
Stimulative Training of Residual Networks: A Social
Psychology Perspective of Loafing

Peng Ye1† , Shengji Tang1† , Baopu Li2 , Tao Chen1∗, Wanli Ouyang3

1School of Information Science and Technology, Fudan University, 2Oracle Health and AI, USA,
3The University of Sydney, SenseTime Computer Vision Group, Australia, and Shanghai AI Lab

Appendix A: The loafing problem of different datasets and residual networks

We further verify that stimulative training can well handle the loafing problem on different datasets
and residual networks. As shown in Fig. r1, we can see that stimulative training can always improve
the performance of a given residual network and all of its sub-networks by a larger margin on various
residual networks and benchmark datasets. In other words, different residual networks trained on
different datasets invariably suffer from the problem of network loafing, which can be well solved by
the proposed stimulative training strategy.

100 120 140 160 180 200 220
Flops(M)

40

50

60

70

80

90

To
p1

 A
cc

ur
ac

y
(%

)

Stimulative Training (ST)
Untrained Subpath from ST
Common Training (CT)
Untrained Subpath from CT

(a) MBV3 on C10

1.5 2.0 2.5 3.0 3.5 4.0
Flops(G)

10

20

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y
(%

)

Stimulative Training (ST)
Untrained Subpath from ST
Common Training (CT)
Untrained Subpath from CT

(b) Res50 on C100

1.5 2.0 2.5 3.0 3.5 4.0
Flops(G)

10

20

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y(
%

)

Stimulative Training (ST)
Untrained Subpath from ST
Common Training (CT)
Untrained Subpath from CT

(c) Res50 on ImageNet
Figure r1: Stimulative training can improve the performance of a given residual network and all of its
sub-networks significantly. We further verify it on various residual networks and benchmark datasets.

Appendix B: Proof of theoretical analysis 1

According to the convergence of SGD, cross entropy loss CE(Z(θDm
, x), y) and KL-divergence

loss KL(Z(θDm
, x),Z(θDs

, x)) used in our method can be bounded by a tiny constant, expressed as

CE(Z(θDm , x), y) = −
N∑
i=1

yi log p
m
i < ϵ1, (1)

KL(Z(θDm , x),Z(θDs , x)) = EΘ

[
N∑
i=1

pmi log
pmi
psi

]
< ϵ2, (2)

0 < pmi , psi < 1,

N∑
i=1

pmi = 1,

N∑
i=1

psi = 1, (3)

where θDm and θDs denote the learned weights of the main network and sub-network, respectively. Z
is the network output, x is the input image, and y is the label. pmi and psi are the prediction probability
of the main network and sub-network, respectively. We define k as the ground truth index (i.e., yk = 1
and yi = 0(i ̸= k)), Θ as the set of sampled sub-networks, ϵ1 and ϵ2 as the tiny constants. Therefore,

∗Corresponding Author (eetchen@fudan.edu.cn). †Equal Contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

our target is to prove that the gap between the CE loss of the main network and all sub-networks is
bounded by a tiny constant, written as

|CE(Z(θDm , x), y)− EΘ [CE(Z(θDs , x), y)]| (4)

=

∣∣∣∣∣EΘ

[
N∑
i=1

yi log
pmi
psi

]∣∣∣∣∣ =
∣∣∣∣EΘ

[
log

pmk
psk

]∣∣∣∣ < ϵ3. (5)

Now, we begin to prove the existence of ϵ3. For Formulation. 1, it can be simplified to − log pmk ≤ ϵ1,
which can be equally written as

pmk ≥ e−ϵ1 . (6)
For Formulation. 2, it can be equally written as

−H(pm)− EΘ

[
N∑
i=1

pmi log psi

]
< ϵ2, (7)

− EΘ

[
N∑
i=1

pmi log psi

]
< ϵ2 +H(pm) < ϵ2 + logN, (8)

where H(·) represents the entropy operator. Further, based on Formulation. 6 and Formulation. 8,
Formulation. 5 can be bounded by∣∣∣∣EΘ

