
A Proof of Lemma 1

Lemma 1 (Non-identical class probabilities). If the label distribution across the clients is skewed
and the class conditionals have the same support, then the class probabilities {pi(y | x) | i ∈ [m]}
are non-identical, i.e., for all i 6= u and i, u ∈ [m], there exists x, y such that pi(y | x) 6= pu(y | x).

Proof. Case 1: For all y ∈ [C], pi(y), pu(y) > 0 or pi(y) = pu(y) = 0 .

We prove the result by contradiction. Assume that pi(y | x) = pu(y | x) holds for all x, y ∈ [C].

Consider y ∈ [C] so that pi(y), pu(y) > 0. For all x, pi(x | y) > 0

pi(y | x) = pu(y | x). (16)

According to the Bayes’ rule,

pi(x | y)pi(y)

pi(x)
=
pu(x | y)pu(y)

pu(x)
(17)

Cancel the pi(x | y) = pu(x | y) 6= 0 and obtain

pi(y)

pi(x)
=
pu(y)

pu(x)
. (18)

Take the reciprocal of both sides,

pi(x)

pi(y)
=
pu(x)

pu(y)
. (19)

Calculate the integral of both sides:∫
pi(x)

pi(y)
dx =

∫
pu(x)

pu(y)
dx, (20)

⇒ 1

pi(y)
=

1

pu(y)
(21)

⇒ pi(y) = pu(y). (22)

This result contradicts the fact that there exists y ∈ [C] such that pi(y) = pu(y). Therefore, we
conclude that the assumption must be false and that its opposite there exists x, y ∈ [C] such that
pi(y | x) 6= pu(y | x) must be true in this case.

Case 2: There exists y ∈ [C] that satisfies pi(y) > 0, pu(y) = 0 or pi(y) = 0, pu(y) > 0. Without
loss of generality, we consider pi(y) > 0 and pu(y) = 0.

Take x so that pi(x | y) > 0, then according to Bayes’ formula,

pi(y | x) =
pi(x | y)pi(y)

pi(x)
> 0, (23)

pu(y | x) =
pu(x | y)pu(y)

pu(x)
= 0. (24)

Therefore, pi(y | x) 6= pi(y | x), which completes the proof.

B Proof of Proposition 1

Proposition 1 (Heterogeneous local models). Assume the label distribution across the clients is
skewed. Let θi be the maximum likelihood estimate of θ∗i in Eq. (4) given local data at client i. Then
s2 converges almost surely to a nonzero constant:

s2
a.s.−−→ (s∗)2 6= 0,

where a.s.−−→ represents the almost sure convergence.
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Proof. According to the definition of sample variance, the convergence of local model parameters
implies the convergence of s2:{

lim
n1,...,nm→∞

s2 = (s∗)2
}
⊇
{

lim
ni→∞

θi = θ∗i ,∀i ∈ [m]

}
. (25)

Then since probability is monotonic, we have

Pr

{
lim

n1,...,nm→∞
s2 = (s∗)2

}
≥ Pr

{
lim
ni→∞

θi = θ∗i ,∀i ∈ [m]

}
. (26)

Since the sampling on different clients is independent, θi are independent, we have:

Pr

{
lim
ni→∞

θi = θ∗i ,∀i ∈ [m]

}
=

m∏
i=1

Pr

{
lim
ni→∞

θi = θ∗i

}
. (27)

According to [32], the MLE θi is a consistent estimate of θ∗i :

Pr

{
lim
ni→∞

θi = θ∗i

}
= 1, i ∈ [m]. (28)

By combining Eq. (26), Eq. (27) and Eq. (28), it follows that

Pr

{
lim

n1,...,nm→∞
s2 = (s∗)2

}
≥ 1, (29)

which implies

Pr

{
lim

n1,...,nm→∞
s2 = (s∗)2

}
= 1 ⇒ s2

a.s.−−→ (s∗)2. (30)

C Proof of Proposition 2

Proposition 2 (Homogeneous local models). Assume the label distribution across the clients is
skewed. Let θi be the maximum likelihood estimate of θ∗ in Eq. (9) given local data at client i. Then
s2 converges almost surely to zero:

s2
a.s.−−→ 0.

