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Abstract

Recent studies have shown that, like traditional machine learning, federated learn-
ing (FL) is also vulnerable to adversarial attacks. To improve the adversarial
robustness of FL, federated adversarial training (FAT) methods have been proposed
to apply adversarial training locally before global aggregation. Although these
methods demonstrate promising results on independent identically distributed (IID)
data, they suffer from training instability on non-IID data with label skewness,
resulting in degraded natural accuracy. This tends to hinder the application of FAT
in real-world applications where the label distribution across the clients is often
skewed. In this paper, we study the problem of FAT under label skewness, and
reveal one root cause of the training instability and natural accuracy degradation
issues: skewed labels lead to non-identical class probabilities and heterogeneous
local models. We then propose a Calibrated FAT (CalFAT) approach to tackle the
instability issue by calibrating the logits adaptively to balance the classes. We
show both theoretically and empirically that the optimization of CalFAT leads to
homogeneous local models across the clients and better convergence points.

1 Introduction

Federated learning (FL) is a privacy-aware learning paradigm that allows multiple participants
(clients) to collaboratively train a global model without sharing their private data [23, 28, 43, 29].
In FL, each client follows the conventional machine learning procedure to train a local model on its
own data and periodically uploads the local model updates to a central server for global aggregation.
However, recent studies have shown that, like conventional machine learning, FL is also vulnerable
to well-crafted adversarial examples [20, 47, 9, 45], i.e., at inference time, attackers can add small,
human-perceptible adversarial perturbations to the test examples to fool the global model with high
success rates. This raises security and reliability concerns on the implementation of FL in real-world
scenarios where such a vulnerability could cause heavy losses [38]. For example, for cross-silo
FL in the biomedical domain, a vulnerable global model may cause misdiagnosis, wrong medical
treatments, or even the loss of lives. Similarly, in financial-based cross-silo FL, the lack of adversarial
robustness may lead to huge financial losses. It is thus imperative to develop a robust FL method that
can train adversarially robust global models resistant to different types of adversarial attacks.

In conventional machine learning, adversarial training (AT) has been shown to be one of the most
effective defenses against adversarial attacks [22, 40, 4]. Since the local training in FL is the
same as conventional machine learning, recent works [47, 9, 45] proposed to perform local AT to

∗Work done during internship at Sony AI.
†Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



improve the adversarial robustness of the global model. These methods in general are known as
Federated Adversarial Training (FAT). AT has been found to be more challenging than standard
training [3, 44, 42, 41, 4], as it generally requires more training data and larger-capacity models.
Moreover, adversarial robustness may even be at odds with accuracy [30], meaning that the increase
of robustness may inevitably decrease the natural accuracy (i.e., accuracy on natural test data). As a
result, the natural accuracy of AT is much lower than standard training [5]. This phenomenon also
exists in FL, i.e., FAT exhibits slower convergence and lower natural accuracy than standard FL, as
mentioned by recent studies [47, 9].

Arguably, FAT will become more challenging if the data are non-independent and identically dis-
tributed (non-IID) across the clients. One typical non-IID setting that commonly exists in real-world
applications is skewed label distribution [17], where different clients have different label distributions.
In this paper, we study the problem of FAT on non-IID data with a particular focus on the challenging
skewed label distribution setting (formally defined in Section 3.1). Under conventional training, Xu et
al. [37] have shown that adversarially trained models introduce severe performance disparity across
different classes. And such a disparity will be exacerbated under label skewness, ending up with
much worse performance on the minority classes [33].
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Figure 1: Natural accuracy and convergence of
standard FL, our CalFAT, and 6 FAT baselines
(FedPGD, FedTRADES, FedMART, MixFAT [47],
FedGAIRAT and FedRBN [9]) under skewed label
distribution with β = 0.1 (see Section 4).

By far, only a few works have studied non-IID
FAT in the current literature. Zizzo et al. [47]
propose to perform AT on only part of the lo-
cal data for better convergence, while standard
training is applied to the rest of the local data.
We term this method as MixFAT. Another rele-
vant work called FedRBN [9] tackles a different
problem: how to propagate federated robustness
to low-resource clients. Although MixFAT and
FedRBN have demonstrated promising results,
they suffer from training instability and low nat-
ural accuracy issues when compared to standard
FL, as we show in Figure 1. We also compare
with the other four FAT baselines adapted from
existing AT methods to FL, i.e., FedPGD, Fed-
TRADES, FedMART, and FedGAIRAT. Unfor-
tunately, these methods also exhibit slow conver-
gence and much degraded final accuracy (details
can be found in Section 4.1). This motivates us to propose a novel method called Calibrated Federated
Adversarial Training (CalFAT) for effective FAT on non-IID data with skewed label distribution.
CalFAT tackles the training instability issue by calibrating the logits to give higher scores to the
minority classes.