[
log

pmk
psk

]∣∣∣∣ = |log pmk − EΘ [log psk]| < |log pmk |+ |EΘ [log psk]| (9)

< ϵ1 +

∣∣∣∣EΘ [pmk log psk]

pmk

∣∣∣∣ < ϵ1 +

∣∣∣∣∣∣
EΘ

[∑N
i=1 p

m
i log psi

]
pmk

∣∣∣∣∣∣ (10)

< ϵ1 +

∣∣∣∣ϵ2 + logN

pmk

∣∣∣∣ < ϵ1 +
ϵ2 + logN

e−ϵ1
. (11)

In Formulation. 9, we utilize triangle inequality. In Formulation. 10 and 11, we scale the inequality
according to Formulation. 8 and 6. As ϵ3 = ϵ1 +

ϵ2+logN
e−ϵ1

is a tiny constant which is independent of
p, we finish the proof.

Appendix C: More details about experimental settings

Appendix C.1: The procedure of stimulative training

We show the procedure of stimulative training in Alg. 1. In short, we randomly sample an ordered
residual sub-network in the main network in each minibatch, and adopt KL divergence loss to
constrain the output of the sub-network not far from that of the main network. Similar to solutions
for preventing social loafing in social psychology, sampling ordered residual sub-networks aims to
increase individual supervision sufficiently, and adopting KL divergence loss aims to make the goals
of residual sub-networks and the given residual network more consistent. We will release our codes
upon acceptance of this paper.

Algorithm 1 Stimulative Training
Require:

Main network Dm; Total training iterations N ; Loss balanced coefficient λ;
Input x and label y of each minibatch; Random sampling π.

1: Construct the main network and initialize the main network weights θDm
.

2: For each t ∈ [1, N] do
3: Sample an ordered residual sub-network Ds = π(Dm)
4: Main network forwards Zm = Dm(x, θDm

), and compute the loss
Lm = CE(Zm, y)

5: Sub-network forwards Zs = Ds(x, θDs), and compute the loss
Ls = KL(Zm,Zs)

6: Compute the stimulative training loss, Lst = Lm + λLs

7: Backward and update network weights θDm by descending ∇θDm
Lst

8: End.

2

Appendix C.2: Settings of empirical analysis

For empirical analysis, we train NAS-searched model MobileNetV3 [1] on CIFAR100 with common
and stimulative training strategy, respectively, and test the diverse empirical characteristics of trained
MobileNetV3 and all of its ordered residual sub-networks. For training, we use SGD optimizer and
train the model for 500 epochs with a batch size of 64, the initial learning rate is 0.05 with cosine
decay schedule, the weight decay is 3× 10−5 and momentum is 0.9. For testing, we always employ
batchnorm re-calibration for each sampled sub-network following [2].

Appendix C.3: Settings of destructing residual network

For the destruction experiment of residual networks, we employ the main body of MobileNetV3 for
testing and ignore basic input/output layers, as shown in Table r1. For deleting one or more layers,
we may delete every layer except the downsampling layer considering that downsampling layers in
MobileNetV3 are single branch structure. For permuting layers, we only permute the layers in the
same stage since the resolution and width of different stages in MobileNetV3 are varying. We show
the performance drop when conducting different number of permuting operations, and consider all
combinations when conducting a fixed number of permuting operations. All possible combinations
when conducting different number of permuting operations are shown in Table r2.

Table r1: The main body of MobileNetV3. Input denotes the input size of feature maps. #out is the
output channel number and s is the stride. Index denotes the layer index when applying destruction.

Input 112²×16 56²×24 56²×24 28²×40 28²×40 28²×40 14²×80 14²×80 14²×80 14²×80 14²×112 14²×112 7²×160 7²×160
#out 24 24 40 40 40 80 80 80 80 112 112 160 160 160

s 2 1 2 1 1 2 1 1 1 1 1 2 1 1
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table r2: All combinations when conducting different number of permuting operations.

