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Abstract

We develop a framework for generalized variational inference in infinite-
dimensional function spaces and use it to construct a method termed Gaussian
Wasserstein inference (GWI). GWI leverages the Wasserstein distance between
Gaussian measures on the Hilbert space of square-integrable functions in order to
determine a variational posterior using a tractable optimization criterion. It avoids
pathologies arising in standard variational function space inference. An exciting
application of GWI is the ability to use deep neural networks in the variational
parametrization of GWI, combining their superior predictive performance with
the principled uncertainty quantification analogous to that of Gaussian processes.
The proposed method obtains state-of-the-art performance on several benchmark
datasets.

1 Introduction
In the past decade, considerable effort has been invested in developing Bayesian deep learning
approaches [Welling and Teh, 2011, Chen et al., 2014, Blundell et al., 2015, Gal and Ghahramani,
2016, Kendall and Gal, 2017, Ritter et al., 2018, Khan et al., 2018, Maddox et al., 2019]. There are at
least two key advantages to Bayesian models. Firstly, Bayesian model averaging is known to improve
predictive performance [Komaki, 1996] even in misspecified situations [Fushiki, 2005, Ramamoorthi
et al., 2015]. The empirical success of methods such as deep ensembles [Lakshminarayanan et al.,
2017] may be interpreted as compelling evidence for this claim [Wilson and Izmailov, 2020]. Sec-
ondly, Bayesian models provide the user with a predictive distribution for an unseen data point. This
can be naturally leveraged to quantify posterior uncertainty.

Even though impressive progress has been made, there are problems that remain unresolved. The
prior distribution for the unknown function is typically induced by a prior distribution over deep
neural network weights (and biases). It is hard to interpret the inductive bias in a function space that
is induced by such priors for weights and unclear how one might incorporate prior knowledge about
the unknown function. Additionally, the resulting inference problem is extremely high-dimensional
and requires approximation techniques that are either computationally expensive [Neal, 2012] or so
crude that the approximate posterior may suffer from pathological behavior [Foong et al., 2020]. The
difficulties of performing Bayesian inference for weights have led to the emergence of methods that
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approach the problem in function space directly [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020,
Ma and Hernández-Lobato, 2021].

The theory of constructing prior distributions in function spaces is well developed and the most
famous class of prior distributions are Gaussian processes. They have been commonly used for
decades in the machine learning community to elicit interpretable functional priors and are known to
have well-calibrated predictive uncertainties [Rasmussen, 2003].

In a separate thread of research, a new powerful inference framework called Generalized Variational
Inference (GVI) has been recently developed [Knoblauch et al., 2019]. The authors argue that
standard assumptions of Bayesian inference such as well-specified priors, well-specified likelihoods
and infinite computing power are often violated in practice. They therefore propose a generalized view
on Bayesian inference that takes these points into consideration. We extend the work of Knoblauch
et al. [2019] to situations where no probability density functions for the prior exist and are thus able to
use generalized variational inference in infinite-dimensional function spaces directly. We then specify
both the prior and variational measures as Gaussian measures and measure their dissimilarity using
the Wasserstein distance. This results in the method which we call Gaussian Wasserstein Inference
in Function Spaces (GWI-FS). An exciting application of our method is the ability to equip deep
neural networks with uncertainty quantification using the framework analogous to that of Gaussian
processes, resulting in a state-of-the-art method termed GWI-net. Our main contributions are:

• We create a general framework for inference in function space based on Gaussian measures
on the space of square-integrable functions,

• We derive an objective function that can be expressed in terms of the parameters of the
Gaussian measures,

• We derive a tractable approximation to our objective function that is valid for (almost)
arbitrary kernels and mean functions,

• We demonstrate the utility of our method by obtaining state-of-the-art results on the UCI
regression datasets and on Fashion MNIST and CIFAR 103.

2 Related Work
GWI-FS draws on the work developed in the Gaussian process literature, but can be used to equip
traditional neural network architectures with uncertainty. We therefore give a brief overview of
the relevant related methods in both the Bayesian neural network (BNNs) and Gaussian process
community.

Bayesian neural networks Traditionally Bayesian neural networks have been assigned priors
in weight space. The effects of various priors on inference and uncertainty quantification are still
not well understood [Fortuin et al., 2021]. As the posterior (over weights) is intractable, sampling
algorithms such as Hamiltonian Monte Carlo (HMC) were initially proposed Neal [2012]. Due to
the unfavorable scaling properties of standard HMC which requires the full gradient, batch-size
approximations of HMC evolved [Chen et al., 2014]. Another line of research exploits Langevin
dynamics to generate posterior samples [Welling and Teh, 2011] in weight space.

Variational methods for BNNs in weight space In variational inference, the true posterior is
approximated by a more tractable so-called variational distribution. The user specifies a class of
approximate posterior measures and selects the best posterior approximation by maximizing the
so-called evidence lower bound (ELBO). The Bayes by Backprop [Blundell et al., 2015] method is
one such variational mean-field approximation of the weight-space posterior. In variational dropout
[Gal and Ghahramani, 2016], a specific approximation is chosen to reinterpret dropout [Srivastava
et al., 2014] at test time as a variational procedure.