In summary, our main contributions are:

• New insight: We study the problem of FAT on non-IID data with skewed label distribution, and
reveal one root cause of the training instability and natural accuracy degradation: skewed labels
lead to non-identical class probabilities and heterogeneous local models.

• Novel method: We propose a novel method called CalFAT for FAT with label skewness, and show
that the optimization of CalFAT can lead to homogeneous local models, and consequently, stable
training, faster convergence, and better final performance.

• High effectiveness: Extensive experiments on 4 benchmark vision datasets across various settings
prove the effectiveness of our CalFAT and its superiority over existing FAT methods.

2 Notation and Preliminaries

2.1 Notation

Suppose there are m clients in FL with i denoting the i-th client, e.g., Di denotes the local data of
client i and θi denotes the parameters of its local model. We use θ̂ to denote the parameters of the
global model. Subscript j is the sample index, e.g., (xij , yij) denotes the j-th sample of client i and
its corresponding label with yij ∈ {1, · · · , C}. Let fθ(·) be the local model f(·) (before softmax)
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with parameter θ. Superscript l is the class index, e.g., f l(·) denotes the logit output for class l. We
denote the adversarial example of clean sample x by x̃. [m] denotes the integer set {1, · · · ,m}.
pi(x, y) denotes the joint distribution of input x and label y at client i, and accordingly, pi(y) is the
marginal distribution of label y, pi(y | x) is the conditional distribution of label y given input x and
pi(x | y) is the conditional distribution of input x given label y.

2.2 Centralized Adversarial Training

Let D = {xj , yj}nj=1 be the training dataset with n samples. The cross-entropy loss `ce(fθ(x), y)
for an input-label pair (x, y) is defined as `ce(fθ(x), y) = − log σy(fθ(x)), where σy(f) =

exp (fy)/
∑C
l=1 exp (f l) is the softmax function, C is the number of classes, and f l is the model

output for class l. The objective function of the centralized adversarial training (AT) [22] can then be
defined as minθ

∑n
j=1 `ce(fθ(x̃j), yj)/n, where the adversarial example x̃j can be generated by

x̃j = arg max
x′j∈Bε(xj)

`ce(fθ(x
′
j), yj), (1)

where Bε(xj) = {x′ | ‖x′ − xj‖∞ < ε} is the closed ball of radius ε > 0 centered at xj , ‖·‖∞ is the
L∞ norm, and x̃j is the most adversarial sample within the ε-ball.

A standard centralized AT method uses Projected Gradient Decent (PGD) to generate adversarial
examples [22]. In particular, PGD iteratively generates an adversarial example x̃j as follows:

x
(k+1)
j = ΠBε(x(0)

j )

(
x
(k)
j + α sign(∇x`ce(fθ(x(k)j ), yj))

)
, k = 0, · · · ,K − 1, (2)

where k is the step number, K is the total number of steps (i.e., x̃j = x
(K)
j ), α > 0 is the step

size, x(0)j is the natural sample, x(k)j is the adversarial example generated at step k, ΠBε(x(0)
j )

is the

projection function that projects the adversarial data onto the ε-ball centered at x(0)j , and sign(·) is
the sign function.

By optimizing the model parameters on adversarial examples generated by PGD, centralized AT is
able to train a model that is robust against adversarial attacks.

2.3 Federated Adversarial Training

The concept of federated adversarial training (FAT) was first introduced in [47] (i.e., MixFAT) to deal
with the adversarial vulnerability of FL. MixFAT applies AT locally to improve the robustness of the
global model. Suppose there are m clients and each client i has its local data Di = {xij , yij}nij=1

sampled from distribution pi(x, y) with ni = |Di| being the size of the local data. In MixFAT, each
client i optimizes its local model by minimizing the following objective:

min
θi

1

ni

( n′i∑
j=1

`ce(fθi(x̃ij), yij) +

ni∑
j=n′i+1

`ce(fθi(xij), yij)
)
, (3)

where x̃ij is the PGD adversarial example of xij , n′i is a hyperparameter that controls the ratio of
data for AT, and θi are the local model parameters. After training the local model for certain epochs,
client i uploads its local model parameters θi to the central server for aggregation. Note that MixFAT
only applies AT to a proportion of the local data, mainly for convergence and stability considerations.

