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Figure 1: SCAMPS: A dataset of synthetic videos with aligned physiological and behavioral signals.

Abstract

The use of cameras and computational algorithms for noninvasive, low-cost and
scalable measurement of physiological (e.g., cardiac and pulmonary) vital signs
is very attractive. However, diverse data representing a range of environments,
body motions, illumination conditions and physiological states is laborious, time
consuming and expensive to obtain. Synthetic data have proven a valuable tool in
several areas of machine learning, yet are not widely available for camera mea-
surement of physiological states. Synthetic data offer “perfect” labels (e.g., with-
out noise and with precise synchronization), labels that may not be possible to
obtain otherwise (e.g., precise pixel level segmentation maps) and provide a high
degree of control over variation and diversity in the dataset. We present SCAMPS,
a dataset of synthetics containing 2,800 videos (1.68M frames) with aligned car-
diac and respiratory signals and facial action intensities. The RGB frames are pro-
vided alongside segmentation maps and precise descriptive statistics about the un-
derlying waveforms, including inter-beat interval, heart rate variability, and pulse
arrival time. Finally, we present baseline results training on these synthetic data
and testing on real-world datasets to illustrate generalizability.

Project webpage: https://github.com/danmcduff/scampsdataset

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets & Benchmarks.
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Table 1: Summary of Public Camera Physiological Measurement Datasets.

Dataset Subjects Videos Gold Standard Sub. Div. Env. Div. Free Access
MAHNOB [36] 27 527 ECG, EEG, BR ✗ ✗ ✓
BP4D [55] 140 1400 BP, AU ✓ ✗ ✗
VIPL-HR [28] 107 3130 PPG, HR, SpO2 ✗ ✗ ✓
COHFACE [14] 40 160 PPG ✗ ✗ ✓
UBFC-RPPG [4] 42 42 PPG, PR ✗ ✗ ✓
UBFC-PHYS [27] 56 168 PPG, EDA ✗ ✗ ✓
RICE CamHRV [31] 12 60 PPG ✗ ✗ ✓
MR-NIRP [29] 18 37 PPG ✗ ✗ ✓
PURE [39] 10 59 PPG, SpO2 ✗ ✗ ✓
rPPG [16] 8 52 PR, SpO2 ✗ ✗ ✓
OBF [19] 106 212 PPG, ECG, BR ✗ ✗ ✗
PFF [15] 13 85 PR ✗ ✗ ✓
VicarPPG [43] 20 10 PPG ✗ ✗ ✓
CMU [8] 140 140 PR ✓ ✓ ✓
SCAMPS* 2800 2800 PPG, PR, BR, AU ✓ ✓ ✓

ECG = Electrocardiogram waveform, EDA = Electrodermal activity, EEG. = Electroencephalogram
waveforms, PPG = Photoplethysmogram waveform, BP = Blood pressure waveform, PR = Pulse rate, BR =

Breathing rate, SpO2 = Blood oxygenation, AU = Action Units.
* SCAMPS is the only synthetic dataset.

1 Introduction

Camera physiological measurement is a rapidly growing field of computer vision and computational
photography that leverages imaging devices, signal processing and machine learned models to per-
form non-contact recovery of vital processes inside the body [23]. Data plays an important role in
both training and evaluating these models. However, generalization can be weak if the training data
are not representative and systematic evaluation can be challenging if testing data do not contain the
variations and diversity necessary. Public datasets (e.g., [55, 28, 4]) have contributed significantly
to the understanding of algorithmic performance in this domain. These datasets are time consuming
to collect, contain highly personally identifiable and sensitive biometrics (including facial videos
and physiological waveforms). It is difficult to collect datasets that contain a well distributed set
of examples across multiple cardiac and pulmonary parameters (e.g., heart and breathing rates and
variabilities, pulse arrival times, waveform morphologies). Furthermore, almost all of these datasets
are collected in a single location, with limited diversity in subject appearance, ambient illumina-
tion, context and behaviors. Table 1 summarizes some of the properties of these datasets, including
whether they are freely (i.e., at no cost) available to researchers in both industry and academia. Fi-
nally, at the time of writing, neural architectures [5, 20, 54] provide the state-of-the-art performance
for camera measurement of physiology. Neural models are “data hungry” and often performance is
primarily a function of the availability and quality of the training dataset.