Variational methods for BNNs in function spaces Inference in weight space is challenging, as the
problem is typically high-dimensional and the posterior distribution over weights multi-modal. This
led to a line of research in which inference algorithms are formulated in function spaces. Variational
implicit processes [Ma et al., 2019] approximate the BNN posterior as a linear combination of
draws from the prior. Functional-BNN [Sun et al., 2019] matches a BNN to a functional prior (for
example a GP) and performs inference by optimising a functional Kullback-Leibler (KL) divergence
exploiting score function estimators [Li and Turner, 2017, Shi et al., 2018]. Rudner et al. [2020] use
a local approximation to the prior and variational posterior processes to obtain a tractable functional
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Kullback-Leibler divergence. Ma and Hernández-Lobato [2021] generalise the variational family
in Ma et al. [2019] and obtain a more scalable procedure by using a different approximation to the
functional KL-divergence. Recent work has also proposed to adapt BNN priors to interpretable
functional priors by minimizing the Wasserstein distance between a BNN prior and a Gaussian
process [Tran et al., 2020]. Another line of research exploits the Wasserstein gradient flow and tries
to encourage diversity in the function space [D’Angelo et al., 2021, D’Angelo and Fortuin, 2021].

Gaussian processes Standard Gaussian process regression [Rasmussen, 2003] allows interpretable
prior specification but scales poorly with respect to the number of data points. As a result, a plethora
of approximation techniques are introduced. On one hand, there are variational approximations to the
true posterior [Titsias, 2009, Hensman et al., 2013] and several extensions [Hensman et al., 2017,
Salimbeni et al., 2018, Dutordoir et al., 2020]. On the other hand, GPU utilization is combined with
Krylov subspace methods to obtain scalability [Gardner et al., 2018, Wang et al., 2019].

3 Background
In this section we give some background on generalized variational inference in infinite dimensions
and introduce Gaussian measures in Hilbert spaces. We further discuss their relation to the more
familiar Gaussian processes at the end.

3.1 Generalized Variational Inference in Function Spaces
In functional variational inference, we assign a prior p(f) to the unknown function f ∈ E, where E is
a function space4. The prior is combined with the likelihood p(y|f) to give the posterior p(f |y). The
posterior is often intractable which is why in variational inference we specify a tractable variational
approximation q(f) to p(f |y) and train our model by maximising the evidence lower bound (ELBO)

L = Eq(f)

[
log p(y|f)

]
− DKL

(
q(f), p(f)

)
, (1)

where DKL denotes the KL divergence. Note that in the case where E is infinite dimensional p(f)
and q(f) cannot be probability density functions with respect to the Lebesgue measure [see e.g.
Hunt et al., 1992, for a discussion], which is why the above notation, although commonly used, is
imprecise. What we in fact mean are the probability measures over E associated with the prior and
variational approximation. We will denote these measures as PF and QF from now on to make this
difference explicit. The ELBO in this notation reads as

L := EQ
[
log p(y|F )

]
− DKL

(
QF ,PF

)
. (2)

Note that the KL divergence (for measures) is defined as

DKL
(
QF ,PF

)
=

∫
log

(
dQF

dPF
(f)

)
dQF (f), (3)

where we assume that QF is dominated by the measure PF which guarantees the existence of the
Radon-Nikodym derivative dQF /dPF . A number of papers focus on obtaining tractable approxima-
tions of (3) [Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]. However, the
use of KL-divergence in infinite-dimensional function spaces can be a delicate task, since benign
constructions of priors and variational approximations may not satisfy that QF is dominated by PF

which leads to DKL
(
QF ,PF

)
= ∞ [Burt et al., 2020]. This often renders the objective (2) useless or

at least problematic.

A true Bayesian is committed to the use of the KL divergence in (2) as maximizing L is equivalent to
minimizing the KL divergence between the true posterior measure and the variational measure. This
equivalence is typically demonstrated using pdfs but the argument generalizes to infinite dimensions
as is shown for GPs in Matthews et al. [2016] or in a more measure theoretic formulation in Theorem
4 of Wild and Wynne [2021].

However, Knoblauch et al. [2019] argue that given the problems of prior and likelihood specification
as well as available compute, an axiomatically justified way of moving from prior to posterior
beliefs is by solving a more general optimization problem [Knoblauch et al., 2019, Theorem 15].
Crucially it is valid to replace the KL-divergence by an arbitrary measure of dissimilarity D satisfying
D(QF ,PF ) ≥ 0 and D(QF ,PF ) = 0 ⇒ QF = PF . The arguments in Knoblauch et al. [2019] are

4We assume E to be a Polish space, which avoids technical difficulties in defining the posterior measure
[Ghosal and Van der Vaart, 2017, Chapter 1.3 ]
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made assuming the existence of a pdf for the prior, but they rely solely on a reformulation of Bayesian
inference as optimization problem [Knoblauch et al., 2019, Chapter 2]. We show in Appendix A.1 that
this reformulation can also be made for infinite-dimensional prior measures and therefore consider
the generalized loss

L := −EQ
[
log p(y|F )

]
+ D

(
QF ,PF

)
, (4)

a valid optimization objective for an arbitrary dissimilarity measure D. This is merely an infinite-
dimensional version of equation (10) in Knoblauch et al. [2019]. We refer to inference targeting the
objective (4) as Generalized variational inference in function space (GVI-FS).

Generalised variational inference can be interpreted as regularised loss minimisation lifted into the
space of probability measures. The first term in (4) is understood as a loss which we want to minimise
on average, while the second term punishes strong deviations from the prior.