3 Calibrated Federated Adversarial Training (CalFAT)

3.1 Skewed Label Distribution Leads to Non-identical Class Probabilities

In this paper, we focus on one representative non-IID setting: skewed label distribution [19, 10],
which is defined as follows.
Definition 1 (Skewed label distribution). The label distribution across the clients is skewed, if for all
i 6= u and i, u ∈ [m]:

(a) there exists y ∈ [C] such that pi(y) 6= pu(y) and (b) pi(x | y) = pu(x | y) for all x, y.
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Condition (b) is to assume that, given a class y, x is sampled with equal probability at different clients.
Note that there exist different types of non-IID: label skew, non-identical class conditional, quantity
skew, to name a few (Appendix K in [10]). The class conditional is often assumed to be identical
(i.e., condition (b)) when studying the label skewness problem, which is the main focus of this work.
When condition (b) does not hold, it becomes the non-identical class conditional problem.
Lemma 1 (Non-identical class probabilities). If the label distribution across the clients is skewed
and the class conditionals have the same support, then the class probabilities {pi(y | x) | i ∈ [m]}
are non-identical, i.e., for all i 6= u and i, u ∈ [m], there exist x, y such that pi(y | x) 6= pu(y | x).

Lemma 1 implies that skewed label distribution gives rise to non-identical class probabilities {pi(y |
x) | i ∈ [m]}. The proof of Lemma 1 is given in Appendix A.

3.2 Standard Cross-entropy Leads to Heterogeneity

From a statistical point of view, each client i in previous FAT methods estimates its local class
probability pi(y | x) during local training [7]. More specifically, they assume that pi(y | x) can be
parameterized by θ∗i as:

pi(y | x) = p̂(y | x; θ∗i ) = σy(fθ∗i (x)), (4)

where θ∗i is the ground-truth parameters of the local class probability pi(y | x). According to
Lemma 1, the class probabilities {pi(y | x)} are non-identical when there is a skewed label distribu-
tion. Therefore, the ground-truth parameters {θ∗i | i ∈ [m]} are heterogeneous. We use the sample
variance of the ground-truth parameters to measure such heterogeneity as follows:

(s∗)2 = V (θ∗1 , . . . , θ
∗
m) =

1

m− 1

m∑
i=1

‖θ∗i −
1

m

m∑
j=1

θ∗j ‖2. (5)

Each client i updates its local model parameters θi by optimizing the standard cross-entropy (CE)
loss. The updated θi is the maximum likelihood estimate [1] of the ground-truth parameter θ∗i [7].
Similarly, we use the sample variance [1] of the local model parameters to measure the heterogeneity
of the local models:

s2 = V (θ1, . . . , θm). (6)
Larger sample variance implies higher model heterogeneity.

The following proposition suggests that the heterogeneity of local models originates from the
heterogeneity of the local class probabilities.
Proposition 1 (Heterogeneous local models). Assume the label distribution across the clients is
skewed. Let θi be the maximum likelihood estimate of θ∗i in Eq. (4) given local data at client i. Then
s2 converges almost surely to a nonzero constant:

s2
a.s.−−→ (s∗)2 6= 0, (7)

where a.s.−−→ represents the almost sure convergence.

The proof of Proposition 1 is provided in Appendix B. (s∗)2 measures the heterogeneity of the
ground-truth parameters {θ∗i | i ∈ [m]}, which reflects the class probability difference across the
clients as shown in Eq. (4).

Proposition 1 implies that the local models in previous FAT methods are heterogeneous when the
label distribution across the clients is skewed. Since the local models are heterogeneous, aggregating
these models tends to hurt the convergence and cause the divergence of the global model [17]. As
shown in Figure 1, the training process of existing FAT methods is unstable and has much lower
natural accuracy than the standard FL.

3.3 Learning Homogeneous Local Models by Calibration

Motivated by [24], we propose to re-parameterize the class probabilities. According to Bayes’ formula
[12],

pi(y | x) =
pi(x | y)pi(y)∑C
l=1 pi(x | l)pi(l)

. (8)
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Algorithm 1 Local training of CalFAT
Input:
Client i, global model parameters θ̂, local dataset Di, local epoch number E, and positive constant δ

1: procedure CLIENTUPDATE

2: θi ← θ̂
3: Compute πi with Di by πyi = nyi /ni + δ, y ∈ [C]
4: for local epoch=1, · · · , E do
5: for j = 1, · · · , ni do
6: Sample (xij , yij) from Di
7: Generate adversarial example x̃ij = arg maxx′ij∈Bε(xij) `ckl(fθi(x

′
ij), fθi(xij), πi)

8: end for
9: θi ← θi − η 1

ni

∑ni
j=1∇θi`cce(fθi(x̃ij), yij , πi)

10: end for
11: return θi
12: end procedure

On the right-hand side of the above equation: (1) the class priors can be easily computed by the
relative frequencies [1]; and (2) more importantly, the class conditionals {pi(x | y) | i ∈ [m]} are
identical across different clients (see Definition 1).