Synthetics have proven valuable in several areas of computer vision, particularly face and body
analyses. In training, synthetics have been used successfully to create models for landmark lo-
calization and face parsing [52], body pose estimation [35] and eye tracking [53]. Although not
completely representative of real observations, synthetics are also valuable in testing (e.g., for face
detection [24] or eye tracking [40]). Parameterized computer graphics simulators are one way of
testing vision models [46, 47, 48, 45, 33]. Generally, it has been proposed that graphics models
be used for performance evaluation [13, 33, 24]. However, increasingly synthetics are also being
used to help address shortcomings in performance, such as biases. Kortylewaski et al. [17, 18] show
that the damage of real-world dataset biases on facial recognition systems can be partially addressed
by pre-training on synthetic data. To address the issue of the lack of representation of skin type in
camera physiology datasets computational techniques have been employed to translate real videos
from light-skin subjects to dark-skin subjects while being careful to preserve the cardiac signals [1].
A neural generator was used in that work to simulate changes in melanin, or skin tone. However,
this approach does not simulate other changes in appearance that might also be correlated with skin
type. Nowara et al. [30] used video magnification for augmenting the spatial appearance of videos
and the temporal magnitude of changes in pixels. These augmentations help in the learning process,
ultimately leading to the model learning better representations.
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Figure 2: The synthetic videos were created using a graphics pipeline. We create a model of facial
blood flow by adjusting properties of the physically-based shading material used for the skin and a
model for breathing by controlling the motion of the head and torso. Facial actions and head motions
are added to create realism and variability.

Wood et al. [52] recently presented a sophisticated facial synthetics pipeline that produced high-
fidelity data. They were able to successfully train state-of-the-art landmark localization and face
parsing models. However, creating high fidelity 3D assets for simulating many different facial ap-
pearances (e.g., bone structures, facial attributes, skin tones etc.) is time consuming and expensive.
The data that these pipelines can create will then not necessarily be available broadly to researchers.
Therefore, in this paper we present a new dataset (SCAMPS) of high fidelity synthetic human simu-
lations that are made publicly available. These data are designed for the purposes of training and test-
ing camera physiological measurement methods. To summarize our contributions: 1) We present the
first public synthetic dataset for camera physiological measurement. 2) These data include precisely
synchronized multi-parameter physiological ground-truth waveforms (cardiac, breathing) alongside
facial action and head pose. 3) Results illustrating baseline performance training on the SCAMPS
dataset and testing on three public datasets (UBFC-rPPG [4], MMSE-HR [55] and PURE [39]).
We hope that this dataset allows researchers to explore the potential for synthetics in the domain of
camera physiological measurement, including but not limited to: addressing the simulation-to-real
(sim2real) generalization gap, leveraging very precisely aligned segmentation maps and physio-
logical waveforms for learning models, multimodal learning combining estimation of physiological
(e.g., HR) and behavioral (e.g., AUs) signals, and using synthetic data to help address bias in camera
physiological measurement models.

2 Camera Physiological Measurement

Camera measurement of physiological signals involves analysis of subtle changes in light reflected
from the body. In videos, the photoplethysmographic signal manifests as small skin pixel color
changes over time. The breathing signal is observed as motion, particularly prominent around the
chest. Blazek, Wu and Hoelscher [3] proposed the first imaging system for measuring cardiac sig-
nals. This computer-based CCD near-infrared (NIR) imaging system provided evidence that periph-
eral blood volume could be measured without contact using an imager. Successful replications of
these experiments cemented the concept [51, 41, 49]. Applying machine learning tools and knowl-
edge of physiological principals helped to create more robust measurement methods [32, 50, 12].
With supervised methods, data soon becomes a limiting factor [38, 5, 37, 22, 54]. The significance
of training data is increasing as large parameter models illustrate the potential for representation
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Figure 3: Each RGB frame is accompanied by segmentation masks for facial and body hair, eye-
lashes, eyebrows, glasses, skin, head wear and clothing.