The particular instance of GVI-FS that we explore is where both PF and QF are Gaussian measures
(on an infinite-dimensional Hilbert space) and D is chosen to be the Wasserstein metric [Kantorovich,
1960]. We will refer to this setting as Gaussian Wasserstein Inference in Function Space (GWI-FS)
or more consciously as Gaussian Wasserstein Inference (GWI)

3.2 Gaussian Random Elements and Gaussian Measures in Hilbert spaces
In this section we introduce Gaussian random elements (GRE) and Gaussian measures in Hilbert
spaces – these concepts are somewhat technical but crucial in the construction of our method. We then
describe their close relationship to the more familiar Gaussian process notions in the next section.

Let
(
Ω,A,P

)
be the underlying (physical) probability space and

(
H, ⟨·, ·⟩

)
be a Hilbert space.

Gaussian random elements A measurable function F : Ω → H is called GRE (in H) if and
only if ⟨F, h⟩ : Ω → R has a scalar Gaussian distribution for all h ∈ H .5 Every GRE F has a mean
element m ∈ H defined by

m :=

∫
F (ω) dP(ω) (5)

and a (linear) covariance operator C : H → H defined by

Ch(·) :=
∫
⟨F (ω), h⟩F (ω)P(ω)− ⟨m,h⟩m. (6)

for h ∈ H . Both integrals are to be understood as Bochner integrals [Kukush, 2020, Chapter 3]. The
Bochner integral has the property that

〈 ∫
F (ω) dP(ω), h⟩ =

∫
⟨F (ω), h⟩ dP(ω) for all h ∈ H . This

combined with Fubini’s theorem and the definition of a GRE implies that

⟨F, h⟩ ∼ N (⟨m,h⟩, ⟨Ch, h⟩
)
, (7)

for any h ∈ H with N (µ, σ2) denoting the normal distribution with mean µ ∈ R and variance
σ2 > 0. Similarly we denote F ∼ N (m,C) for a GRE in H with mean element m and covariance
operator C. It can be shown that the covariance operator C of a GRE is a positive self-adjoint
trace-class operator. Conversely, for every positive self-adjoint trace class operator and every m ∈ H ,
there exists a GRE with F ∼ N (m,C) [Bogachev, 1998, Theorem 2.3.1].

Gaussian measures The push-forward measure of P through F is defined as PF (A) :=
P
(
F−1(A)

)
for all Borel-measurable A ⊂ H . If F ∼ N (m,C) is a GRE, we call P := PF

a GM and write P = N (m,C). Note that GMs or equivalently GREs allow us to specify probability
distributions over (infinite-dimensional) Hilbert spaces by using a given mean element and a given
covariance operator.

Details about Gaussian Measures in Hilbert spaces can be found in Chapter 2 of Da Prato and Zabczyk
[2014] or in Kukush [2020]. In fact, Gaussian measures can be defined on even more general linear
spaces such as Banach or Fréchet spaces [Bogachev, 1998].

3.3 Gaussian Processes and Their Corresponding Measures
In this section we describe how Gaussian processes – a standard tool to assign functional priors in
Bayesian machine learning – are related to Gaussian measures.

5We allow for the degenerate case where the variance of ⟨F, h⟩ is zero. This means we interpret a Gaussian
with variance zero as Dirac measure.
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Let
(
Ω,A,P

)
be the underlying (physical) probability space and X ⊂ RD be measurable. The

(product-) measurable mapping G : Ω × X → R is called a Gaussian process (GP) if and only if
for all N ∈ N and all X = {xn}Nn=1 ⊂ X the random vector G(X) :=

(
G(·, x1), . . . , G(·, xN )

)T
is multivariate Gaussian. For a GP G we define a mean function m(x) := E

[
G(x)

]
, x ∈ X , and

a covariance function by k(x, x′) := C[G(x), G(x′)
]

for x, x′ ∈ X . Here E denotes the expected
value and C[·, ·] the covariance. It follows from the definition that G(X) ∼ N

(
m(X), k(X,X)

)
for

any {xn}Nn=1 ⊂ X , where we define m(X) :=
(
m(xn)

)N
n=1

and k(X,X) :=
(
k(xn, xn′)

)N
n,n′=1

.
We write G ∼ GP (m, k) for a GP with mean function m and covariance function k. Note that by
the properties of the covariance we know that k(X,X) is a (symmetric) positive semi-definite matrix
for all {xn}Nn=1 ⊂ X and N ∈ N. A function with this property is called kernel, a terminology that
we adopt henceforth. Kolmogorov’s existence theorem [Billingsley, 2008, Section 36] guarantees the
existence of a Gaussian process for any kernel k and any mean function m. The standard reference
for Gaussian processes in machine learning is Rasmussen [2003].

The main advantage of Gaussian processes in specifying priors over a function space is that the kernel
k allows us to incorporate readily interpretable prior assumptions, such as smoothness or periodicity.
For example, choosing the squared exponential kernel [Rasmussen, 2003] implies that the unknown
function is infinitely differentiable and that the correlation of the functional output is higher the closer
the inputs are.