Number of permuting layers All combinations when permuting layers

Number of permuting = 1

[[[1, 2], [3, 5, 4], [6, 7, 8, 9], [10, 11], [12, 13, 14]],
[[1, 2], [3, 4, 5], [6, 8, 7, 9], [10, 11], [12, 13, 14]],
[[1, 2], [3, 4, 5], [6, 7, 9, 8], [10, 11], [12, 13, 14]],
[[1, 2], [3, 4, 5], [6, 9, 8, 7], [10, 11], [12, 13, 14]],
[[1, 2], [3, 4, 5], [6, 7, 8, 9], [10, 11], [12, 14, 13]]]

Number of permuting = 2

[[[1, 2], [3, 5, 4], [6, 8, 7, 9], [10, 11], [12, 13, 14]],
[[1, 2], [3, 5, 4], [6, 7, 9, 8], [10, 11], [12, 13, 14]],
[[1, 2], [3, 5, 4], [6, 9, 8, 7], [10, 11], [12, 13, 14]],
[[1, 2], [3, 4, 5], [6, 8, 7, 9], [10, 11], [12, 14, 13]],
[[1, 2], [3, 4, 5], [6, 7, 9, 8], [10, 11], [12, 14, 13]],
[[1, 2], [3, 4, 5], [6, 9, 8, 7], [10, 11], [12, 14, 13]],
[[1, 2], [3, 4, 5], [6, 8, 9, 7], [10, 11], [12, 13, 14]],
[[1, 2], [3, 4, 5], [6, 9, 7, 8], [10, 11], [12, 13, 14]],
[[1, 2], [3, 5, 4], [6, 7, 8, 9], [10, 11], [12, 14, 13]]]

Number of permuting = 3

[[[1, 2], [3, 5, 4], [6, 8, 7, 9], [10, 11], [12, 14, 13]],
[[1, 2], [3, 5, 4], [6, 7, 9, 8], [10, 11], [12, 14, 13]],
[[1, 2], [3, 5, 4], [6, 9, 8, 7], [10, 11], [12, 14, 13]],
[[1, 2], [3, 5, 4], [6, 8, 9, 7], [10, 11], [12, 13, 14]],
[[1, 2], [3, 5, 4], [6, 9, 7, 8], [10, 11], [12, 13, 14]],
[[1, 2], [3, 4, 5], [6, 8, 9, 7], [10, 11], [12, 14, 13]],
[[1, 2], [3, 4, 5], [6, 9, 7, 8], [10, 11], [12, 14, 13]]]

Number of permuting = 4 [[[1, 2], [3, 5, 4], [6, 8, 9, 7], [10, 11], [12, 14, 13]],
[[1, 2], [3, 5, 4], [6, 9, 7, 8], [10, 11], [12, 14, 13]]]

Appendix C.4: Experimental settings of Fig. 1 in the manuscript

For ResNetx on CIFAR10 dataset, we directly utilize the pretrained models in a publicly available
pytorch repository [3]. This repository provides a valid implementation that matches with the
description of the original paper [4], with comparable or smaller test error. When testing, we always
employ batchnorm re-calibration for sampled sub-networks following [2].

3

Appendix D: The trajectory of training loss and test accuracy

We show the trajectory of training loss and test accuracy when applying stimulative and common
training in Fig. r2. The point of the highest Top1 accuracy is represented by five-pointed star for
both approaches. As we can see, on different residual networks and benchmark datasets, stimulative
training can always yield higher accuracy than common training (i.e., 96.88% vs 95.72%, 81.07% vs
77.39%, 81.06% vs 76.53%). Furthermore, we observe that the curves of Top1 accuracy and training
loss of residual networks with common training rapidly approach flat, while stimulative training
continuously reduces the training loss and increases the Top1 accuracy.

