
A Appendix

A.1 Bayesian Inference as an Optimization Problem for an Infinite-Dimensional Prior
Measure

Let E be a (infinite dimensional) Polish space and B(E) the Borel σ-algebra on E. We denote the
set of Borel probability measures on B(E) as P(E) and choose a fixed prior measure P ∈ P(E).
The likelihood is described by a Markov kernel function p : Y × E → [0,∞) with

(y, f) 7→ p(y|f), (19)

where Y ⊂ RN is Borel measurable. The prior and the likelihood induce for any fixed y ∈ Y a
posterior measure denoted as P̂ ∈ P(E) [Ghosal and Van der Vaart, 2017, Chapter 1.3].

The next theorem shows that this posterior measure is the solution to a certain optimization problem.

Theorem 2 (Bayes Posterior as optimization). The Bayesian posterior measure P̂ is given as

P̂ = argmin
Q∈P(E)

{
−EQ

[
log p(y|F )

]
+ DKL(Q,P )

}
(20)

for any fixed prior measure P ∈ P(E) and fixed y ∈ Y such that f ∈ E 7→ p(y|f) > 0.

Proof. According to Bayes rule in infinite dimensions [Ghosal and Van der Vaart, 2017, Chapter 1.3]
we know that P̂ is dominated by P with Radon-Nikodym derivative given as

dP̂

dP
(f) =

p(y|f)
p(y)

, (21)

for f ∈ E where p(y) :=
∫
p(y|F = f) dP (f) is the marginal likelihood for y. The reverse is also

true and P is dominated by P̂ . We prove this by contraposition and therefore assume that P (A) > 0
for some A ∈ B(E). From Bayes rule we know that

P̂ (A) =

∫
A

p(y|f)
p(y)

dP (f) > 0 (22)

as the integrand is positive by assumption and P (A) > 0. This gives P̂ (A) > 0 and therefore that P
is dominated by P̂ . In this case standard rules for Radon-Nikodym derivatives give that

dP

dP̂
(f) =

p(y)

p(y|f) , (23)

for f ∈ E. Note that without loss of generality we can assume that the optimal Q ∈ P(E) is
dominated by P (and therefore also dominated by P̂ ) since otherwise (20) is infinite by definition of
the KL divergence. For such a Q dominated by P it holds that

L(Q) := −EQ

[
log p(y|F )

]
+ DKL(Q,P ) (24)

= −
∫

log p(y|f) dQ(f) +

∫
log

dQ

dP
(f) dQ(f) (25)

= −
∫

log p(y|f) dQ(f) +

∫
log

dQ

dP̂
(f) dQ(f) +

∫
log

dP̂

dP
(f) dQ(f), (26)

where the last line follows from the chain rule for Radon-Nikodym derivatives. We further have

L(Q) = −
∫

p(y|f) dQ(f) + DKL(Q, P̂ ) +

∫
p(y|f)
p(y)

dQ(f) (Bayes Rule) (27)

= DKL(Q, P̂ ) + p(y) (28)
≥ p(y), (29)

since DKL(Q,P ) ≥ 0, with equality if and only if Q = P̂ . This proves the claim.
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A.2 Pointwise Evaluation as Weak Limit

To outline the problem briefly: If F ∼ N (m,C) is a GRE with mean m ∈ L2(X , ρ,R) and
covariance operator C as defined in (9) then it is in general unclear what the distribution of F (x) would
be for a fixed x ∈ X . The technical reason is that the pointwise evaluation πx : L2(X , ρ,R) → R,
i.e.

πx(f) := f(x) (30)

is not well-defined. An element g of the space L2(X , ρ,R) is an equivalence class and only iden-
tifiable up to a ρ-nullset. This means that the definition of πx in (30) makes no sense whenever
ρ({x}) = 0 which is the case whenever ρ has a pdf w.r.t. the Lebesgue measure.

However, we will remedy this situation by defining for a fixed x ∈ X
F (x) := lim

n→∞
⟨F, hn,x⟩2 (31)

where hn,x ∈ L2(X , ρ,R) is an appropriately chosen sequence and the limit is to be understood as
convergence in distribution of the sequence of scalar random variables ⟨F, hn,x⟩2.