Inspired by the above observation, we propose an alternative parameterization of pi(y | x). Assume
that for all i ∈ [m], the class conditional pi(x | y) can be parameterized by θ∗ as pi(x | y) = q̂(x |
y; θ∗), where q̂(x | y; θ∗) can be an arbitrary conditional probability function. Then, pi(y | x) can be
re-parameterized by θ∗ as follows:

pi(y | x) =q̂i(y | x; θ∗) =
q̂(x | y; θ∗)πyi∑C
l=1 q̂(x | l; θ∗)πli

. (9)

where

πyi = nyi /ni + δ, y ∈ [C]. (10)

Here πyi approximates the class prior pi(y), nyi is the sample size of class y on client i and δ > 0 is a
small constant added for numerical stability purpose. During local updates, client i uses its local data
to update θi, which makes θi the maximum likelihood estimate of θ∗. The entire training procedure
of our method is described in Section 3.4.

The following proposition suggests that the local models are homogeneous when trained with the
above re-parameterization. The proof of Proposition 2 is provided in Appendix C.
Proposition 2 (Homogeneous local models). Assume the label distribution across the clients is
skewed. Let θi be the maximum likelihood estimate of θ∗ in Eq. (9) given local data at client i. Then
s2 converges almost surely to zero:

s2
a.s.−−→ 0. (11)

3.4 Details of CalFAT

The local training procedure of our proposed CalFAT is described in Algorithm 1. Specifically, we
define q̂(x | y; θ∗) = exp (fyθ∗(x)). Then, we maximize the likelihood of q̂i(y | x; θ∗) for each client
i, which is equivalent to minimizing the following objective:

min
θi

1

ni

ni∑
j=1

`cce(fθi(x̃ij), yij , πi), (12)

where `cce(·, ·, ·) is the calibrated cross-entropy (CCE) loss and x̃ij is the adversarial example of xij .
The CCE loss is defined as:

`cce(fθi(x̃ij), yij , πi) = − log σyij (fθi(x̃ij) + log πi). (13)

As discussed in Section 3.3, minimizing the above CCE loss mitigates the heterogeneity of the local
models, which can lead to improved convergence and performance of the global model.
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Table 1: Natural and robust accuracy (%) on different datasets. The best results are in bold.
Dataset CIFAR10 CIFAR100

Metric Natural FGSM BIM CW PGD-20 AA Natural FGSM BIM CW PGD-20 AA

MixFAT 53.35 ± 0.11 29.14 ± 0.10 26.31 ± 0.17 22.79 ± 0.12 26.27 ± 0.11 21.89 ± 0.13 34.43 ± 0.13 15.69 ± 0.13 14.60 ± 0.14 11.31 ± 0.17 14.36 ± 0.20 9.06 ± 0.11
FedPGD 46.96 ± 0.16 28.70 ± 0.19 26.59 ± 0.18 24.38 ± 0.17 26.74 ± 0.18 22.47 ± 0.11 33.96 ± 0.14 16.07 ± 0.08 14.68 ± 0.10 11.67 ± 0.10 14.67 ± 0.15 10.87 ± 0.12

FedTRADES 46.06 ± 0.12 27.75 ± 0.17 26.32 ± 0.09 22.86 ± 0.10 26.31 ± 0.12 21.70 ± 0.09 29.55 ± 0.10 15.01 ± 0.06 14.11 ± 0.11 10.58 ± 0.03 14.30 ± 0.13 9.53 ± 0.09
FedMART 25.67 ± 0.21 18.50 ± 0.18 18.21 ± 0.22 15.22 ± 0.17 18.10 ± 0.22 14.41 ± 0.20 19.96 ± 0.17 13.00 ± 0.19 12.91 ± 0.14 9.92 ± 0.21 12.83 ± 0.18 8.57 ± 0.14

FedGAIRAT 48.42 ± 0.08 29.30 ± 0.09 26.55 ± 0.07 22.78 ± 0.12 27.20 ± 0.08 21.96 ± 0.07 34.92 ± 0.05 16.18 ± 0.06 15.37 ± 0.10 11.80 ± 0.05 14.90 ± 0.03 9.41 ± 0.05
FedRBN 47.80 ± 0.06 26.87 ± 0.07 26.25 ± 0.03 22.00 ± 0.01 26.30 ± 0.09 21.33 ± 0.09 28.55 ± 0.07 14.69 ± 0.04 13.41 ± 0.08 9.71 ± 0.08 14.15 ± 0.12 8.83 ± 0.08