0 50 100 150 200 250 300 350 400 450 500
epoch

30

40

50

60

70

80

90

100

To
p1

 A
cc

ur
ac

y
(%

)

96.88
95.72

Test Accuracy with Stimulative Training
Test Accuracy with Common Training
Training Loss with Stimulative Training
Training Loss with Common Training

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Tr
ai

ni
ng

 L
os

s

(a) MBV3 on C10

0 50 100 150 200 250 300 350 400 450 500
epoch

10

20

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y
(%

)

81.07

77.39

Test Accuracy with Stimulative Training
Test Accuracy with Common Training
Training Loss with Stimulative Training
Training Loss with Common Training

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

(b) MBV3 on C100

0 50 100 150 200 250 300 350 400 450 500
epoch

0

10

20

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y
(%

)

81.06

76.53

Test Accuracy with Stimulative Training
Test Accuracy with Common Training
Training Loss with Stimulative Training
Training Loss with Common Training

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

ni
ng

 L
os

s

(c) Res50 on C100
Figure r2: The trajectory of training loss and test accuracy when applying stimulative and common
training on different residual networks and benchmark datasets.

Appendix E: Ablation study of the balanced coefficient λ

We show the ablation study of the balanced coefficient λ between cross entropy loss and KL divergence
loss in Fig. r3. As we can see, on different residual networks and benchmark datasets, stimulation
training with different balance coefficients may yield slightly different Top1 accuracies, but all these
results are much better than those obtained by common training. In addition, as shown in Fig. r3,
the optimal balance coefficients for MobileNetV3 on CIFAR10, MobileNetV3 on CIFAR100 and
ResNet50 on CIFAR100 are 5, 10 and 10 respectively. Similar results can be found for ResNet
families on ImageNet, and we find that their optimal balance coefficients are 1.

2 4 6 8
weights

94.0

94.5

95.0

95.5

96.0

96.5

97.0

To
p1

 A
cc

ur
ac

y
(%

)

Stimulative Training
Common Training

(a) MBV3 on C10

6 8 10 12 14
weights

74

75

76

77

78

79

80

81

82

To
p1

 A
cc

ur
ac

y
(%

)

Stimulative Training
Common Training

(b) MBV3 on C100

8 9 10 11 12
weights

74

75

76

77

78

79

80

81

82

To
p1

 A
cc

ur
ac

y
(%

)

Stimulative Training
Common Training

(c) Res50 on C100
Figure r3: Ablation study of the balanced coefficient λ between cross entropy loss and KL divergence
loss on different residual networks and benchmark datasets.

Appendix F: Rebuttle additional part

Appendix F.1: Comparison with different methods

We further compare the proposed stimulative training with self distillation [5], stochastic depth [6], and
common training with providing supervision directly to each layer or stage. We train MobileNetV3
with these methods on CIFAR100 dataset. For a fair comparison, we adopt the same basic training
settings such as training epoch, data augmentation, learning rate and optimizer, which has been shown
in the manuscript Section.6. The detailed respective training settings are given as follows.

For self distillation we adopt the similar hyper-parameters as [5] and fine tune them for MobileNetV3.
In the logits distillation, the main loss coefficient is 0.8 and distillation coefficient is 0.2. In the
feature distillation, the feature distillation coefficient of each stage is 0.02.

For stochastic depth, due to forbidding skipping down sampling layer in MobileNetV3, we ensure the
first layer of each stage won’t be dropped. The survive rate of layers are declined linearly [6] and the
final survive rate p=0.9.

4

For layer and stage supervision training, we introduce additional transforming heads to project
the features of stages or layers to the same dimension space and utilize cross entropy to generate
supervision. The stage feature loss coefficient is [0.13, 0.2, 0.27, 0.4] and layer feature loss coefficient
is the corresponding stage coefficient divided by the layer number of stage.

The comprehensive comparisons are shown in Table r3.As we can see, layer supervision and stochastic
depth can improve both the performance of the main network and the average performance of all
subnetworks, stage supervision and self-distillation can only improve the performance of the main
network, while the proposed stimulative training can achieve the highest performance of main network
and the highest average performance of all subnetworks. Besides, as shown in Fig r8, the proposed
stimulative training can better relieve the network loafing problem than all the other methods. As
shown in Fig r4, Fig r5, Fig r6 and Fig r7, the proposed stimulative training can provide stronger
robustness in resisting various network destruction operations than all the other methods.

Besides above experimental results, we find that: 1) The improved performance of stochastic depth
can be also interpreted as relieving the loafing problem defined in this work; 2) the proposed
stimulative training is actually complementary to layer/stage supervision and self-distillation, and
their combinations can be a worthy research direction in the future.