Theorem 3. Let F ∼ N (m,C) be a GRE in L2(X , ρ,R) with mean m ∈ L2(X , ρ,R) and covari-
ance operator C as defined in (9). Assume that ρ is a probability measure on X ⊂ RD and that ρ is
absolutely continuous with respect to the Lebesgue measure λ on RD with pdf ρ′. Denote the support
of the measure ρ by supp(ρ) and assume that x is an arbitrary point in the interior of supp(ρ) such
that m, k and ρ′ are continuous at x.

Let

η(t) =

{
exp

(
− 1

1−|t|2

)
if |t| < 1,

0 if |t| ≥ 1.
(32)

be the so called standard molifier and note that η is smooth with
∫
η(t) dt = 1. We further define

the sequence hn,x(t) := η
(
n(t− x)

)
/ρ′(t) for n ∈ N, t ∈ supp(ρ) and hn,x = 0 for t /∈ supp(ρ).

Then
⟨F, hn,x⟩2 D−→ N

(
m(x), k(x, x)

)
(33)

for n → ∞ where D−→ denotes convergence in distribution.

Proof. Note that supp(hn,x) = B1/n(x) := {t ∈ RD : |t− x| ≤ 1
n} and B1/n(x) ⊂ supp(ρ) for

large enough n ∈ N since x is from the interior of supp(ρ). This means that hn,x ∈ L2(X , ρ,R) for
large enough n as ∫

hn,x(t) dρ(t) =

∫
supp(ρ)

(
η
(
n(t− x)

)
ρ′(t)

)2

ρ′(t) dλ(t) (34)

=

∫
supp(ρ)

η
(
n(t− x)

)
ρ′(t)

dt (35)

=

∫
B1/n(x)

η
(
n(t− x)

)
ρ′(t)

dt. (36)

The last expression is finite for large enough n because the integrand is continuous at x. According
to the definition of of GREs we therefore conclude that

⟨F, hn,x⟩2 ∼ N
(
⟨m,hn,x⟩2, ⟨Chn,x, hn,x⟩2

)
(37)

for large enough n ∈ N.

The next statement we show is that mn(x) := ⟨m,hn,x⟩2 → m(x) for n → ∞. To this end notice
that

|mn(x)−m(x)| = |
∫
B1/n(x)

hn,x(t)
(
m(x)−m(t)

)
dρ(t)| (38)
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≤
∫
B1/n(x)

η
(
n(t− x)

)
|m(x)−m(t)| dt. (39)

Let now ϵ > 0 be arbitrary. For n large enough we |m(x)−m(t)| ≤ ϵ for all t ∈ B1/n(x) due to the
continuity of m in x. This immediately implies∫

B1/n(x)

η
(
n(t− x)

)
|m(x)−m(t)| dt ≤ ϵ

∫
B1/n(x)

η
(
n(t− x)

)
dt = ϵ, (40)

for large enough n which shows the convergence of mn(x) to m(x).

A similar argument shows that kn(x, x) := ⟨Chn,x, hn,x⟩2 → k(x, x) for n → ∞.

We therefore conclude that

⟨F, hn,x⟩2 = ⟨F, hn,x⟩2 −mn(x) +mn(x) (41)

=
√
kn(x, x)

⟨F, hn,x⟩2 −mn(x)√
kn(x, x)︸ ︷︷ ︸
∼N (0,1)

+mn(x) (42)

D−→ N
(
m(x), k(x, x)

)
(43)

for n → ∞ due to Slutsky’s theorem.

According to Theorem 3 we can simply define F (x) ∼ N (m(x), k(x, x)) for all x in the interior of
the support of ρ if m, k and ρ′ are continuous at x. These are mild assumptions and we can typically
assume that they are satisfied in practice.

A.3 The Wasserstein Metric for Probability Measures

Let E be a Polish space. For p ≥ 1, let Pp(E) denote the collection of all probability measures µ on
E with finite pth moment, that is, there exists some x0 in M such that:∫

M

d(x, x0)
p dµ(x) < ∞. (44)

The pth Wasserstein distance between two probability measures µ and ν in Pp(E) is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
E×E

d(x, y)p dγ(x, y)

)1/p

, (45)

where Γ(µ, ν) denotes the collection of all measures on E ×E with marginals µ and ν on the first
and second arguments respectively.