learning [54]. Work on body motion analysis from video, has found that to be a rich source of physi-
ological information. enabling the recovery of breathing [42] and cardiac signals [2]. These methods
do not require light to penetrate the skin but rather use optical flow and other motion tracking meth-
ods to measure, usually very small, motions. These subtle changes are easily swamped by larger
body motions and facial expressions. Therefore, an algorithm needs to learn to successfully separate
the sources from pixel changes both spatially and temporally [6]. If we subscribe to the results of
recent machine learning research, it is likely that supervised models can learn to separate signals
more effectively than handcrafted rules. For more comprehensive overviews of video physiological
measurement see Chen et al. [7], Shao et al. [34] and McDuff [23].

3 Waveform Synthesis

Our synthesis pipeline starts with a module for generating the underlying physiologic and behavioral
signals. These signals are then used to drive those properties of the synthetic humans providing
precisely synchronized ground-truth labels.1 Examples of the generated waveforms can be found in
Fig. 4. To create physiological waveforms with variability we sampled several waveform parameters,
such as heart rate variability standard deviation of NN intervals (HRV SDNN), relative amplitude of
the systolic and dicrotic waves and the delay between the systolic and dicrotic waves from a set of
uniform distributions. The bounds used for each of these parameters are specified below.

Inter-beat Interval, PPG, ECG Waveforms. The PPG and ECG signals were created to have
the same underlying beat sequence. We first sample the beat sequence based on a heart rate (HR)
frequency sampled uniformly from 40 to 150 beats/min. Heart rate variability is simulated by adding
random perturbations to the beat timings. The standard deviation of these perturbations reflects the
standard deviation of NN intervals (SDNN) and was sampled uniformly from 0.05 seconds to 8/HR
seconds. We observed that it was important for the upper bound to be proportional to the heart rate
(or mean NN interval) to create realistic variability.

For the purposes of this simulation, the morphology of the ECG wave is not relevant (e.g., we do not
try to simulate a realistic QRS complex), only the timing. Thus, the ECG waveform is constructed
as a time delayed series of impulses based on the NN intervals. We provide the interbeat intervals
directly so that no peak detection is required for the ground-truth waveforms.

Given the beat timings and pulse arrival time (PAT) the PPG wave was then composed of a forward
wave and dicrotic wave. The forward wave is created by convolving a Gaussian window with the
beat impulse sequence. The leading slope of the dicrotic wave is created by convolving a Gaussian
with a time lagged copy of the beat impulse sequence, the trailing slope is generated by performing
the same convolution with a decaying exponential in place of the Gaussian window.

These waves are then summed together with a dicrotic amplitude factor. The forward and dicrotic
waves are then superimposed, with parameterized attenuation of the dicrotic wave relative to the
forward wave, to create a physiologically plausible PPG waveform.

1It is important to note that the purpose of our waveform synthesis approach was not to create signals derived
from a true physical model of arterial hemodynamics and tissue perfusion, but instead to develop a simple and
efficient way to generate physiologically plausible waveforms.
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This signal was then low pass filtered to clean up the edges of the Gaussians, using a filter cut-off
frequency of 8 Hz. Finally, the signal was normalized to give a signal of maximum amplitude of
1. This process creates PPG waveforms with the characteristic profile of systolic peaks and smaller
diastolic peaks or inflections, but also with variability in the form. Finally, a small baseline drift at
the breathing frequency is applied to the PPG signal to capture the subtle variations observed with
breathing.

Breathing Waveforms. Each breathing waveform was created using sequence of breathing times
based on a breathing frequency sampled from 8 to 24 breaths/min. A Gaussian window was con-
volved with the resulting impulse sequence. This signal was then low pass filtered to clean up the
edges of the Gaussians, using a filter cut-off frequency of 8 Hz. Finally, the signal was normalized
to give a signal of maximum amplitude of 1.

Facial Actions, Blinking and Head Pose. Unlike the physiologic waveforms, facial actions
(with the exception of perhaps blinking) are rarely periodic. Therefore, we adopt an event based
model [44]. For each facial action the event signal was created by a set of ramped step functions.
The minimum and maximum event durations were 1 and 4 seconds, respectively. Blinking was
treated separately from the other facial actions as the behavior is relatively more frequent and repet-
itive. For blinks the min and max event durations were 0.3 and 1 second respectively.