Appendix F.2: Loafing of DenseNet networks

To show that the loafing problem are replicable, we further verify that DenseNet also suffers from
the loafing problem on ImageNet and CIFAR100. We follow [7] to select 4 typical networks
(DenseNet121, 169, 201, 264), in which the tinier one is completely the sub-network of the larger one,
to validate the loafing problem. For ImageNet, we just apply the pretrained weights of DenseNet121,
169, 201 and test the sub-network from larger one by succeeding the weights. For CIFAR100, we
train all 4 networks utilizing standard training setting and do the same test above. For details, the
optimizer is SGD and the initial learning rate is 0.1 and divided by 5 at 60th, 120th, 160th for 200
epochs with batchsize 128, weight decay 5e-4, Nesterov momentum of 0.9.

Table r5 and Table r6 show the results of different DenseNet networks which are trained on ImageNet
and CIFAR100 respectively. As we can see that, different DenseNet networks invariably suffer from
the loafing problem, that is, the sub-networks working in a given DenseNet network are prone to
exert degraded performances than these sub-networks working individually. Moreover, the loafing
problem of deeper DenseNet networks is inclined to be more severe than that of shallower ones, that
is, the same sub-network in deeper DenseNet networks constantly presents inferior performance than
that in shallower DenseNet networks. As Fig 1 of the main text has shown that different ResNet
networks invariably suffer from the loafing problem, we can conclude that various residual networks
invariably suffer from the loafing problem on various datasets.

Appendix F.3: Training time and memory cost

We further show the difference in training time and memory consumption between common training
(CT) and stimulative training (ST) in Table r4. For training time, ST is about 1.4 times (but less than 2
times) that of CT, since ST employs the main network and a sampled subnetwork at each step and the
sampled subnetwork usually takes much less time than the main network. For memory consumption,
ST and CT are basically the same, since each subnetwork is sampled from the main network.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Deleted Layer Index

0

1

2

3

4

5

6

7

8

9

10

11

12

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Self Distillation, Top1 Accuracy = 79.59%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(a) deleting one

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
Number of Layers Deleted

0

5

10

15

20

25

30

35

40

45

50

55

60

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Self Distillation, Top1 Accuracy = 79.59%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(b) deleting more

1 2 3 41 2 3 41 2 3 4
Number of Permuting Layers

0

1

2

3

4

5

6

7

8

9

10

11

12

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Self Distillation, Top1 Accuracy = 79.59%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(c) permuting
Figure r4: Top1 accuracy drop when (a) deleting one layer, (b) deleting more layers and (c) permuting
layers from MobileNetV3 with stimulative/common/self distillation training on CIFAR100 dataset.

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Deleted Layer Index

0

1

2

3

4

5

6

7

8

9

10

11

12

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Stochastic Depth, Top1 Accuracy = 78.43%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(a) deleting one (b) deleting more

1 2 3 41 2 3 41 2 3 4
Number of Permuting Layers

0

1

2

3

4

5

6

7

8

9

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Stochastic Depth, Top1 Accuracy = 78.43%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(c) permuting
Figure r5: Top1 accuracy drop when (a) deleting one layer, (b) deleting more layers and (c) permuting
layers from MobileNetV3 with stimulative/common/stochastic depth training on CIFAR100 dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Deleted Layer Index

0

1

2

3

4

5

6

7

8

9

10

11

12

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Layer Supervision , Top1 Accuracy = 78.77%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(a) deleting one

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
Number of Layers Deleted

0

5

10

15

20

25

30

35

40

45

50

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Layer Supervision , Top1 Accuracy = 78.77%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(b) deleting more

1 2 3 41 2 3 41 2 3 4
Number of Permuting Layers

0

1

2

3

4

5

6

7

8

9

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Layer Supervision , Top1 Accuracy = 78.77%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(c) permuting
Figure r6: Top1 accuracy drop when (a) deleting one layer, (b) deleting more layers and (c) permuting
layers from MobileNetV3 with stimulative/common/layer supervision training on CIFAR100 dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Deleted Layer Index