More details about the Wasserstein distance can be found in Chapter 7 of Ambrosio et al. [2005].

A.4 A Tractable Approximation of the Wasserstein Metric

Recall that the Wasserstein metric for the two Gaussian measures P = N (mP , CP ) and Q =
N (mQ, CQ) on the Hilbert space H = L2(X , ρ,R) is given as

W 2
2 (P,Q) = ∥mP −mQ∥22 + tr(CP ) + tr(CQ)− 2 · tr

[(
C

1/2
P CQC

1/2
P

)1/2]
. (46)

Further the operators CP and CQ are defined through trace-class kernels k and r as described in
Section 3.1. We will now discuss how to approximate each term in (46).

First, note that

∥mP −mQ∥22 =

∫ (
mP (x)−mQ(x)

)2
dρ(x) ≈ 1

N

N∑
n=1

(
mP (xn)−mQ(xn)

)2
, (47)
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which follows by replacing the true input distribution with the empirical data distribution. Second,
note that under very general conditions on k and ρ it holds that [Brislawn, 1991]

tr(CP ) =

∫
k(x, x) dρ(x) (48)

and similarly for CQ. Again by replacing ρ with the empirical data distribution we obtain natural
estimators:

tr(CP ) ≈
1

N

N∑
n=1

k(xn, xn), (49)

tr(CQ) ≈
1

N

N∑
n=1

r(xn, xn). (50)

Denote by λn(C) the n-th eigenvalue of a positive, self-adjoint operator C. By definition of the trace
and the square root of an operator we have

tr
[(
C

1/2
P CQC

1/2
P

)1/2]
=

∞∑
n=1

√
λn

(
C

1/2
P CQC

1/2
P

)
(51)

=

∞∑
n=1

√
λn

(
CQCP

)
, (52)

where the second line follows from the fact that the operator CQCP has the same eigenvalues as
C

1/2
P CQC

1/2
P [Hladnik and Omladič, 1988, Proposition 1]. The operator CQCP is given as

CQCP g(x) =

∫
r(x, x′)(CP f)(x

′) dρ(x′) (53)

=

∫
r(x, x′)

( ∫
k(x′, t)f(t)dρ(t)

)
dρ(x′) (54)

=

∫ ∫
r(x, x′)k(x′, t)f(t) dρ(x′)dρ(t) (55)

=

∫
(r ∗ k)(x, t)f(t) dρ(t), (56)

where we define
(r ∗ k)(x, t) :=

∫
r(x, x′)k(x′, t) dρ(x′) (57)

for all x, t ∈ X . This means that CQCP is also an integral operator with (non-symmetric) kernel
r ∗ k. We again replace ρ with ρ̂ to obtain

(̂r ∗ k)(x, t) = 1

N

N∑
n=1

r(x, xn)k(xn, t). (58)

The spectrum of CQCP can now be approximated by the spectrum of the matrix 1
N (̂r ∗ k)(X,X)

[Rasmussen, 2003, cf. Chapter 4.3.2] or 1
NS

(̂r ∗ k)(XS , XS) where XS is a subsample of the data
points X of size NS < N . If we plug this approximation into (52) we obtain

tr
[(
C

1/2
P CQC

1/2
P

)1/2] ≈ NS∑
m=1

√
λm

( 1

NS
(̂r ∗ k)(XS , XS)

)
(59)

=
1√
NS

NS∑
m=1

√
λm

( 1

N
r(XS , X)k(X,XS)

)
, (60)

which is the last expression that we had to approximate.

Note that since CQCP has the same spectrum as the self-adjoint, positive, trace-class operator
C

1/2
P CQC

1/2
P we know that its eigenvalues are real, positive and converge to zero.
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A.5 Generalized Loss for Regression in Batch Mode

The batch version of the generalized loss is given as:

L̂ =
N

2
log(2πσ2) +

N

NB

NB∑
b=1

(
ynb

−mQ(xnb
)
)2

+ r(xnb
, xnb

)

2σ2
+

1

NB

NB∑
b=1

(
mP (xnb

)−mQ(xnb
)
)2

(61)

+
1

NB

NB∑
b=1

k(xnb
, xnb

) +
1

NB

NB∑
b=1

r(xnb
, xnb

)− 2√
NBNS

NS∑
s=1

√
λs

(
r(XS , XB)k(XB , XS)

)
,

(62)

NB ∈ N is the batch-size. The indices n1, . . . , nNB
are the batch-indices and XB is the batch matrix.