CalFAT (ours) 64.69 ± 0.08 35.03 ± 0.12 31.50 ± 0.07 24.69 ± 0.11 31.12 ± 0.11 22.91 ± 0.08 44.57 ± 0.10 17.63 ± 0.10 15.60 ± 0.11 12.01 ± 0.11 15.21 ± 0.07 11.49 ± 0.08

Dataset SVHN ImageNet subset

Metric Natural FGSM BIM CW PGD-20 AA Natural FGSM BIM CW PGD-20 AA

MixFAT 19.57 ± 0.10 19.61 ± 0.12 19.66 ± 0.12 19.66 ± 0.11 19.75 ± 0.11 14.80 ± 0.07 33.53 ± 0.06 19.47 ± 0.02 18.48 ± 0.10 16.15 ± 0.07 18.39 ± 0.02 11.98 ± 0.06
FedPGD 19.55 ± 0.08 19.33 ± 0.09 19.37 ± 0.08 19.68 ± 0.05 19.52 ± 0.09 13.64 ± 0.10 30.87 ± 0.12 18.88 ± 0.13 17.95 ± 0.10 16.07 ± 0.11 18.40 ± 0.16 11.34 ± 0.08

FedTRADES 56.96 ± 0.13 36.92 ± 0.13 35.15 ± 0.05 31.08 ± 0.14 34.90 ± 0.15 30.37 ± 0.11 30.22 ± 0.14 18.67 ± 0.13 17.99 ± 0.21 16.23 ± 0.13 17.82 ± 0.12 11.81 ± 0.10
FedMART 19.85 ± 0.16 19.94 ± 0.16 19.71 ± 0.16 19.85 ± 0.15 19.79 ± 0.17 14.64 ± 0.14 26.47 ± 0.18 16.40 ± 0.18 15.53 ± 0.17 14.43 ± 0.13 15.40 ± 0.21 9.34 ± 0.14

FedGAIRAT 58.41 ± 0.11 38.30 ± 0.12 36.52 ± 0.09 31.24 ± 0.15 36.69 ± 0.13 31.63 ± 0.06 34.25 ± 0.12 19.62 ± 0.10 19.28 ± 0.14 16.78 ± 0.14 19.18 ± 0.12 11.80 ± 0.09
FedRBN 53.88 ± 0.04 34.48 ± 0.08 32.52 ± 0.02 27.99 ± 0.02 32.32 ± 0.03 28.35 ± 0.05 29.35 ± 0.09 18.76 ± 0.03 17.25 ± 0.12 15.07 ± 0.10 18.05 ± 0.09 11.42 ± 0.12

CalFAT (ours) 84.15 ± 0.07 48.38 ± 0.11 42.04 ± 0.07 31.66 ± 0.04 41.68 ± 0.11 32.57 ± 0.10 49.89 ± 0.11 22.31 ± 0.17 19.99 ± 0.09 17.42 ± 0.12 19.97 ± 0.14 12.30 ± 0.07

In previous FAT methods, heterogeneous local models tend to give higher scores to the majority
classes while lower scores to the minority classes. By contrast, our CalFAT encourages local models
to give higher scores to the minority classes by adding a class-wise prior log πli to the logits. Also
different from MixFAT that trains the local models on both natural and adversarial data, our CalFAT
trains the local models only on adversarial examples. Extensive empirical experiments are conducted
in Section 4.1 to show the impact of using only adversarial data for optimization.

Adversarial example generation. Inspired by [40], we generate the adversarial examples by
maximizing the following calibrated Kullback–Leibler (CKL) divergence loss:

x̃ij = arg max
x′ij∈Bε(xij)

`ckl(fθi(x
′
ij), fθi(xij), πi), (14)

where `ckl(·, ·, ·) is the CKL loss defined as:

`ckl(fθi(x
′
ij), fθi(xij), πi) = −

C∑
y=1

σy(fθi(xij) + log πi) log σy(fθi(x
′
ij) + log πi), (15)

where log πi is the same as in our CCE loss. Following centralized AT [22], we also use PGD to
solve Eq. (14).

After training the local model for certain epochs following the above procedure, each client i uploads
the model parameters θi to the server for aggregation. To be consistent with the most recent FAT
methods [47, 9], we adopt the most widely used FedAvg [23] as the default aggregation framework.
Our method is compatible with other FL frameworks (e.g., FedProx [16] and Scaffold [11]), as we
will show in Section 4.1.