In each video we generate action unit “events”. The start time and duration since previous event
govern when the events onset and the gap between two events of the same action unit. These were are
sampled from uniform distributions with bounds [0.3, 18] seconds and [1, 18] seconds, respectively.
As such, in videos with action unit events there are examples of the onset and offset of most actions,
some multiple times. Because facial actions are sparse but blinking occurs frequently, we generated
all videos with blinking (eyes closed) events but only a subset of videos with facial actions, more
details are provided below.

4 Video Synthesis

Identity. To create the avatars a generative 3D face model captures how face shape vary, and change
during facial expressions. A blendshape-based rig is used with 7,667 vertices and 7,414 polygons
and the identity basis is learned from a set of high-quality facial scans. In the creation of each avatar,
we use a texture map transferred from one of the high-quality 3D facial scan as the albedo of the
material for creating each face. These texture maps are sampled from a set of 511 facial scans of
subjects including a range of skin types/tones, genders and ages. The distribution of gender, age and
ethnicity of the subjects who provided the facial scans can be found in [52] (see Fig. 4). While these
scans are not uniformly distributed across all demographic profiles, they do provide a wide range
of appearances. Ongoing efforts are focused on creating more balanced facial scan dataset to help
create even more diverse renderings. As only varying the blood flow signal in the skin is important
for our use case the facial hair is removed from these textures by an artist. Then the skin properties
can be easily manipulated. Hair (and clothing) are added back in later to create the final appearance.

We simulate blood flow by adjusting properties of the physically-based shading material2. We use a
similar approach to that described by Wood et al. [52] and McDuff et al. [25]. We want the renders
to display both diffuse and specular reflection effects, the diffuse reflection is handled as described
below when we simulate blood flow and the specular reflection is controlled with an artist-created
roughness map. Specular reflections make some parts of the face (e.g. the lips) shinier than others.

Hair, clothing and other apparel are added back in once the blood perfusion signal has been created.
Hair is modeled as over 100,000 individual 3D strands to create a realstic effect. Hair as with
clothing then occlude perfusion changes, as would be the case in real life.

Photoplethysmography. Changes in diffuse reflection due to blood flow are achieved by varying the
surface color and subsurface scattering of the skin texture map. We simulate blood flow by adjusting
properties of the physically-based shading material we use for the face. The synthesized PPG wave-
form is used to drive the temporal changes. We manipulate skin tone changes using the subsurface
color parameters. The weights for this are derived from the absorption spectrum of hemoglobin and
typical frequency bands from an exemplar digital camera3 (Red: 550-700 nm, Green: 400-650 nm,

2https://www.blender.org/
3https://www.bnl.gov/atf/docs/scout-g_users_manual.pdf
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Figure 4: Our synthetic videos are accompanied by frame-level PPG, pseudo ECG/interbeat inter-
vals, breathing, head pose and action unit labels. Here we show examples of two videos with a
subset of video frames for reference.

Blue: 350-550 nm). We manipulate the subsurface radius for the channels to capture the changes
in scattering as the blood volume varies within the skin. A subsurface scattering radius texture is
used to spatially-weight these and simulate variations in the thickness of the skin across the face
using an artist-created subsurface scattering radius texture. The same relative weighting of the RGB
channels (0.36, 0.41, 0.23) is used for the BSDF subsurface radii. In absence of a more complex
temporal-spatial model, we vary the parameters across the skin pixels in the same way across all
frames. We recognize this is unlikely to be optimal, but does limit blood flow changes to skin pixels.
We hope to be able to introduce a more realistic spatial variation in future. We used relative subsur-
face scattering coefficients of 0.36 (+/- 0.1), 0.41 (+/- 0.1) and 0.23 (+/- 0.1) for the red, green and
blue channels respectively. Empirically we have found that this procedure works for creating data
for training camera-based vital sign measurement. We found that varying the subsurface scattering
alone, without changes in subsurface color, was too subtle and could not recreate the effects of BVP
on reflected light observed in real videos.