Proof. According to the definition of sample variance, the convergence of local model parameters
implies the convergence of s2:{

lim
n1,...,nm→∞

s2 = 0

}
⊇
{

lim
ni→∞

θi = θ∗,∀i ∈ [m]

}
. (31)

Then since probability is monotonic, we have

Pr

{
lim

n1,...,nm→∞
s2 = 0

}
≥ Pr

{
lim
ni→∞

θi = θ∗,∀i ∈ [m]

}
. (32)

Since the sampling on different clients is independent, θi are independent, we have:

Pr

{
lim
ni→∞

θi = θ∗,∀i ∈ [m]

}
=

m∏
i=1

Pr

{
lim
ni→∞

θi = θ∗
}
. (33)

According to [32], the MLE θi is a consistent estimate of θ∗:

Pr

{
lim
ni→∞

θi = θ∗
}

= 1, i ∈ [m]. (34)

By combining Eq. (32), Eq. (33) and Eq. (34), it follows that

Pr

{
lim

n1,...,nm→∞
s2 = 0

}
≥ 1, (35)

which implies

Pr

{
lim

n1,...,nm→∞
s2 = 0

}
= 1 ⇒ s2

a.s.−−→ 0. (36)
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D Experimental Setup and Additional Experiments

D.1 Detailed Experimental Setup

Datasets. Our experiments are conducted on 4 real-world datasets: CIFAR10 [13], CIFAR100 [13],
SVHN [25], and ImageNet subset [6]. The ImageNet subset is generated according to [18], which
consists of 12 labels. We resize the original image (with size 224*224*3) to 64*64*3 for fast training.
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Figure 4: Label distribution of CIFAR10 among 5
different clients.

Data partition. To simulate real-world statis-
tical heterogeneity, we use Dirichlet distribution
to generate non-IID data across clients [39]. In
particular, we sample pli ∼ Dir(β) and allocate
a pli proportion of the data of label l to client i,
whereDir(β) is the Dirichlet distribution with a
concentration parameter β. To simulate a highly
skewed label distribution that widely exists in
reality, we set β = 0.1 as default. We visualize
the label distribution of 5 clients on CIFAR10
dataset (when β = 0.1) in Figure 4. The number
in the figure stands for the number of training
samples associated with the corresponding label
in one particular client. As shown in the figure,
the label distribution is highly skewed and each client has relatively few data (even no data) on some
classes.

Metric. For evaluation, we report the natural test accuracy (Natural) on natural test data and the
robust test accuracy on adversarial test data. The adversarial test data are generated by FGSM (fast
gradient sign method) [35], BIM (basic iterative method with 20 steps) [15], PGD-20 (projected
gradient descent with 20 steps) [22], CW (CW with 20 steps) [2], and AA (auto attack) [5] with the
same perturbation bound ε = 8/255. The step sizes for BIM, PGD-20 attack, and CW attack are
2/255.

Setting. In our experiments, we consider ||x̃ − x||∞ < ε with the same ε for both training and
evaluation. To generate the most adversarial data to update the model, we follow the same setting
as [26], i.e., we set the perturbation bound to ε = 8/255; PGD step number to K = 10; and PGD
step size to α = 2/255. We train the model by using SGD with momentum= 0.9 and learning rate
η = 0.01. The number of communication rounds is set to T = 150 and the number of local epochs
is set to E = 1. All methods use FedAvg for aggregation and use the same CNN network [23] on
CIFAR10, CIFAR100, and SVHN datasets. We adopt Alexnet [14] to train the ImageNet subset for
all methods. Recall that, compared with the cross-device setting, FAT matters more in the cross-silo
setting, in which the number of clients is relatively small, and each client has powerful computation
resources to handle the computation cost of AT [21]. Thus, we set the number of clients to m = 5 by
default, and in each epoch, all clients are involved in the training. Experiments with more clients can
be referred to Table 7 in Appendix D.7. The experiments are run on a server with Intel(R) Xeon(R)
Gold 5218R CPU, 64GB RAM, and 8 Tesla V100 GPUs.