4 Experiments

Data configurations. Our experiments are conducted on 4 real-world datasets: CIFAR10 [13],
CIFAR100 [13], SVHN [25], and ImageNet subset [6]. To simulate label skewness, we sample
pli ∼ Dir(β) and allocate a pli proportion of the data of label l to client i, where Dir(β) is the
Dirichlet distribution with a concentration parameter β [39]. By default, we set β = 0.1 to simulate a
highly skewed label distribution that widely exists in reality.

Baselines. We compare our proposed CalFAT with two state-of-the-art FAT methods: MixFAT [47]
and FedRBN [9]. We also investigate the combination of the state-of-the-art centralized AT methods
with FL, i.e., we apply standard PGD [22], TRADES [40], MART [34]), and GAIRAT [44] to FL,
and term them as FedPGD, FedTRADES, FedMART, and FedGAIRAT, respectively.

Evaluation metrics. We report the natural test accuracy (Natural) and robust test accuracy under
the most representative attacks, i.e., FGSM [35], BIM [15], PGD-20 [22], CW [2], and AA [5].
We run the experiment for 5 times and report the mean and standard deviation. More detailed
experimental setup is provided in Appendix D.1.
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Figure 2: Robust accuracy (against
PGD-20 attack) of different meth-
ods on CIFAR10 dataset.
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Figure 3: Per-class natural accuracy and robust accuracy
(against PGD-20 attack) of CalFAT and the best baseline
(FedGAIRAT) on CIFAR10 dataset.

4.1 Main Results

Evaluation on different datasets. Table 1 shows the results of all methods on CIFAR10, CI-
FAR100, SVHN, and ImageNet subset. From the table, we can observe that:

(1) Our CalFAT achieves the best robustness on all datasets, validating the efficacy of our CalFAT.
For example, CalFAT outperforms the best baseline method (FedGAIRAT) by 10.20% on SVHN
dataset under FGSM attack.

(2) Our CalFAT shows a significant improvement in natural accuracy compared to other baselines.
For example, CalFAT can improve the natural accuracy of the best baseline method (FedGAIRAT) by
25.63% on SVHN dataset. We hypothesise that the reason lies in the homogeneity of local models in
our CalFAT, which leads to better convergence and higher clean accuracy.

(3) All methods demonstrate the worst performance on CIFAR100 and ImageNet subset datasets. We
conjecture that this is because there are more classes in these two datasets, making federated training
substantially harder. Nevertheless, our CalFAT still achieves the best performance.

Learning curves of different methods. To visually compare our CalFAT with all the base-
lines, we plot the learning curves (i.e., performance across different communication rounds)
of all methods in Figure 1 and Figure 2. As can be observed, CalFAT achieves the best
natural accuracy and robust accuracy across almost the entire training process, which in-
dicates that the design of our CalFAT is profitable for different federated learning stages.

Table 2: Combining FAT methods with different losses.
Metric Natural PGD-20

MixFAT 53.35 ± 0.11 26.27 ± 0.11
MixFAT + LogitAdj 57.53 ± 0.21 27.65 ± 0.16

MixFAT + RoBal 58.25 ± 0.13 27.86 ± 0.10
MixFAT + Calibration (ours) 60.23 ± 0.19 28.67 ± 0.14

FedPGD 46.96 ± 0.16 26.74 ± 0.18
FedPGD + LogitAdj 59.79 ± 0.15 28.84 ± 0.12

FedPGD + RoBal 61.48 ± 0.07 29.51 ± 0.07
FedPGD + Calibration (ours) 63.91 ± 0.13 30.72 ± 0.16

FedTRADES 46.06 ± 0.12 26.31 ± 0.12
FedTRADES + LogitAdj 58.26 ± 0.20 27.92 ± 0.19

FedTRADES + RoBal 59.25 ± 0.23 28.63 ± 0.08
FedTRADES + Calibration (ours) 63.12 ± 0.10 30.27 ± 0.23

FedMART 25.67 ± 0.21 18.10 ± 0.22
FedMART + LogitAdj 42.01 ± 0.10 24.92 ± 0.02

FedMART + RoBal 44.26 ± 0.22 25.57 ± 0.17
FedMART + Calibration (ours) 48.85 ± 0.08 27.19 ± 0.11

CalFAT (ours) 64.69 ± 0.08 31.12 ± 0.11

Moreover, our CalFAT is fairly stable
during the whole training process while
the accuracy curves of other baselines
oscillate strongly. Such oscillations lead
to bad convergence and low performance.
We hypothesize that the heterogeneity of
local models in the baseline methods is
the main cause of the unstable training.