Breathing. Inhaling and exhaling cause motions of the head and chest. To capture this in the avatars
we use an approximation by controlling pitch of the chest and head using the synthesized breathing
input signal. The amplitude of the head and chest motions were subtle and when combined with the
head rotations and facial expressions are often difficult to see; however, prior validation has shown
the models trained on similar synthesized data can generalise to real videos.

Facial Actions Facial expressions are controlled using blendshapes that map approximately to 10
facial action units [10]: outer brow raise (AU2), brow lowerer (AU4), eye lid tightener (AU7), lip
corner puller (AU12), lip corner depressor (AU15), chin raiser (AU17), lip puckerer (AU18), jaw
drop (AU26), mouth stretch (AU27) and eyes closed (AU43). The facial action coding system is
a widely used and relatively objective method for quantifying facial movements [10]. The goal of
controlling these actions is to create upper and lower facial motions. We recognize that the behaviors
do not necessarily simulate realistic talking or expressions, as the dynamics of these are difficult to
simulate.

5 Dataset

We created a dataset of 2,800 video sequences. The rendering required 24 machines each with an
NVIDIA M40 GPU running for 720 hours each (a total of 17,280). This illustrates that creating
synthetic data of this kind is not trivial and in part justifies the need for public datasets that can be
shared amongst researchers. Each video has frame level ground-truth labels for PPG, inter-beat (RR)
intervals, breathing waveform, breathing intervals and 10 facial actions. We also provide video level
ground-truth labels for HRV SDNN, r-peak pulse arrival time (rPAT) and dicrotic wave amplitude.
These parameters were used to generate a set of 20 second PPG waveforms at 300Hz. Finally, action

6



Figure 5: Example frames from the SCAMPS dataset showing the diversity in avatar appearance,
behavior and environment.

unit intensities were generated. The ground-truth metrics are provided as both MAT and CSV files.
Each video was then rendered using the corresponding waveforms and action unit intensities, and
randomly sampled appearance properties, including skin texture, hair, clothing and environment.

Figure 6 shows the distribution of heart rates, HRV SDNNs, dicrotic wave amplitudes and breathing
rates in the dataset. HR, rPAT and dicrotic wave amplitudes were sampled uniformly. HRV SDNN
was not sampled uniformly, as qualitatively large HRV values, while interesting, could create quite
extreme differences in interbeat intervals and we deemed it appropriate to create more examples
with smaller variability.

To create a dataset that can be used for training and testing under a diverse range of conditions we
synthesized videos while systematically changing different confounders: 1) head motions, 2) facial
actions, and 3) dynamic illumination. A training, validation and test split of the data is provided on
our project page as is a file indicating which confounders are present in each video. As each video
was sampled with a different combination of appearance parameters, they all contain avatars with
different appearance. However, some avatars may look similar if they have the same skin texture
and hair style. Figure 1 and 5 both show a collage of frames from different videos illustrating the
diversity in appearance. The video frame (RGB) come with segmentation maps (see Fig. 3) that
provide pixel level labels for beard, eyelashes, eyebrows, glasses, hair, skin and clothing. This is
important as we know that the PPG signal will not be present in material that do not have blood flow
(e.g., hair, clothing) and so we expect any supervised learning method to learn to segment skin as one
of the operations. Therefore, we anticipate that segmentation maps will be useful to the community,
both in training and in testing camera PPG methods.

Head Motions. Two thousand videos have rotation head motions and 800 have no head motion.
Of the videos with head rotations, 1200 have smooth rotation (400 videos at 10, 20 and 30 degrees
per second) and a further 800 have non-smooth head rotations in which the head was randomly
positioned every second to a different angle. Ground-truth head angles are provided in the label
files.

Facial Actions. Half of the videos (1,400) have facial actions generated with the event model
described above, the other half have no facial actions. This enables training and/or testing sys-
tematically introducing the confounder of facial motions on the physiological measurement. The
sequences and combinations of facial actions in each video were randomly sampled and therefore
some of the facial expressions can look unnatural; however, this does provide a relatively dense set
of examples of facial action onsets and offsets. We contrast this to many facial expression datasets
in which facial actions are relatively sparse. We felt that more examples would generally be more
useful for training models.