In order to insert the Gaussian process prior into our generalized loss in (4) we need to know the
probability measure that is associated to the Gaussian process. In general, we can associate more
than one Gaussian measure with a given Gaussian process. For example:

• If the GP has continuous sample paths we can associate a Gaussian measure on the space E
of continuous functions with it [Lifshits, 2012, Example 2.4].

• If the GP has square-integrable sample paths we can associate a Gaussian measure on the
Hilbert space of square-integrable functions with it (cf. Theorem 1).

These sample path properties can be guaranteed under additional assumptions on the kernel. The
next theorem discusses one such kernel condition which guarantees the GP to have sample paths in
the Hilbert space of square integrable functions, denoted L2(X , ρ,R), with inner product ⟨g, h⟩2 :=∫
X g(x)h(x) dρ(x).

Theorem 1. Let F ∼ GP (m, k) be a GP with mean m ∈ L2(X , ρ,R) and kernel k such that∫
X
k(x, x) dρ(x) < ∞. (8)

We call a kernel satisfying (8) trace-class kernel. Then the mapping F̃ : Ω → L2(X , ρ,R) defined as
F̃ (ω) := F (ω, ·) is a Gaussian random element with mean m and covariance operator C given as

Cg(·) :=
∫

k(·, x′)g(x′) dρ(x′) (9)

for any g ∈ L2(X , ρ,R). Consequently P := PF ∼ N (m,C) is a Gaussian measure.

Proof. The fact that F̃ as defined above is a GRE follows immediately from Example 2.3.16 in
Bogachev [1998]. The fact that m is its mean and C as defined in (9) is its covariance operator
follows from Fubini’s theorem.

It shall be noted that there is no need to appeal to GPs in order to justify the use of GMs. In fact, it has
recently been demonstrated that variational inference for GPs can be formulated purely in terms of
GMs [Wild and Wynne, 2021]. In the following sections we will therefore deploy GMs without any
reference to GPs, but it is of course always possible to think of them as the measures that correspond
to GPs where the kernel satisfies an additional assumption such as (8).

4 Gaussian Wasserstein Inference in Function Spaces
This section describes how the Wasserstein distance between Gaussian measures can be used to
obtain a tractable optimization target for inference in function spaces. In the end, we discuss several
parametrizations of GWI and introduce our main inference method - the GWI-net.
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4.1 Model description
Let {(xn, yn)}Nn=1 ⊂ X × Y be N ∈ N paired observations. We assume that X ⊂ RD, D ∈ N
and further that Y = R for regression and Y = {1, . . . , J} for classification with J ∈ N classes.
We focus in our exposition here on the regression case but have given the relevant derivations for
classification in Appendix A.6.

As pointed out in section 3.1, GVI in function space minimises the generalized loss L =
−EQ

[
log p(y|F )

]
+ D

(
QF ,PF

)
. We make the mild assumption that the unknown function f

is square integrable with respect to the data distribution ρ on X which means f ∈ E = L2(X , ρ,R).
The prior P := PF is described by a Gaussian measure with mean mP ∈ L2(X , ρ,R) and covari-
ance operator CP described by a trace-class kernel k : X × X → R which means it is given as
(CP f)(x) :=

∫
X k(x, x′)f(x′) dρ(x′) for all f ∈ L2(X , ρ,R). We assume a Gaussian likelihood

for y := (y1, . . . , yN ) given as p(y|f) :=∏N
n=1 p(yn|f)6 with

p(yn|f) := N (yn | f(xn), σ
2), (10)

where N (· |µ, σ2) denotes the pdf of a normal distribution with mean µ ∈ R and variance σ2 > 0.
This prior and likelihood are natural choices as they mimic the standard formulation of Gaussian
process regression. The variational approximation of the posterior is chosen to be another Gaussian
measure Q := QF with arbitrary mean mQ ∈ L2(X , ρ,R) and arbitrary covariance operator CQ

induced by a trace-class kernel r: (CQf)(x) :=
∫
X r(x, x′)f(x′) dρ(x′) for all f ∈ L2(X , ρ,R).

It remains for us to select a dissimilarity measure D. As already pointed out in the introduction we
decide to use the Wasserstein distance W2 (a formal definition is given in Appendix A.3). This choice
was guided by two considerations:

1. The Wasserstein metric was proven to be a useful metric for probability distributions in
machine learning applications [Arjovsky et al., 2017, Tran et al., 2020]. Furthermore the
Wasserstein metric is known to have desirable statistical properties [Panaretos and Zemel,
2019].

2. The Wasserstein distance is tractable for arbitrary Gaussian measures on (separable) Hilbert
spaces [Gelbrich, 1990] and given as

W 2
2 (P,Q) = ∥mP −mQ∥22 + tr(CP ) + tr(CQ)− 2 · tr

[(
C

1/2
P CQC

1/2
P

)1/2]
, (11)

where tr denotes the trace of an operator and C
1/2
P is the square root of the positive, self-

adjoint operator CP . This is in stark contrast to the KL-divergence that is infinite whenever
QF is not dominated by PF and even in the case where it is finite there exists no explicit
formula for the KL-divergence in infinite dimensions.