Combining calibration loss with other
FAT methods. To further show the ef-
fectiveness of our calibration loss, we
combine it with four FAT methods (Mix-
FAT, FedPGD, FedTRADES, and Fed-
MART) and name them MixFAT + Cal-
ibration, FedPGD + Calibration, Fed-
TRADES + Calibration, and FedMART
+ Calibration, respectively. We compare
these calibration loss-based FAT meth-
ods with their original versions in Ta-
ble 2. It is evident that, by introducing our calibration loss into their objectives, all FAT methods can
be improved. These results confirm the importance of class calibration for FAT with label skewness.
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Table 3: Natural and robust accuracy (%) across different FL frameworks on CIFAR10 dataset.

FL framework FedProx Scaffold

Metric Natural PGD-20 AA Natural PGD-20 AA

MixFAT 53.75 ± 0.16 29.61 ± 0.19 21.59 ± 0.27 55.27 ± 0.20 28.78 ± 0.15 21.26 ± 0.11
FedPGD 49.57 ± 0.18 28.48 ± 0.17 21.31 ± 0.18 49.52 ± 0.14 27.46 ± 0.21 20.27 ± 0.15

FedTRADES 48.14 ± 0.20 27.75 ± 0.17 21.13 ± 0.21 47.78 ± 0.23 27.31 ± 0.16 20.04 ± 0.16
FedMART 28.32 ± 0.22 19.32 ± 0.23 15.91 ± 0.25 27.80 ± 0.17 20.03 ± 0.26 16.85 ± 0.15

FedGAIRAT 49.61 ± 0.20 29.34 ± 0.11 21.33 ± 0.18 49.54 ± 0.21 27.23 ± 0.25 20.16 ± 0.09
FedRBN 47.26 ± 0.13 26.63 ± 0.15 20.46 ± 0.06 49.77 ± 0.09 28.37 ± 0.12 20.32 ± 0.06
CalFAT 66.32 ± 0.08 32.79 ± 0.13 22.83 ± 0.11 67.16 ± 0.06 32.94 ± 0.06 21.94 ± 0.05

Comparison with state-of-the-art long-tail learning methods. We also compare our calibration
loss with the losses used by long-tail learning methods LogitAdj [24] and RoBal [36]. In particular,
we combine four FAT methods (MixFAT, FedPGD, FedTRADES, and FedMART) with the above
three losses (LogitAdj loss, RoBal loss, and our calibration loss), and train the models following the
same default setting. As shown in Table 2, both LogitAdj-based methods and RoBal-based methods
have lower natural and robust accuracies than calibration loss-based methods. This indicates that our
calibration loss is more suitable for FAT than other long-tail learning losses.

4.2 Performance on Different Classes

We further compare the per-class performance of our CalFAT with the best baseline FedGAIRAT.
First, we use a well-trained model to initialize a global model. Second, the global model distributes
the model parameter to all clients. Third, the local clients train their local models with their local data
for 1 epoch. Then, we report the per-class average performance of all clients for each class. For fair
comparison, we use the same well-trained model for initialization and the same data partition on each
client for CalFAT and FedGAIRAT.

In Figure 3, we report the per-class natural and robust accuracies of CalFAT and FedGAIRAT on
CIFAR10. As shown in these figures, the average performance of most classes of CalFAT is much
higher than FedGAIRAT. We also report the per-class performance of each client on CIFAR10 in
Appendix D.2. In FedGAIRAT, due to the highly skewed label distribution, the prediction of each
client is highly biased to the majority classes, which leads to high performance on the majority classes
and low performance (even 0% accuracy) on the minority classes. By contrast, in CalFAT, each
client has higher performance on most classes. This verifies that the calibrated cross-entropy loss can
indeed improve the performance on the minority classes, and further improve the overall performance
of the model. Moreover, we report the per-class average performance on SVHN in Appendix D.3.
Our CalFAT also outperforms the best baseline across most of the classes on SVHN.

4.3 Results on Different FL Frameworks and Network Architectures

Evaluation on different FL frameworks. Besides FedAvg [23], we also conduct experiments on
other FL frameworks, i.e., FedProx [16] and Scaffold [11]. The results for all methods on FedProx
and Scaffold are given in Table 3. It shows that our CalFAT exhibits better natural and robust
accuracies than all baseline methods on all FL frameworks, which indicates the high comparability of
our CalFAT with different aggregation algorithms.

Evaluation on different network architectures. We also compare CalFAT with baselines on
different network architectures, i.e., CNN [23], VGG-8 [27], and ResNet-18 [8]. For CNN, we use
the same architecture as [23]. VGG-8 and ResNet-18 are two widely used architectures in deep
learning. The results on CIFAR10 dataset are shown in Appendix D.4. CalFAT outperforms all
baselines, which further validates the superiority of CalFAT with different network architectures.