D.2 Per-class Performance of Different Clients

Table 4 shows the per-class performance of different clients on CIFAR10 dataset. In FedGAIRAT,
due to highly skewed label distribution, the prediction of each client is highly biased to the majority
classes, leading to high performance on the majority classes and low performance (even 0% accuracy)
on the minority classes. By contrast, in CalFAT, each client has higher performance on most classes.
For example, on client 1, the accuracy of class 8 (96.56%) of FedGAIRAT is higher than CalFAT,
due to that the prediction is highly biased to class 8 on client 1 for FedGAIRAT. By contrast, the
accuracy of other (minority) classes on client 1 of FedGAIRAT is much lower than CalFAT. These
results show that the calibrated cross-entropy loss can indeed improve the performance on minority
classes, and further improve the overall performance of the model.
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Table 4: Per-class natural accuracy and robust accuracy (against PGD-20 attack) of different clients
on CIFAR10 dataset.

Class 0 1 2 3 4 5 6 7 8 9 Average

Natural

client 1 FedGAIRAT 47.45 0.00 0.00 0.00 0.00 0.00 16.91 0.00 96.56 27.30 18.82
CalFAT(ours) 56.61 88.06 54.41 27.66 37.67 65.16 52.02 74.03 89.02 54.09 59.87

client 2 FedGAIRAT 0.00 93.24 0.00 80.97 0.00 0.00 74.49 0.00 0.00 0.00 24.87
CalFAT(ours) 71.55 86.34 58.46 62.88 16.75 29.28 78.75 47.76 75.44 42.22 56.94

client 3 FedGAIRAT 57.41 0.00 0.00 0.00 0.00 69.81 0.07 69.96 95.01 0.00 29.23
CalFAT(ours) 90.11 82.41 41.48 40.41 17.42 64.65 74.96 58.18 74.25 22.08 56.60

client 4 FedGAIRAT 4.23 0.61 0.00 0.00 0.06 2.54 0.00 56.13 0.00 99.72 16.33
CalFAT(ours) 59.76 76.50 46.15 28.80 28.23 63.09 79.07 77.62 79.06 46.88 58.52

client 5 FedGAIRAT 0.00 0.00 63.33 0.00 77.49 8.86 0.00 0.00 0.00 0.00 14.97
CalFAT(ours) 70.48 74.60 51.58 69.32 56.94 48.69 57.86 57.65 80.16 43.06 61.03

Robust

client 1 FedGAIRAT 35.53 0.00 0.00 0.00 0.00 0.00 3.61 0.00 87.08 10.25 13.65
CalFAT(ours) 29.28 59.57 19.24 4.80 6.98 31.42 10.79 37.27 63.71 18.02 28.11

client 2 FedGAIRAT 0.00 71.03 0.06 21.54 0.04 0.00 82.64 0.00 0.00 0.00 17.53
CalFAT(ours) 35.61 72.05 15.45 22.06 5.24 7.89 55.68 23.54 39.47 6.17 28.32

client 3 FedGAIRAT 66.94 0.00 0.00 0.00 0.00 39.56 0.00 53.36 25.35 0.00 18.52
CalFAT(ours) 38.59 36.92 27.43 7.06 2.01 26.73 27.29 39.53 40.30 20.25 26.61

client 4 FedGAIRAT 6.02 0.00 0.00 0.00 0.00 0.12 0.00 42.34 0.00 93.73 14.22
CalFAT(ours) 17.37 11.05 9.17 1.17 3.35 47.13 55.97 27.78 56.53 51.64 28.12

client 5 FedGAIRAT 0.00 0.00 9.78 0.00 97.60 8.63 0.00 0.00 0.00 0.00 11.60
CalFAT(ours) 44.55 41.50 28.10 4.33 11.18 29.74 17.07 21.32 25.71 20.35 24.39

