at 16,000 Hz.

UrbanSound8k The UrbanSound8k dataset [54] contains 8,732 labeled sound events of urban
sounds of 10 classes, with the maximum length of 4 seconds. The original sampling rate of the audio
recordings is 44,100 and we re-sample it to 16,000. It is originally divided into 10 folds, where we
use the first 8 folds of 7,079 samples as training set, and the last two folds as validation set of size
816 and testing set of size 837 respectively.

FSDNoisy18k The FSDNoisy18 dataset [56] is a sound event classification dataset across 20
classes. It consists of a small amount of manually labeled data - 1,772 and a large amount of noisy
data - 15,813 which is treated as unlabeled data in our paper. The original sample rate is 44,100
Hz, and the length of the recordings lies between 3 seconds and 30 seconds. We use the testing set
provided for evaluation, which contains 947 samples.

Keyword Spotting (Superb-KS) The Keyword spotting dataset is one of the tasks in Superb [57]
for classifying the keywords. It contains speech utterances of a maximum length of 1 second and
the sampling rate of 16,000. The training, validation, and testing set contain 18,538; 2,577; 2,567
recordings, respectively. For pre-processing, we remove the silence and unknown labels from the
dataset.

21

ESC-50 The ESC-50 [55] is a dataset containing 2,000 environmental audio recordings for 50
sound classes. The maximum length of the recordings is 5 seconds and the original sampling rate is
44,100. We split 1,200 samples as training data, 400 as validation data, and 400 as testing data. We
also re-sample the audio recordings to 16,000 Hz during pre-processing.

F Details of Implemented SSL algorithms in USB

Π model [35] is a simple SSL algorithm that forces the output probability of perturbed versions of
unlabeled data be the same. Π model uses Mean Squared Error (MSE) for optimization.

Pseudo Labeling [59] turns the output probability of unlabeled data into the ’one-hot’ hard one and
makes the same unlabeled data to learn the pseudo ’one-hot’ label. Unlike Π model, Pseudo Labeling
uses CE for optimization.

Mean Teacher [36] takes the exponential moving average (EMA) of the neural model as the teacher
model. With Mean Teacher, the neural model forces itself to output a similar probability to the EMA
teacher. Though the later SSL algorithms will not always choose the EMA model as the teacher, they
often use the EMA model for validation/test cause it decreases the risk of neural models falling into
the local optima.

VAT [37] enhances the robustness of the conditional predicted label distribution around each unlabeled
data against an adversarial perturbation. In other words, VAT forces the neural model to give similar
predictions on unlabeled data even facing a strong adversarial perturbation.

MixMatch [28] first introduces Mixup [125] into SSL by taking the input as the mixture of labeled
and unlabeled data and the output as the mixture of labels and model predictions on unlabeled data.
Note that MixMatch also utilizes MSE as the unsupervised loss.

ReMixMatch [23] can be seen as the upgraded version of MixMatch. ReMixMatch improves
MixMatch by (1) proposing stronger augmentation (i.e., Control Theory Augmentation (CTAug-
ment) [23]) for unlabeled data; (2) using Augmentation Anchoring to force the model to output
similar predictions to weakly augmented unlabeled data when fed strongly augmented data; (3)
utilizing Distribution Alignment to encourage the marginal distribution of predictions on unlabeled
data to be similar to the marginal distribution of labeled data.

UDA [29] also introduces strong augmentation (i.e., RandAugment [126]) for unlabeled data. The
core idea of UDA is similar to Augmentation Anchoring [23], which forces the predictions of neural
models on the strongly-augmented unlabeled data to be close to those of weakly-augmented unlabeled
data. Instead of turning predictions into hard ’one-hot’ pseudo-labels, UDA sharpens the prediction
on unlabeled data. Thresholding technique is used to mask out unconfident unlabeled samples that
are considered noise here.

FixMatch [20] is the upgraded version of Pseudo Labeling. FixMatch turns the predictions on
weakly-augmented unlabeled data into hard ’one-hot’ pseudo-labels and then further uses them as the
learning signal of strongly-augmented unlabeled data. FixMatch finds that using a high threshold
(e.g., 0.95) to filter noisy unlabeled predictions and take the rest as the pseudo-label can achieve very
good performance.

Dash [24] improves the FixMatch by using a gradually increased threshold instead of a fixed threshold,
which allows more unlabeled data to participate in the training at the early stage. Moreover, Dash
theoretically establishes the convergence rate from the view of non-convex optimization.

CoMatch [60] firstly introduces contrastive learning into SSL. Except for consistency regularizing
on the class probabilities, it is also exploited on graph-based feature representations, which impose
smooth constraints on pseudo-labels generated.

CRMatch [61] proposed an improved consistency regularization framework which impose consis-
tency and equivariance on the classification probability and the feature level.

FlexMatch [21] firstly introduces the class-specific thresholds into SSL by considering the different
learning difficulties of different classes. Specifically, the hard-to-learn classes should have a low
threshold to speed up convergence while the easy-to-learn classes should have a high threshold to
avoid confirmation bias.

22

AdaMatch [62] is proposed mainly for domain adaption, but can also adapted to SSL. It is character-
ized by Relative Threshold and Distribution Alignment, where the relative threshold is adaptively
estimated from EMA of the confidence on labeled data.

SimMatch [47] extends CoMatch [60] by considering semantic-level and instance-level consistency
regularization. Similar similarity relationship of different augmented versions on the same data with
respect to other instances is encouraged during training. In addition, a memory buffer consisting of
predictions on labeled data is adopted to connect the two-level regularization.