A.6 GWI for (Multiclass) Classification

Let {(xn, yn)}Nn=1 ⊂ X × Y be data with X ⊂ RD and Y = {1, . . . , J}, where J ∈ N represents
J ≥ 2 distinct classes.

Model We use the same likelihood for y := (y1, . . . , yN ) as described in Chapter 4 of Matthews
[2017] which is:

p(y|f1, . . . , fJ) =
N∏

n=1

p(yn|f1, . . . , fJ) (63)

with
p(yn|f1, . . . , fJ) := hϵ

yn

(
f1(xn), . . . , fJ(xn)

)
, (64)

for yn ∈ {1, . . . , J}. The function hϵ
ℓ is defined as

hϵ
ℓ(t1, . . . , tJ)

1− ϵ if ℓ = argmax
j=1,...,J

{tj},
ϵ

J−1 if otherwise.
(65)

for ℓ = 1, . . . , J for ϵ > 0. We chose ϵ = 1% in our implementation.

We assume that F1, . . . FJ are independent GREs on L2(X , ρ,R) with prior means mP,j and prior
covariance operators CP,j , j = 1, . . . , J .

The variational measures for F1, . . . , FJ are assumed to be independent and given as Qj =

N
(
mQ,j , CQ,j

)
for j = 1, . . . , J . We further write Q

((
F1(x), . . . , FJ(x)

)
∈ A

)
, A ⊂ RJ for the

variational (posterior) approximation of the probability of the event {
(
F1(x), . . . , FJ(x)

)
∈ A}.

This leads to the following expected log-likelihood

EQ
[
log p(y|F1, . . . , FJ)

]
(66)

=

N∑
n=1

EQ
[
log p(yn|F1, . . . , FJ)

]
(67)

=

N∑
n=1

log(1− ϵ)Q
(

argmax
j=1,...,J

{Fj(xn)} = yn
)
+ log(

ϵ

J − 1
)Q
(

argmax
j=1,...,J

{Fj(xn)} ≠ yn
)

(68)

≈
N∑

n=1

log(1− ϵ)S(xn, yn) + log(
ϵ

J − 1
)
(
1− S(xn, yn)

)
, (69)

with

S(x, j) :=
1√
π

I∑
i=1

wi

∏
l ̸=j

ϕ
(√2rj(x, x)ξi +mQ,j(x)−mQ,l(x)√

rl(x, x)

)
(70)

for any x ∈ X , j = 1, . . . , J where (wi, ξi)
I
i=1 are the weights and roots of the Hermite polynomial

of order I ∈ N. This is the same Gauss-Hermite approximation as described in Chapter 4 of Matthews
[2017].
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The final objective for multiclass classification is given as

L = −EQ

[
log p(y|F1, . . . , FJ)

]
+

J∑
j=1

W 2
2 (Pj , Qj), (71)

where the expected log-likelihood is approximated by (69) and each Wasserstein distance W 2
2 (Pj , Qj)

can be estimated as in (14)-(15).

Prediction The probability that an unseen point x∗ ∈ X belongs to class j ∈ {1, . . . , J} is given
as

Q(Y ∗ = j) = (1− ϵ)S(x∗, j) +
ϵ

J − 1

(
1− S(x∗, j)

)
(72)

for any x∗ ∈ X . We predict the class label as maximiser of this probability. If we apply tempering,
we simply replace every rj(x, x) with T · rj(x, x) for j = 1, . . . , J in the definition of S(x, j).

Negative Log Likelihood The variational approximation to the negative log-likelihood is

NLL = − log
[
(1− ϵ)S(x∗, y∗) +

ϵ

J − 1

(
1− S(x∗, y∗)

)]
(73)

for any point x∗ ∈ X for which we know that the class label is y∗ ∈ {1, . . . , J}.