Background Motion and Dynamic Illumination. A set of 400 of the videos have dynamic illumi-
nation and background motion created by simulating the subject turning around in the environment.
Half of these 400 videos have facial actions and half have head motions in addition to the background
motion.
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Figure 6: Examples of the distribution of heart rates, HRV SDNNs, breathing rates and dicrotic
wave amplitudes in the SCAMPS dataset. An advantage of synthetic data pipelines is the ability to
create a wide range of examples with specific distributions.

6 Baselines

One might ask the question “how well does a model trained on synthetic data generalize to real
videos?” While there is some precedent for using synthetics for heart and breathing rate estima-
tion [25, 26], those works did not use the SCAMPS dataset. To illustrate how this specific dataset
can be used for video physiological measurement and provide initial baseline results, we performed
experiments training with the SCAMPS dataset and testing on two public benchmark video datasets.
To generate the results in this paper we used the opensource Deep Physiological Sensing Tool-
box [21]. Links to the trained models can be found on our project page.

Model. Our goal here is not to provide an exhaustive list of results on different model architectures,
but a representative baseline for researchers to compare to. We do not argue that this is the current
state-of-the-art but rather is a reasonable starting point for future research with synthetic data in
the field of camera physiological measurement. We implemented DeepPhys [5] as the baseline
supervised model due to its relative simplicity. We trained on frames with resolution 72x72 pixels.
First, we cropped the center 240x240 pixel region of each 320x240 pixel raw images. We then down
sample these to 72x72 using a bilinear downsampling method. Difference frames were computed
by performing a difference operation on successive frames. The resulting appearance and difference
frames were normalized consistent with the method in Chen and McDuff [5]. These frames are
then used for training the supervised model. We used a learning rate of 0.001 and the ADAM
optimizer. We trained the model using videos from the SCAMPS training set for 10 epochs. We
validated the SCAMPS validation set but used real-world videos as the testing sets. We used the
Deep Physiological Sensing Toolbox [21] to complete all the training and testing procedures. The
model from the epoch with lowest mean absolute error (MAE) heart rate estimation was selected and
then we evaluated this model on the test sets. A Butterworth filter was applied to all model outputs
(cut-off frequencies of 0.7 and 2.5 Hz) before computing the frequency spectra and heart rate.

Results. The results reported here are on the UBFC-rPPG [4], MMSE-HR [55] and PURE [39]
datasets. Table 2 shows the mean absolute error (MAE), root mean squared error (RMSE) and
correlation (ρ) in heart rate estimation compared to the gold-standard measures from each of the
datasets. The results on both datasets show that the synthetic data are sufficient to train a reasonable
supervised model. The trained model does not necessarily exceed the performance of the existing
unsupervised methods and is in some cases a little worse. However, as first baselines these numbers
do demonstrate that generalization from synthetic video to real ones is possible and also that there
is room for improvement. By releasing the SCAMPS dataset we hope that researchers can design
methods that bridge the sim-to-real gap that exists.

7 Access and Usage

The data may be used for research purposes and any images from the dataset can be used in aca-
demic publications. Researchers may redistribute the SCAMPS dataset, so long as they include all
credit or attribution information and that the terms of redistribution require any recipient to do the
same. The license agreement details the permissible use of the data and the appropriate citation,
it can be found at: https://github.com/danmcduff/scampsdataset. Use of the dataset for
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Table 2: Cross-dataset heart rate evaluation on UBFC, MMSE-HR and PURE (beats per minute).

UBFC [4] MMSE-HR [55] PURE [39]
Method MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑

DeepPhys[5] (trained on SCAMPS) 3.74 12.42 0.82 4.59 8.89 0.81 3.51 12.94 0.84
POS[50] 3.52 8.38 0.90 3.90 9.61 0.78 1.68 9.60 0.92

CHROM[9] 3.10 6.84 0.93 3.74 8.11 0.82 6.23 17.18 0.71
ICA[32] 4.39 11.60 0.82 5.44 12.0 0.66 5.70 18.10 0.70

MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE = Root Mean Square Error in HR estimation (Beats/Min), ρ = Pearson Correlation in HR
estimation.

commercial purposes is strictly prohibited, although research use at commercial companies is per-
missible. The authors commit to maintaining the dataset and ensuring access is available to the
research community.