The generalized loss for our model is therefore given as

L = −
N∑

n=1

EQ

[
logN

(
yn |F (xn), σ

2
)]

+W2(P,Q). (12)

Note that the expected log-likelihood in (12) can be calculated analytically as

EQ

[
logN

(
yn |F (xn), σ

2
)]

= −N

2
log(2πσ2)−

N∑
n=1

(
yn −mQ(xn)

)2
+ r(xn, xn)

2σ2
. (13)

It remains to produce an approximation of (11) in order to obtain a tractable inference procedure.
To this end, note that by definition ∥mP − mQ|22 =

∫ (
mP (x) − mQ(x)

)2
dρ(x) and further

tr(CP ) =
∫
k(x, x) dρ(x) [Brislawn, 1991]. We now replace the true input distribution ρ with

the empirical data distribution ρ̂ := 1
N

∑N
n=1 δxn

, where δx denotes the Dirac measure in x ∈ X .
This gives ∥mP −mQ∥22 ≈ 1

N

∑N
n=1

(
mP (xn) −mQ(xn)

)2
, tr(CP ) ≈ 1

N

∑N
n=1 k(xn, xn) and

6Astute readers may notice that the definition of the likelihood contains a pointwise evaluation f(xn) which
may not be a well defined operation on L2(X , ρ,R). We detail in Appendix 30 how that problem can be
circumvented and that in fact F (x) ∼ N (m(x), k(x, x)) as one would expected.
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tr(CQ) ≈ 1
N

∑N
n=1 r(xn, xn). It remains to provide an approximation of tr

[(
C

1/2
P CQC

1/2
P

)1/2]
.

The key idea is to approximate the spectrum of C1/2
P CQC

1/2
P by that of an appropriate kernel matrix.

Details are discussed in Appendix A.4. This leads to the following final approximation for the
Wasserstein metric

Ŵ 2 :=
1

N

N∑
n=1

(
mP (xn)−mQ(xn)

)2
+

1

N

N∑
n=1

k(xn, xn) (14)

+
1

N

N∑
n=1

r(xn, xn)−
2√
NNS

NS∑
s=1

√
λs

(
r(XS , X)k(X,XS)

)
, (15)

where XS := (xS,1, . . . , xS,NS
) with xS,1, . . . xS,NS

∈ RD being subsampled from the in-
put data X . Further r(XS , X) :=

(
r(xS,s, xn)

)
s,n

and k(X,XS) :=
(
k(xn, xS,s)

)
n,s

for
n = 1, . . . , N , s = 1, . . . , NS and λs

(
r(XS , X)k(X,XS)

)
denotes the s-th eigenvalue of the

matrix r(XS , X)k(X,XS) ∈ RNS×NS . The approximation quality of Ŵ is related to the spectral
decay of the operator CPCQ, which in turn is determined by the kernels k and r. For the choices
made in Section 4.2 we empirically observe rapid spectral decay (cp. Appendix A.13) and therefore
are confident that the 2-Wasserstein distance is estimated reliably for our method.

The combination of (13), (14) and (15) gives a generalized loss that is tractable in terms of mP ,mQ, k,
and r. If we disregard computation time of mP ,mQ, k and r, the generalized loss can be evaluated
in O(N +N2

SN +N3
S), where typically NS ≪ N , e.g. NS = 100. We provide a batch version of

our loss in Appendix A.5 which reduces the computations to O(N2
SNB +N3

S) where NB ≪ N is
the batch-size. Note, however, that the final computation time for our method will be determined by
the complexity hidden in the evaluation of mQ, mP , k, and r as we need NB evaluations of mQ and
mP and NS ·NB evaluations of r and k per iteration.

4.2 Parameterisations of Prior and Variational Measure
The prior for our model is given as P = N (mP , CP ) with CP induced by a trace-class kernel k.
One of the advantages of the proposed approach is that any trace-class kernel is allowed and this is
where one can incorporate specific assumptions and domain expertise. This is a thoroughly studied
topic: the prior kernel can encode periodicity [Durrande et al., 2016], geometric intuition [van der
Wilk et al., 2018], and even model linear constraints for the unknown function [Jidling et al., 2017].
In order to keep the exposition simple and maintain focus on the inference, however, and in line with
using simple priors on network weights in standard Bayesian deep learning, we opt for a simple zero
mean prior mP = 0 and a standard ARD kernel k given as

k(x, x′) = σ2
f exp

(
− 1

2

D∑
d=1

(xd − x′
d)

2

α2
d

)
(16)

for x, x′ ∈ X ⊂ RD. We refer to σf > 0 as kernel scaling factor and to αd > 0 as length-scale for
dimension d. The parameters σf and α := (α1, . . . , αD) are called prior hyperparameters.

The rest of the section explores various choices for the variational mean mQ and the variational
kernel r. The parameters appearing in the specification of mQ and r are referred to as variational
parameters.

GWI: Stochastic variational Gaussian process Let z1, . . . , zM ∈ X be a subsample of the data
X with M ≪ N . We define the posterior mean

mQ(x) := mP (x) +

M∑
m=1

βmkm(x) (17)

with βm ∈ R and km(x) := k(x, zm), m = 1, . . . ,M where k is the prior kernel k and β :=
(β1, . . . , βM ) ∈ RM are variational parameters. Define further the variational kernel

r(x, x′) = k(x, x′)− kZ(x)
T k(Z,Z)−1kZ(x) + kZ(x)

TΣkZ(x), (18)

where Σ ∈ RM×M is the symmetric and positive definite variational covariance matrix that parame-
terises r. This choice of mQ and r essentially recovers the stochastic variational Gaussian processes

7



Figure 1: : Training data : Unseen data : Inducing points
We query the above functions at N = 1000 equidistant points and add white noise with ϵ ∼
N (0, 0.52). We use M = 30 inducing points and train our method as described in Appendix A.7.
The plot shows mQ(x)± 1.96

√
V[Y ∗(x)|Y ] where V[Y ∗(x)|Y ] is the posterior predictive variance

given as r(x, x) + σ2.