G Experiment Details in USB

G.1 Setup for CV Tasks in USB

Table 15: Hyper-parameters of CV tasks in USB.
Dataset CIFAR-100 STL-10 Euro-SAT TissueMNIST Semi-Aves

Image Size 32 96 32 32 224

Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 ViT-T-P4-32 ViT-S-P16-224

Weight Decay 5e-4

Labeled Batch size 16

Unlabeled Batch size 16

Learning Rate 5e-4 1e-4 5e-5 5e-5 1e-3

Layer Decay Rate 0.5 0.95 1.0 0.95 0.65

Scheduler η = η0 cos(
7πk
16K)

Model EMA Momentum 0.0

Prediction EMA Momentum 0.999

Weak Augmentation Random Crop, Random Horizontal Flip

Strong Augmentation RandAugment [126]

For CV tasks in USB, we use ViT models [34]. We find that directly using released ViT models leads
to overfitting and one needs to fix the image resolution as the pre-trained resolution, as demonstrated
in Paragraph 5.4. Instead, we pre-train our own ViT models on ImageNet-1K [8]. To match the
number of parameters as the CNN models used in the classic setting, we use ViT-Tiny and ViT-
Small with a patch size of 2 and image size of 32 for TissueMNIST, CIFAR-100 and EuraSAT,
respectively; ViT-Small with a patch size of 16 and image size of 224 for Semi-Aves. For better
transfer performance, we adopt an MLP before the final classifier during pre-training, as in [127].
For supervised pre-training on ImageNet-1K, we use Lamb optimizer with a learning rate of 0.05,
and a weight decay of 0.03 for ViT-Tiny and a weight decay of 0.05 for ViT-Small. We adopt a
large batch size of 4096 and train the networks for 300 epochs, with a linear learning rate warmup
for the first 20 epochs. After the warmup, cosine scheduler is utilized. For augmentation, we use
RandAugment [126], along with Mixup [125] and CutMix [128]. We also use label smoothing of 0.1
during pre-training. Since STL10 is a subset of ImageNet, we adopt unsupervised pre-training MAE
[33] of ViT-Small with image size of 96 to avoid cheating.

For USB CV tasks, we adopt layer-wise learning rate decay as in [123]. We tune the learning rate
and layer decay rate on different datasets using FixMatch, and use the best configuration to train all
SSL algorithms 6. The cosine annealing scheduler is similar to the classic setting but with total steps
of 204, 800 and a warm-up of 5, 120 steps. The labeled and unlabeled batch size is both set to 16.
Other algorithm-related hyper-parameters stay the same as in the original papers.

G.2 Setup for NLP Tasks in USB

We use pre-trained BERT-Base [30] for all NLP tasks in USB. We set the batch size of labeled data
and unlabeled data to 4 for reducing the training time and GPU memory requirement. To fine-tune
the BERT-Base under USB, we adopt AdamW optimizer with weight decay of 1e−4. Similarly, we
conduct a grid search of the learning rate and layer decay on different datasets using FixMatch and
pick the best configuration to fine-tune other SSL algorithms. We utilize the same cosine learning rate

6We present the full tuning results in: https://github.com/microsoft/Semi-supervised-learning.

23

https://github.com/microsoft/Semi-supervised-learning

scheduler as in the classic setting with the total training steps of 102, 400 and a warm-up of 5, 120
steps. We use the fine-tuned model without parameter momentum to conduct evaluations. For all
datasets, we cut the long sentence to satisfy the input length requirement of BERT-Base. For data
augmentation, we adopt back-translation as the strong augmentation [29, 25]. Specifically, we use
De-En and Ru-En translation with WMT19.

Table 16: Hyper-parameters of NLP tasks in USB.
Dataset AG News Yahoo! Answer IMDb Amazom-5 Yelp-5

Max Length 512

Model Bert-Base

Weight Decay 1e-4

Labeled Batch size 4

Unlabeled Batch size 4

Learning Rate 5e-5 1e-4 5e-5 1e-5 5e-5

Layer Decay Rate 0.65 0.65 0.75 0.75 0.75

Scheduler η = η0 cos(
7πk
16K)

Model EMA Momentum 0.0

Prediction EMA Momentum 0.999

Weak Augmentation None

Strong Augmentation Back-Translation [29]

G.3 Setup for Audio Tasks in USB

For Audio tasks, we adopt Wav2Vec 2.0 [71] and HuBert [32] as the pre-trained model. The batch
size of labeled data and unlabeled data is set to 8. We keep the sampling rate of audios as 16, 000. We
adopt AdamW optimizer with a weight decay of 5e−4, and search the learning rate and layer decay
as before. Other hyper-parameter settings are the same as NLP tasks. Mimicking RandAugment, for
strong augmentation in audio tasks, we random sample 2 augmentations from the augmentation pool
and random set the augmentation magnitude during training.

Table 17: Hyper-parameters of Audio tasks in USB.
Dataset GTZAN Keyword Spotting UrbanSound8k FSDNoisy ESC-50

Sampling Rate 16,000

Max Length 3.0 1.0 4.0 5.0 5.0

Model Wav2Vecv2-Base HuBERT-Base

Weight Decay 5e-4

Labeled Batch size 8

Unlabeled Batch size 8

Learning Rate 2e-5 5e-5 5e-5 5e-4 1e-4

Layer Decay Rate 1.0 0.75 0.75 0.75 0.85

Scheduler η = η0 cos(
7πk
16K)

Model EMA Momentum 0.0

Prediction EMA Momentum 0.999

Weak Augmentation Random Sub-sample

Strong Augmentation Random Sub-sample, Random Gain, Random Pitch, Random Speed

24