A.7 Implementation Details: Regression

The Regression model is given as F ∼ N (0, C) and

Yn = F (xn) + ϵn (74)

with ϵn ∼ N (0, σ2), n = 1, . . . , N . The covariance operator CP depends on the choice of a kernel
k, i.e. CP = CP,k for which we use the ARD kernel k given as

k(x, x′) = σ2
f exp

(
− 1

2

D∑
d=1

(xd − x′
d)

2

α2
d

)
(75)

for x, x′ ∈ RD. We refer to σf > 0 as kernel scaling factor, to αd > 0 as length-scale for dimension
d and to σ > 0 as observation noise.

The data is first randomly split into three categories: training set 80%, validation set 10% and test set
10%. The observations Y are then standardised by subtracting the empirical mean (of the training
data) and dividing by the empirical standard deviation (of the training data). The inputs data X is left
unaltered.

The number of inducing points The number of inducing points M is treated as a hyperparameter,
this means we train the model for each M ∈ {0.5

√
N,

√
N, 1.5

√
N, 2

√
N} and choose the best

model. For GWI: SVGP we use M ∈ {1
√
N, 2

√
N, . . . 5

√
N}.

The choice of inducing points The input points Z1, . . . , ZM in (18) are sampled independently
from the training data X and then fixed for GWI-net. For GWI: SVGP they are only initialised this
way and then learned by maximising the generalized loss.

Prior hyperparameters The prior hyperparameters σf , α := (α1, . . . , αD) and σ are chosen by
maximising the marginal log-likelihood for the data X = Z and the corresponding observations,
which we denote YZ . Note that the marginal log-likelihood is tractable and given as

log p(yZ) = −1

2
log
(
det
(
k(Z,Z) + σ2IM

))
− 1

2
yZ

T
(
k(Z,Z) + σ2IM

)−1
yZ . (76)

and can therefore be evaluated in O(M3) = O(N
√
N). Variational mean For GWI-net we use

a neural network with L = 2 hidden layers, width D1 = D2 = 10 and tanh as activation function.
This follows the set-up of Ma and Hernández-Lobato [2021].

Variational kernel The kernel r which is chosen as described in (18) and therefore depends on the
covariance matrix Σ ∈ RM×M and the M ∈ N inducing points Z = (Z1, . . . , ZM ) ∈ RD×M . We
parametrise Σ as Σ = LLT with initialisation

L = Chol
((

k(Z,Z) +
1

σ2
k(Z,X)k(X,Z)

)−1
)
, (77)
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where k(Z,X)k(X,Z) is approximated by batch-sizing as N
NB

k(Z,XB)k(XB , Z). This corre-
sponds to an approximation of the optimal choice for Σ in SVGP [Titsias, 2009].

Parameters in the generalized loss The generalized loss in Appendix A.5 depends further on
NS , NB and XS . The batch-size NB is chosen to be NB = 1000 for N > 1000. For N < 1000 we
use the full training data. The comparison points XS are sampled independently from the training
data X in each iteration. We train here for 1000 epochs on the regression task and 100 epochs on the
classification task following Ma and Hernández-Lobato [2021].

Tempering the predictive posterior

Wenzel et al. [2020] observe that the performance of many Bayesian neural networks can be improved
by tempering the predictive posterior. Tempering refers to a shrinking of the predictive posterior
variance by a factor of αT ∈ [0, 1]. This effect has also been observed for Gaussian processes
in Adlam et al. [2020] where it can be interpreted as elevating problems that occur from prior
misspecification. The prior hyperparameters for the ARD kernel k in (16) are selected by maximising
the marginal log-likelihood on a subset of the training data. This procedure may lead to prior
misspecification, which is why we decided to temper the predictive posterior, which means that we
use the predictive distribution

Y ∗|Y ∼ N
(
mQ(x

∗), αT

(
r(x∗, x∗) + σ2

))
(78)

for an unseen data point x∗ ∈ X . The (tempered) NLL for each data point is given as

NLL := − log pαT
(y∗|y) (79)

=
1

2
log
(
αT · (r(x∗, x∗) + σ2)

)
+

1

2

(y − y∗)2

αT · (r(x∗, x∗) + σ2)
+

1

2
log(2π). (80)

The tempering factor αT is chosen as minimiser of the average NLL on the validation set. The
final predictions on the test set are made using this optimal αT and (78). Note however that for the
NLL numbers reported in Table 1 we add log(σ̂train) to (80) where σ̂train is the empirical standard
deviation of the training data. This is done for fair comparison as it is how the NLL is calculated in
Ma and Hernández-Lobato [2021].