D.3 Per-class Average Performance

Figure 5 shows the per-class average performance on SVHN dataset.
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Figure 5: Per-class natural accuracy and robust accuracy (against PGD-20 attack) of CalFAT and the
best baseline (FedGAIRAT) on SVHN dataset.

D.4 Evaluation on Different Network Architectures

Table 5 shows the natural and robust accuracies with different network architectures on CIFAR10
dataset.

Table 5: Natural and robust accuracies (%) with different network architectures on CIFAR10 dataset.

Network CNN VGG-8 ResNet-18

Metric Natural PGD-20 Natural PGD-20 Natural PGD-20

MixFAT 53.23 26.22 59.60 34.99 67.54 38.25
FedPGD 47.21 26.50 62.21 34.89 65.48 30.04

FedTRADES 46.14 26.29 47.21 30.39 54.61 35.03
FedMART 25.68 18.15 43.28 30.16 52.13 33.24

FedGAIRAT 48.34 27.32 47.83 30.52 55.62 34.87
FedRBN 47.87 26.21 46.96 30.21 54.32 33.23

CalFAT(ours) 64.85 31.19 75.05 40.09 76.73 47.85
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D.5 Visualization of Different Methods

Figure 6 shows the t-SNE feature visualization of FedTRADES and CalFAT on SVHN dataset.
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Figure 6: t-SNE feature visualization of FedTRADES and CalFAT on SVHN dataset. Each color
represents a class. Samples from different classes are hard to be separated in FedTRADES while
CalFAT can learn more discriminative features.

D.6 Performance under the IID setting

Table 6 shows the natural accuracy and robust accuracy (against PGD-20 attack) on CIFAR10 dataset
under the IID setting.

Table 6: Natural and robust accuracy (%) on CIFAR10 dataset under the IID setting.

Metric Natural PGD-20

MixFAT 79.62 37.57
FedPGD 75.89 42.16

FedTRADES 74.29 44.35
CalFAT 74.23 44.68

D.7 Impact of the Number of Clients

Table 7 shows the natural and robust accuracies with different numbers of clients on CIFAR10 dataset.

Table 7: Natural and robust accuracies (%) with different numbers of clients m = {20, 50, 100} on
CIFAR10 dataset.

m 20 50 100

Metric Natural PGD-20 AA Natural PGD-20 AA Natural PGD-20 AA

MixFAT 26.59 ± 0.16 18.24 ± 0.07 13.12 ± 0.14 23.28 ± 0.16 15.55 ± 0.13 10.92 ± 0.14 20.85 ± 0.16 14.41 ± 0.11 10.66 ± 0.12
FedPGD 29.38 ± 0.20 18.19 ± 0.18 14.22 ± 0.11 27.73 ± 0.15 16.98 ± 0.23 11.94 ± 0.14 23.86 ± 0.18 15.37 ± 0.18 10.78 ± 0.09

FedTRADES 29.39 ± 0.14 18.47 ± 0.13 14.66 ± 0.19 21.44 ± 0.06 15.20 ± 0.16 11.85 ± 0.09 21.06 ± 0.11 14.76 ± 0.16 11.68 ± 0.07
FedMART 22.95 ± 0.15 17.08 ± 0.07 13.34 ± 0.09 22.43 ± 0.15 15.01 ± 0.08 11.59 ± 0.06 21.58 ± 0.12 14.48 ± 0.17 11.01 ± 0.09