0

1

2

3

4

5

6

7

8

9

10

11

12

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Stage Supervision , Top1 Accuracy = 78.59%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(a) deleting one

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
Number of Layers Deleted

0

5

10

15

20

25

30

35

40

45

50

55

To
p1

 A
cc

ur
ac

y
D

ro
p(

%
)

Stage Supervision , Top1 Accuracy = 78.59%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(b) deleting more

1 2 3 41 2 3 41 2 3 4
Number of Permuting Layers

0

1

2

3

4

5

6

7

8

9
To

p1
 A

cc
ur

ac
y

D
ro

p(
%

)
Stage Supervision , Top1 Accuracy = 78.59%
Common Training, Top1 Accuracy = 77.39%
Stimulative Training, Top1 Accuracy = 81.07%

(c) permuting
Figure r7: Top1 accuracy drop when (a) deleting one layer, (b) deleting more layers and (c) permuting
layers from MobileNetV3 with stimulative/common/stage supervision training on CIFAR100 dataset.

Table r3: Comprehensive comparisons among different methods, including common training (CT),
stimulative training (ST), common training (CT) with layer/stage supervision, Self-Distillation and

Stochastic Depth.
Method Time Memory Main(%) All(%)
CT 16.91h 3291MiB 77.39 55.26±13.37
CT+layer supervision 23.3h 7193MiB 78.77 59.18±11.12
CT+stage supervision 19.3h 5197MiB 78.59 54.82±13.31
Self distillation 26.8h 3887MiB 79.59 50.39±14.22
Stochastic depth 16.9h 3291MiB 78.43 70.72±3.76
ST 24.08h 3291MiB 81.07 80.01±0.59

Table r4: Training time and memory consumption on different models and datasets. CT and ST
denote common training and stimulative training, respectively.
Method MBV3_C10 MBV3_C100 Res50_C100
CT (time) 16.77h 16.91h 15.28h
ST (time) 23.64h 24.08h 21.52h
CT (memory) 3361MiB 3291MiB 4647MiB
ST (memory) 3361MiB 3291MiB 4647MiB

6

100 120 140 160 180 200 220
Flops(M)

20

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y(
%

)

Self Distillation
Common training(CT)
Stimulative training(ST)

(a) Self distillation

100 120 140 160 180 200 220
Flops(M)

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y(
%

)

Stochastic Depth
Common training(CT)
Stimulative training(ST)

(b) Stochastic depth

100 120 140 160 180 200 220
Flops(M)

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y(
%

)

Layer Supervision
Common training(CT)
Stimulative training(ST)

(c) Layer supervision

100 120 140 160 180 200 220
Flops(M)

20

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y(
%

)

Stage Supervision
Common training(CT)
Stimulative training(ST)

(d) Stage supervision

Figure r8: Comparisons of sub-networks performance on MBV3 with different training methods. As
we can see, the proposed stimulative training can better relieve the network loafing problem than all
the other methods.

Table r5: Different DenseNet networks trained on ImageNet invariably suffer from the problem of
network loafing.

Main-net\Sub-net DenseNet121 DenseNet169 DenseNet201
DenseNet121 74.86 20.91 11.57
DenseNet169 - 76.46 51.18
DenseNet201 - - 77.44

Table r6: Different DenseNet networks trained on CIFAR100 invariably suffer from the problem of
network loafing.

Main-net\Sub-net DenseNet121 DenseNet169 DenseNet201 DenseNet264
DenseNet121 78.84 43.64 31.51 10.01
DenseNet169 - 79.64 70.78 48.41
DenseNet201 - - 79.77 62.29
DenseNet264 - - - 79.81

References
[1] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun

Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1314–1324,
2019.

[2] Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training tech-
niques. In Proceedings of the IEEE/CVF international conference on computer vision, pages
1803–1811, 2019.

[3] Yerlan Idelbayev. Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch. https:
//github.com/akamaster/pytorch_resnet_cifar10. Accessed: 20xx-xx-xx.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[5] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In

7

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3713–3722,
2019.

[6] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pages 646–661. Springer, 2016.

[7] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

8