A.8 Implementation Details: Classification

As described in section (A.6) we use the prior mean functions mP,j and kernels kj for j = 1, . . . , J .
For our experiments we chose mP,j = 0 for j = 1, . . . , J and k := k1 = . . . , kJ where k is the
ARD kernel in (16).

We use a multi-output neural network for the variational means mQ,j and an SVGP kernel for each
rj , j = 1, . . . , J .

The number of inducing points The number of inducing points M is treated as a hyperparameter,
this means we train the model for each M ∈ {0.5

√
N, 0.75

√
N,

√
N} and choose the best model.

The choice of inducing points The input points Z1, . . . , ZM in (18) are sampled independently
from the training data X and then fixed for GWI-net.

Prior hyperparameters The prior hyperparameters are initialised as described in A.7, thus
maximising the marginal likelihood of a regression model, since the marginal likelihood of our
classification model is intractable.

Variational mean We use the same CNN architecture as described in Immer et al. [2021], Schneider
et al. [2019] for all models.

Variational kernel Each variational kernel rj uses the same inducing points Z but gets an
individual matrix Σj ∈ RM×M for j = 1, . . . , J . They are all initialised as described in A.7.

Parameters in the generalized loss The generalized loss in Appendix A.5 depends on NS , NB

and XS . The batch-size NB is chosen to be NB = 1000 for N > 1000. For N < 1000 we use the
full training data. The comparison points XS are sampled independently from the training data X in
each iteration. We train 100 epochs on the classification task following Ma and Hernández-Lobato
[2021].
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Tempering the predictive posterior For the same reasons as outlined in Appendix A.7 we temper
the predictive posterior. Recall that the NLL for classification is given as

NLL = − log
[
(1− ϵ)S(x∗, y∗) +

ϵ

J − 1

(
1− S(x∗, y∗)

)]
(81)

for any point x∗ ∈ X for which we know that the class label is y∗ ∈ {1, . . . , J}. We use a tempering
factor αj > 0 for each variational measure Qj ∼ N (mQ,j , αjrj), j = 1, . . . , J . We train the model
with αj = 1 for all j = 1, . . . , J and select the tempering factors afterwards as minimiser of the
average NLL on the validation set.

A.9 Illustrative Example for Two Dimensional Inputs

In Foong et al. [2020] it is observed that several BNN posterior approximation techniques struggle
with the quantification of in-between uncertainty. The red points mark where observations were made
and it is clear that mean-field variational inference (MVFI) [Hinton and Van Camp, 1993] and Monte
Carlo Dropout (MCDO) [Gal and Ghahramani, 2016] exhibit unjustifiably high posterior certainty
in the area where no observations are made. This is a pathology of the approximation technique as
the true Bayesian posterior which is approximated to very high precision by Hamiltonian Monte
Carlo (HMC) [Neal, 2012] or the infinite-width GP limit [Matthews et al., 2018] do not display such
behaviour.

In Figure 2 our method GWI-net is displayed next to the methods described in Foong et al. [2020].
As one can observe our model is keenly aware of its limited ability to predict points in-between the
two clusters of observed data points.
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(a) GWI
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(b) Inf-width limit GP
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(c) HMC
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(d) MFVI
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(e) MCDO

Figure 2: Regression on a 2D synthetic dataset (red crosses). The colour plots show the standard
deviation of the output, σ[f(x)], in 2D input space. The plots beneath show the mean with 2-standard
deviation bars along the dashed white line (parameterised by λ). MFVI and MCDO are overconfident
for λ ∈ [−1, 1].