(SVGP) model of Titsias [2009]. Note that in our framework it is straightforward to use all (or just
more) basis functions for the mean mQ(x) := mP (x) +

∑N
n=1 βnkn(x) where kn(x) := k(x, xn),

βn ∈ R, n = 1, . . . , N . This mirrors the construction in Cheng and Boots [2017] where we allow
more parameters to learn the mean than in SVGP. However, both Titsias [2009] and Cheng and Boots
[2017] use a different objective function than GWI to learn the unknown parameters.

GWI: deep neural network with SVGP An interesting approach is to parameterise the posterior
mean as a deep neural network (DNN). We assume the DNN has L ∈ N hidden layers and the
width of layer ℓ = 1, . . . , L is denoted Dℓ with D0 := D and DL+1 = 1. This means we define
g1(x) := W 1x+b1 and further hℓ(x) := ϕ

(
gℓ(x)

)
, gℓ+1(x) := W ℓ+1hℓ(x)+bℓ+1 for ℓ = 1, . . . , L.

Here W l+1 is Dℓ+1 × Dℓ matrix, bℓ+1 ∈ RDℓ+1 is a bias vector for layer l and ϕ an activation
function. We can then define the variational mean as mQ(x) := mP (x) + gL+1(x). If we choose the
SVGP kernel r in (18), we essentially predict with a neural network and quantify uncertainty with a
(sparse) Gaussian process, capturing the beneficial properties of both.

Neural networks have been combined in several ways with GPs [Wilson et al., 2016, Tran et al.,
2020]. However, to the best of our knowledge they were not used to directly parametrize the posterior
in the context of generalized variational inference in function space. The spirit of our approach is
fundamentally different: rather than thinking of a neural network as a model which needs to be made
Bayesian, we use it as a parametrisation of a variational posterior.

We note that we do not here provide an exhaustive study on how to best parameterize the variational
measure. This paper is focused on demonstrating the ability of the proposed method to obtain
valid uncertainty quantification. An exploratory study on how properties and quality of uncertainty
quantification relate to different choices of mQ and r is reserved for future work. We mention
potential problems that can occur from misspecification in Appendix A.10.

5 Experiments
We show results for GWI with the SVGP mean (17) and the SVGP kernel (18). We use the shorthand
GWI: SVGP for this approach. Additionally we implement the DNN mean with the SVGP kernel
(18). This combination achieves impressive results on various regression and classification tasks. We
call this method GWI: DNN-SVGP or simply GWI-net.

Illustrative Examples In Figure 1 we illustrate GWI-net on a few toy examples. One can clearly
see that the posterior predictive variance expands for regions lacking observations which demonstrates
the ability of our method to quantify uncertainty. We provide an additional graphic comparison with
SVGP in Appendix A.12 and an example for two-dimensional inputs in Appendix A.9

There we show that the pathologies regarding the quantification of in-between uncertainty discussed
in Foong et al. [2020] are not present for our method.

UCI Regression In Table 1 we report the average test negative log-likelihood (NLL) (cf. Appendix
A.7 for details) of GWI: SVGP and GWI-net (GWI: DNN-SVGP) and the results of several weight-
space approaches for BNNs: Bayes-by-Backprop (BBB) [Blundell et al., 2015], variational dropout

8



(VDO) [Gal and Ghahramani, 2016], and variational alpha dropout (α = 0.5) [Li and Gal, 2017].
We also compare with four function-space BNN inference methods: functional variational inference
with BNN prior (FVI) [Ma and Hernández-Lobato, 2021], variationally implicit processes (VIP) with
BNNs, VIP-Neural processes [Ma et al., 2019], and functional BNNs (FBNNs) [Sun et al., 2019]. In
order to ensure a fair comparison we matched neural network architectures and training procedures
for the different methods. Detailed explanations are given in Appendix A.7.

Dataset N D GWI FVI VIP-BNN VIP-NP BBB VDO α = 0.5 FBNN EXACT GPSVGP DNN-SVGP
BOSTON 506 13 2.8±0.31 2.27±0.06 2.33±0.04 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.30±0.10 2.46±0.04
CONCRETE 1030 8 3.24±0.09 2.64±0.06 2.88±0.06 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.09±0.01 3.05±0.02
ENERGY 768 8 1.81±0.19 0.91±0.12 0.58±0.05 0.56±0.04 0.60±0.03 2.17±0.02 1.13±0.02 0.95±0.09 0.68±0.02 0.54±0.02
KIN8NM 8192 8 -0.86±0.38 -1.2±0.03 -1.15±0.01 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 N/A±0.00 N/A±0.00
POWER 9568 4 3.35±0.22 2.74±0.02 2.69±0.00 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 N/A±0.00 N/A±0.00
PROTEIN 45730 9 2.84±0.04 2.87±0.0 2.85±0.00 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 N/A±0.00 N/A±0.00
RED WINE 1588 11 0.97±0.02 0.76±0.08 0.97±0.06 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 1.04±0.01 0.26±0.03
YACHT 308 6 2.37±0.55 0.29±0.1 0.59±0.11 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 1.03±0.03 0.10±0.05
NAVAL 11934 16 -7.25±0.08 -6.76±0.1 -7.21±0.06 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.13±0.02 N/A±0.00
Mean Rank 5.5 2.06 2.22 3.33 4.94 7 6.11 4.83