FedGAIRAT 22.74 ± 0.13 17.00 ± 0.12 13.77 ± 0.17 20.84 ± 0.26 14.68 ± 0.21 11.80 ± 0.17 19.26 ± 0.15 14.17 ± 0.11 11.33 ± 0.14
FedRBN 21.90 ± 0.13 17.46 ± 0.14 12.91 ± 0.11 20.22 ± 0.16 14.74 ± 0.16 12.13 ± 0.11 18.99 ± 0.11 13.48 ± 0.19 12.05 ± 0.08
CalFAT 60.26 ± 0.09 24.32 ± 0.13 15.41 ± 0.12 49.86 ± 0.07 18.79 ± 0.10 13.22 ± 0.13 40.69 ± 0.08 16.19 ± 0.15 12.51 ± 0.09

D.8 Impact of Skewed Label Distribution

Table 8 shows the natural and robust accuracies under different level of label skewness on CIFAR10
dataset.
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Table 8: Natural and robust accuracies (%) under different label skewness levels β on CIFAR10
dataset.

Label skewness level β = 0.05 β = 0.2 β = 0.3

Metric Natural FGSM BIM CW PGD-20 AA Natural FGSM BIM CW PGD-20 AA Natural FGSM BIM CW PGD-20 AA

MixFAT 49.10 27.49 25.32 22.17 25.24 22.51 54.85 31.27 28.70 26.08 28.46 25.21 58.93 31.68 28.17 24.96 28.00 24.34
FedPGD 47.13 26.63 24.96 20.75 25.03 21.28 52.22 30.31 28.64 25.49 28.59 24.92 56.12 30.86 28.46 25.07 28.29 23.64

FedTRADES 40.24 26.02 25.06 22.48 24.99 20.16 48.52 29.94 28.73 25.57 28.65 24.15 54.26 30.83 29.39 24.74 29.26 23.87
FedMART 29.84 21.90 21.39 18.31 21.41 17.89 38.38 27.59 27.05 23.31 26.99 21.89 40.96 28.32 27.88 23.12 27.80 22.16

FedGAIRAT 50.41 28.89 26.30 22.66 26.34 23.81 56.11 32.99 29.90 27.10 28.97 25.97 60.63 33.31 30.12 25.50 29.67 24.75
FedRBN 39.35 25.92 24.40 21.55 24.77 19.47 48.42 29.59 27.74 24.67 27.86 23.78 53.54 29.88 28.76 24.11 28.63 23.14

CalFAT(ours) 61.00 32.40 29.75 23.55 29.50 25.66 71.55 33.80 30.70 27.25 29.35 26.32 69.95 34.25 30.80 27.76 30.96 26.84

D.9 Contribution of the Calibrated Loss Functions

Table 9 shows the results of different loss functions.

Table 9: Natural and robust accuracy (%) of different loss functions.

Label skewness level β = 0.05 β = 0.2 β = 0.3

Metric Natural PGD-20 AA Natural PGD-20 AA Natural PGD-20 AA

w/o `cce(·, ·, ·) 52.59 20.55 16.37 63.49 20.37 17.83 61.61 22.42 18.24
w/o `ckl(·, ·, ·) 60.05 27.59 19.79 70.60 27.18 21.94 68.27 28.56 22.68
CalFAT(ours) 61.03 29.49 20.35 71.54 29.36 22.96 69.98 30.98 23.21

D.10 Impact of the Ratio of Adversarial Data

Table 10 shows the robust accuracy (against PGD-20 attack) of CalFAT with different ratios of
adversarial data.

Table 10: Robust accuracy (%) of our CalFAT against PGD-20 attack with different ratios of
adversarial data.

Ratio (r) 0 0.3 0.5 0.8 1

SVHN 1.25 32.35 37.31 38.59 41.64
CIFAR10 3.47 15.47 21.08 25.87 31.19
CIFAR100 2.60 11.08 12.19 13.01 15.39
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