Some of our rendered faces may be close in appearance to the faces of real people. Any such simi-
larity is naturally unintentional, as it would be in a dataset of real images, where people may appear
similar to others unknown to them. As such there is no personally identifiable data or biometrics
contained within the data, but the authors bear responsibility in case of any violation of rights that
might occur.

8 Transparency and Broader Impacts

This dataset was created for research and experimentation on camera measurement of physiological
signals. While the dataset is useful for testing models, was not designed as a test set for evaluating
the clinical efficacy of a model, just because a model performs well on synthetic data does not mean
it will generalize to videos of real people. The SCAMPS dataset was not designed for computer
vision tasks such as face recognition, gender recognition, facial attribute recognition, or emotion
recognition. We do not believe this dataset would be suitable for these applications without further
validation.

We have tried to make this dataset representative of a diverse population and the physiological wave-
forms are completely synthesized, so do not contain identifying information. However, our dataset
still does not capture a uniform distribution of skin types and other appearance characteristics. We
are working on addressing these limitations. When using this dataset, as with others, one should be
careful to pay attention to biases that might exist. Please see the SCAMPS dataset datasheet [11]
included in the supplementary material and linked from our project page for more details.

Non-contact camera-based vital sign monitoring has great potential as a tool for telehealth. Our
proposed system can promote global health equity and make healthcare more accessible for those in
rural areas or those who find it difficult to travel to clinics and hospitals in-person (perhaps because
of age, mobility issues or care responsibilities). These needs are likely to be particularly acute in
low-resource settings. An advantage of camera physiological measurement is that contact with the
body is not required and that cameras are ubiquitous sensors. However, these advantages can cause
problems. Unobtrusive measurement from small, ubiquitous sensors makes measurement without a
subject’s knowledge simpler. It is important that norms and regulations that govern on-body physio-
logical measurement devices are extended to camera measurement systems. Consent should always
be obtained from subjects before measuring physiologic data of this kind. It is always important to
consider how such technology could be used by “bad actors”. In the case of physiological measure-
ment, it should be required to inform subjects when these methods are being used and for consent
to be obtained before physiological data is measured or recorded. There should be no penalty for
individuals who decline to be measured.

9 Future Directions

The SCAMPS datasets is a first of its kind. Therefore, we wanted to only include renderings for
which we had a sufficiently robust synthetics pipeline. In the SCAMPS dataset we did not synthesize
videos with very abnormal rhythms, or specific types of arrhythmia (e.g., Premature Ventricular
Contraction - PVC, Atrial Fibrillation - AFib., etc.) A distinct advantage of synthetic data generation
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is the ability to create examples of rare events “at will”; however, creating data that are faithful to
real-world observations is non-trivial. Therefore, the first version of the SCAMPS dataset contains
pulse signals with heart rate variability, but not specific arrhythmia. We hope that future research
will address this gap.

To make the dataset more plausible, a simulation of ballistic forces (e.g., ballistocardiogram) would
be helpful, as would a more sophisticated absorption model that reflects how absorption might
change under different conditions. Simulating scar tissue, makeup and other skin markings (e.g.,
tattoos or piercings) would also help provide better representation of appearances to the dataset.
Our current rendering engine is not capable of simulating scar tissue and the skin albedos we used
did not have tattoos. These are examples of why it is important to pay attention to biases that might
exist in models trained with SCAMPS and why it would not be appropriate to deploy a model trained
on SCAMPS without further work.

10 Conclusions

The SCAMPS dataset contains high-fidelity simulations designed for training and testing camera-
based physiological sensing algorithms. The dataset was designed to capture a diverse range of
appearances, environments and lighting conditions. Synchronized ground-truth signals include in-
terbeat and breath intervals and PPG, ECG and breathing waveforms precisely aligned with each
video frame. Facial actions, blinking and head pose labels are also provided. Benchmark experi-
ments show that it is possible to train models only with these synthetic data that generalize to real
videos. We hope that this dataset helps support research towards more robust and fair vision-based
physiological sensing models.
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