Table 1: The table shows the average test NLL on several UCI regression datasets. We train on
random 90% of the data and predict on 10%. This is repeated 10 times and we report mean and
standard deviation. The results for our competitors are taken from Ma and Hernández-Lobato [2021].
One can see that GWI-net obtains the best mean rank of all methods being the best model on 4/9
datasets and performing competitively on all datasets. Note that we exclude FBNN and exact Gaussian
processes from the comparison because their computational complexity is often prohibitively large.

Classification and OOD Detection We demonstrate the ability of GWI to perform image classifi-
cations on Fashion MNIST [Xiao et al., 2017] and CIFAR-10 [Krizhevsky et al., 2009]. We compare
to FVI, mean-field variational inference (MVFI) [Blundell et al., 2015], maximum a posteriori ap-
proximation (MAP), K-FAC Laplace-GNN [Martens and Grosse, 2015] and its dampened version
[Ritter et al., 2018]. Implementation details are discussed in A.8.

We also assess the ability of our model to perform out-of-distribution detection using in-distribution
(ID) / out of-distribution (OOD) pairs given as FashionMNIST/MNIST and CIFAR10/SVNH. Fol-
lowing the setting of Osawa et al. [2019], Immer et al. [2021] we calculate the area under the curve
(AUC) of a binary out-of-distribution classifier based on predictive entropies. Results are shown in
Table 2.

FMNIST CIFAR 10
Model Accuracy NLL OOD-AUC Accuracy NLL OOD-AUC
GWI-net 93.25 ±0.09 0.250 ±0.00 0.959 ±0.01 83.82 ±0.00 0.553 ±0.00 0.618 ±0.00
FVI 91.60±0.14 0.254±0.05 0.956±0.06 77.69 ±0.64 0.675±0.03 0.883±0.04
MFVI 91.20±0.10 0.343±0.01 0.782±0.02 76.40±0.52 1.372±0.02 0.589±0.01
MAP 91.39±0.11 0.258±0.00 0.864±0.00 77.41±0.06 0.690±0.00 0.809±0.01
KFAC-LAPLACE 84.42±0.12 0.942±0.01 0.945±0.00 72.49±0.20 1.274±0.01 0.548±0.01
RITTER et al. 91.20±0.07 0.265±0.00 0.947±0.00 77.38±0.06 0.661±0.00 0.796±0.00

Table 2: We report average accuracy, NLL and OOD-AUC on test data for 10 different train/test splits.
The results for FVI are obtained from Ma and Hernández-Lobato [2021] and for MAP, KFAC and
Ritter et al. results are taken from Immer et al. [2021] .

Our method performs best in all categories on the Fashion MNIST dataset achieving state-of-the-art
results. On CIFAR10 we obtain the highest accuracy and best NLL by a significant margin and
perform competitively in the OOD detection task.

6 Limitations

In this section we discuss some of the shortcomings and difficulties which are related to our method.

The GVI-FS framework allows the specification of function space inference via infinite dimensional
parameters such as mean and kernel functions. This great flexibility essentially allows the specification
of mismatched prior and posterior parameters. We illustrate such a case in Appendix A.10.

GWI-net relies on the SVGP kernel defined in 18 for its posterior approximation. It therefore inherits
numerical instabilities associated with the inversion of the kernel matrix. For the data sets discussed
in this paper it was possible to overcome these issues by smart initialisation of the optimiser (cf.
Appendix A.7), but it may be an interesting research avenue to come up with a kernel that avoids
these instabilities.

Our method approximates the Wasserstein distance in function space via the spectrum of kernel
matrices (cf. Appendix A.4). These approximations require quick spectral decay of the composition
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of prior and variational covariance operator to be accurate and computationally tractable. The prior
SE kernel combined with the variational SVGP kernel did have this property (cf. A.13) which allowed
for cheap and accurate approximations. However, other parameterisations may result in less accurate
estimation. A theoretical investigation of how the approximation quality relates to kernel properties
is an interesting topic for further research.

The proposed framework models prior and variational distribution with a Gaussian measure on the
space of square integrable functions. As a consequence the posterior distribution for the functional
output is Gaussian as well. This means it is unimodal and concentrated around the posterior mean.
Although this constrains the form of functional posterior significantly the authors would argue that
the empirical success of GWI-net demonstrates that the approach is flexible to meaningfully quantify
uncertainty.

7 Conclusion
In this paper, we developed a framework for generalized variational inference in infinite-dimensional
function spaces. We leveraged the function space perspective to develop a new inference approach
combining Gaussian measures and Wasserstein distance with predictive performance of deep neural
networks, yielding principled uncertainty quantification. The value of our method was demonstrated
on several benchmark datasets.
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M. Hladnik and M. Omladič. Spectrum of the product of operators. Proceedings of the American
Mathematical Society, 102(2):300–302, 1988.