A.10 Model Misspecification in Gaussian Wasserstein Inference

The generalized loss in Appendix A.5 is a valid optimization target for any mP ,mQ ∈ L2(X , ρ,R)
and any trace-class kernels k and r. This gives the user a lot of abilities to specify different models,
by experimenting with various choices, specifically for mQ and r. However with great power comes
great responsibility: it is quite easy to misspecify GWI. To illustrate the issue let us use a periodic
kernel k [Duvenaud, 2014] given as

k(x, x′) := σ2
f exp

(
− 1

α2
sin2(π|x− x′|/p)

)
(82)

and the SVGP kernel r in (18). By the definition of r the uncertainty will be low for points similiar
to the inducing points Z, i.e. for points x ∈ X k(x, zm) ≈ σ2

f for all m = 1, . . . ,M . A problem
now occurs, if the posterior mean mQ does not respect the knowledge embedded in k and r. Lets for
example use a simple fully connected deep neural network mQ and choose the point x∗ := z1 + 10p.
Assume further that z1, . . . , zM < x∗. Then we get k(x∗, zm) = k(z1, zm) for all m = 1, . . . ,M
due to the periodicity of sin(x) and therefore r(x∗, x∗) = r(z1, z1). It is however very unlikely that
the neural network will predict mQ(z1) as well as mQ(x

∗) since it is unaware of this periodicity.

This small example should illustrate that it is crucial that mQ is compatible with the prior knowledge
reflected in k and r. However, note that this problem is not present for our model, GWI-net. The
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ARD kernel encodes the inductive bias that the underlying function is infinitely differentiable and that
points close to each other have highly correlated functional outputs. A simple fully connected DNN
with tanh activation function is indeed smooth and further it is reasonable to assume that predictions
are more unreliable the further they are from the data (as measured by the squared euclidean distance).
The ARD kernel is in this sense compatible with a fully connected DNN.

It shall be noted that the DNN used for the classification examples in (5) used convolutional layers as
explained in Appendix A.8. This can be understood as embedding prior knowledge about translation
equivariance into the DNN [Goodfellow et al., 2016, Chapter 9.4]. It might therefore be desirable
to use a prior kernel k that embeds similar properties such as the kernel suggested by Van der Wilk
et al. [2017]. We considered this to be beyond the scope of this paper but the interaction of DNN
architecture and the choice of prior kernels is an interesting avenue for future research.

A.11 Details on computational resources used

For all our experiments, we distributed our jobs across 8 Nvidia V100 cards.

A.12 Additional plots for 1D experiments

In Figure 3 we compare GWI-net, GWI-SVGP and SVGP on one-dimensional toy data. Note that all
three methods use the same posterior kernel, but GWI-net differs from GWI-SVGP in terms of the
posterior mean function. GWI-SVGP and SVGP have the same posterior mean but differ in terms of
the objective function used for training.

A.13 Empirical estimation error of 2-Wasserstein distance

The approximation quality of the 2-Wasserstein distance is determined by the approximation quality
of the spectrum of the appearing covariance operators. For most kernels in practice like SE or
Matern kernel, the spectrum decays very quickly, which is why using the first 100 eigenvalues often
empirically seems to be sufficient to approximate the spectrum and therefore the 2-Wasserstein
distance. We plot the magnitude of the first 100 positive eigenvalues (sorted on magnitude) for
datasets BOSTON, CONCRETE, ENERGY, WINE and YACHT in Figure 4.

We see in Figure 4 that eigenvalues indeed decay fast.
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Figure 3: : Training data : Unseen data : Inducing points
We query the above functions at N = 1000 equidistant points and add white noise with ϵ ∼
N (0, 0.52). We use M = 30 inducing points and train our method as described in Appendix A.7.
The plot shows mQ(x)± 1.96

√
V[Y ∗(x)|Y ] where V[Y ∗(x)|Y ] is the posterior predictive variance

given as r(x, x) + σ2. Here the fitted models from top to bottom are GWI-net, GWI-SVGP and
SVGP.
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(a) BOSTON

(b) CONCRETE

(c) ENERGY

(d) WINE

(e) YACHT

Figure 4: The first 100 positive eigenvalues of r(XS , X)k(X,XS) for datasets BOSTON, CON-
CRETE, ENERGY, WINE and YACHT.
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