4.4 Feature Visualization

To better understand the efficacy of CalFAT, we visualize the learned features extracted from the
second last layer of FedTRADES (the best baseline) and CalFAT trained on SVHN dataset in
Appendix D.5. The features are projected into a 2-dimensional space via t-SNE [31]. It shows that
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samples from different classes are mixed together in FedTRADES, indicating its low performance.
For instance, Class 6 (pink) and Class 8 (khaki) are hard to separate in FedTRADES while these 2
classes can be well separated by CalFAT. This illustration verifies that the server cannot learn a global
model with good inter-class separability if the local models are heterogeneous. By contrast, CalFAT
can well separate different classes thus can achieve better overall performance.

4.5 Results under IID settings

Besides the non-IID setting, we also conduct an experiment under the IID setting. The results are
shown in Appendix D.6 where it shows that our CalFAT achieves the best robustness (under PGD-20
attack). Compared to the non-IID setting, all FAT methods demonstrate much better performance
under the IID setting. This indicates that existing FAT methods can easily handle IID data yet face
substantial challenges when the data is non-IID.

4.6 Ablation Studies

Impact of the number of clients. To show the generality of CalFAT, we train CalFAT with different
numbers of clients m. Table 7 in Appendix D.7 reports the results for m = {20, 50, 100}. As
expected, CalFAT achieves the best performance across all m. As m increases, the performance of
all methods decreases. We conjecture that this is because more clients in FAT makes the training
harder to converge. However, our CalFAT can still achieve 41.23% natural accuracy when there are
100 clients, outperforming other baselines by a large margin.

Impact of skewed label distribution. We observe that the performance of FAT defense is closely
related to label skewness. We thus investigate the impact of skewed label distribution by varying the
Dirichlet parameter β = {0.05, 0.2, 0.3} and report the results on CIFAR10 in Table 8 in Appendix
D.8. Not surprisingly, our CalFAT outperforms all baselines under all β’s. This further verifies the
consistent effectiveness of CalFAT under different levels of label skewness.

Note that as β decreases (i.e., the labels on each client are more imbalanced), the performance of all
methods drop rapidly. For example, the natural accuracy of FedMART drops from 38.38% to 29.84%
as β decreases from 0.2 to 0.05. This indicates that all methods are hard to train a good model in
extremely skewed label distribution scenarios. However, our CalFAT still achieves 61.00% natural
accuracy and 32.40% robust accuracy (against FGSM attack) when β = 0.05, which are much higher
than all the baselines.

Contribution of the calibrated loss functions. As shown in Eq. (13) and Eq. (15), for each client i,
we have two new loss functions: a CCE loss `cce(·, ·, ·) for optimization and a CKL loss `ckl(·, ·, ·) for
generating the adversarial examples. This naturally raises a question: how do these two loss functions
contribute to CalFAT? To answer this question, we conduct leave-one-out tests by removing the
CCE loss (w/o `cce(·, ·, ·)) or removing the CKL loss (w/o `ckl(·, ·, ·)) from the overall optimization
objective. As illustrated in Appendix D.9, w/o `cce(·, ·, ·) leads to poor performance, which implies
that CCE loss plays an important role in CalFAT. Besides, if we only use the CCE loss (i.e., w/o
`ckl(·, ·, ·)), we can obtain a much better performance, but it still underperforms CalFAT. All these
results indicate that the CCE loss is the most important part of CalFAT, whilst the CKL loss can
further increase the performance of CalFAT. The combination of both loss functions leads to the best
performance.

Impact of the ratio of adversarial data. Here, we conduct experiments with different ratios of
adversarial data used in CalFAT and report the robust accuracy (against PGD-20 attack) in Appendix
D.10. Ratios r=0 and r=1 stand for training the model on only natural data and only adversarial data,
respectively. Overall, r=1 produces the best robustness, meaning that training on only adversarial
data can better enhance the adversarial robustness of our CalFAT.

5 Conclusion

In this paper, we studied the challenging problem of Federated Adversarial Training (FAT) with label
skewness and proposed a novel Calibrated Federated Adversarial Training (CalFAT) to simultaneously
achieve stable training, better convergence, and natural accuracy and robustness in FL. CalFAT
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calibrates the model prediction and trains homogeneous local models across different clients by
automatically assigning higher scores to the minority classes. Extensive experiments on multiple
datasets under various settings validate the effectiveness of CalFAT. Our work can serve as a simple
but strong baseline for accurate and robust FAT. For future work, we will continue to improve FAT
under other non-IID settings such as feature skewness and quantity skewness [10, 46].
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