B. R. Hunt, T. Sauer, and J. A. Yorke. Prevalence: a translation-invariant “almost every” on infinite-
dimensional spaces. Bulletin of the American mathematical society, 27(2):217–238, 1992.

A. Immer, M. Korzepa, and M. Bauer. Improving predictions of bayesian neural nets via local
linearization. In International Conference on Artificial Intelligence and Statistics, pages 703–711.
PMLR, 2021.

C. Jidling, N. Wahlström, A. Wills, and T. B. Schön. Linearly constrained gaussian processes.
Advances in Neural Information Processing Systems, 30, 2017.

L. V. Kantorovich. Mathematical methods of organizing and planning production. Management
science, 6(4):366–422, 1960.

A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer vision?
Advances in neural information processing systems, 30, 2017.

M. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava. Fast and scalable bayesian
deep learning by weight-perturbation in adam. In International Conference on Machine Learning,
pages 2611–2620. PMLR, 2018.

J. Knoblauch, J. Jewson, and T. Damoulas. Generalized variational inference: Three arguments for
deriving new posteriors. arXiv preprint arXiv:1904.02063, 2019.

F. Komaki. On asymptotic properties of predictive distributions. Biometrika, 83(2):299–313, 1996.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

A. Kukush. Gaussian measures in Hilbert space: construction and properties. John Wiley & Sons,
2020.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

Y. Li and Y. Gal. Dropout inference in bayesian neural networks with alpha-divergences. In
International conference on machine learning, pages 2052–2061. PMLR, 2017.

Y. Li and R. E. Turner. Gradient estimators for implicit models. arXiv preprint arXiv:1705.07107,
2017.

M. Lifshits. Lectures on gaussian processes. In Lectures on Gaussian Processes, pages 1–117.
Springer, 2012.

C. Ma and J. M. Hernández-Lobato. Functional variational inference based on stochastic process
generators. Advances in Neural Information Processing Systems, 34, 2021.

12



C. Ma, Y. Li, and J. M. Hernández-Lobato. Variational implicit processes. In International Conference
on Machine Learning, pages 4222–4233. PMLR, 2019.

W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson. A simple baseline for bayesian
uncertainty in deep learning. Advances in Neural Information Processing Systems, 32, 2019.

J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate curvature.
In International conference on machine learning, pages 2408–2417. PMLR, 2015.

A. G. d. G. Matthews. Scalable Gaussian process inference using variational methods. PhD thesis,
University of Cambridge, 2017.

A. G. d. G. Matthews, J. Hensman, R. Turner, and Z. Ghahramani. On sparse variational methods
and the kullback-leibler divergence between stochastic processes. In Artificial Intelligence and
Statistics, pages 231–239. PMLR, 2016.

A. G. d. G. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani. Gaussian process
behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018.

R. M. Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,
2012.

K. Osawa, S. Swaroop, M. E. E. Khan, A. Jain, R. Eschenhagen, R. E. Turner, and R. Yokota.
Practical deep learning with bayesian principles. Advances in neural information processing
systems, 32, 2019.

V. M. Panaretos and Y. Zemel. Statistical aspects of wasserstein distances. Annual review of statistics
and its application, 6:405–431, 2019.

R. Ramamoorthi, K. Sriram, and R. Martin. On posterior concentration in misspecified models.
Bayesian Analysis, 10(4):759–789, 2015.

C. E. Rasmussen. Gaussian processes in machine learning. In Summer school on machine learning,
pages 63–71. Springer, 2003.

H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural networks. In 6th
International Conference on Learning Representations, ICLR 2018-Conference Track Proceedings,
volume 6. International Conference on Representation Learning, 2018.

T. G. Rudner, Z. Chen, and Y. Gal. Rethinking function-space variational inference in bayesian neural
networks. In Third Symposium on Advances in Approximate Bayesian Inference, 2020.

H. Salimbeni, C.-A. Cheng, B. Boots, and M. Deisenroth. Orthogonally decoupled variational
gaussian processes. Advances in neural information processing systems, 31, 2018.

F. Schneider, L. Balles, and P. Hennig. Deepobs: A deep learning optimizer benchmark suite. arXiv
preprint arXiv:1903.05499, 2019.

J. Shi, S. Sun, and J. Zhu. A spectral approach to gradient estimation for implicit distributions. In
International Conference on Machine Learning, pages 4644–4653. PMLR, 2018.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

S. Sun, G. Zhang, J. Shi, and R. Grosse. Functional variational bayesian neural networks. arXiv
preprint arXiv:1903.05779, 2019.

M. Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial
intelligence and statistics, pages 567–574. PMLR, 2009.

B.-H. Tran, S. Rossi, D. Milios, and M. Filippone. All you need is a good functional prior for
bayesian deep learning. arXiv preprint arXiv:2011.12829, 2020.

13



M. Van der Wilk, C. E. Rasmussen, and J. Hensman. Convolutional gaussian processes. Advances in
Neural Information Processing Systems, 30, 2017.

M. van der Wilk, M. Bauer, S. John, and J. Hensman. Learning invariances using the marginal
likelihood. Advances in Neural Information Processing Systems, 31, 2018.

K. Wang, G. Pleiss, J. Gardner, S. Tyree, K. Q. Weinberger, and A. G. Wilson. Exact gaussian
processes on a million data points. Advances in Neural Information Processing Systems, 32, 2019.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.
Citeseer, 2011.
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