
A Appendix

A.1 License

Image Classification: Imagenet has BSD 3-Clause License, Resnet has Apache License, Cifar10 has
MIT License.

Neural Machine Translation: Fairseq has MIT License.

All experiments are implemented on Pytorch which has BSD License. Other assets that we use have
no license.

A.2 Additional details on the Experiments

All the implementations are publicly available here: https://github.com/tranhp98/SGDHess.

Image Classification: Here we provide some extra details of our experiments. From the results in
Table 3, we can see that SGDHess achieves the best accuracy among all optimizers. SGDHess also
has the lowest standard deviation, indicating that it consistently performs well in all experiments. For
Imagenet task, our code is based on the official implementation of Imagenet on Pytorch. We also
keep all the default settings constant. The only thing that we change is the learning rate schedule
(from step decay every 30 epochs to plateu decay where we decrease our learning rate by a factor of
two if we do not make progress in three consecutive epochs) based on the suggestion from Yao et al.
[2020]. All the experiments are run with batch size = 256.

Figure 2: (a) Test accuracy on Resnet20 (b) Test accuracy on Resnet32 (c) Test accuracy on Imagenet

Comparison to STORM: We also run experiments with STORM to compare its performance to
SGDHess. For STORM, we use a grid search to tune the three hyperparameters k, c, w and remove
the learning rate schedule that we use in the previous experiments with other optimizers. The reason
for this is STORM already has its own learning rate decay mechanism and its performance actually
got worse when we tested it with learning rate schedule (this could be resulted from the interplay
between learning rate and momentum of STORM). As we can see from the figure, the performance
of STORM is not very competitive with SGDHess. The best accuracy the STORM achieves in
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Table 3: Test accuracy on Cifar10
Resnet20 Resnet32

SGD 92.14± 0.15 93.08± 0.12
AdaHessian 92.11± 0.07 92.96± 0.09
Adam 90.58± 0.28 91.62± 0.12
AdamW 92.05± 0.15 92.45± 0.25

SGDHess 92.46 ±0.07 93.19 ± 0.08

Figure 3: (a) Comparison in Imagenet (b) Comparison in Cifar10

Imagenet and Cifar10 tasks are 64.65% and 89.83% respectively (compared to 70.56% and 92.47%
of SGDHess).

Neural Machine Translation: The settings of our experiments follow exactly the settings specified
in the translation examples in Ott et al. [2019]. The only things that we tune are learning rate, weight
decay, and number of updates if needs be. Other than the main results reported in Table 2, we also
run extra experiment with our adaptive algorithm described in Section 4. The adaptive algorithm
achieves the best BLEU score of 35.53, which is slightly worse than the non-adaptive algorithm. The
main advantage of the adaptive algorithm is that it is a bit less sensitive to the change in the learning
rate. For the non-adaptive algorithm, we need to warm up our optimizer very gradually (we set the
number of updates to 8000) else we would run into exploding gradients problem. On the other hand,
for the adaptive one, we can just set the default number of updates without any problems. We also
suspect that incorporating the per-coordinate or diagonal-style adaptivity of popular optimizers such
as Adam may provide an useful future direction for improvement.

Discussion on run time and memory. Since SGDHess requires the computation of Hessian-vector
product in every iteration to "correct" the momentum, it is inevitable that its run time is slower than
that of first-order algorithms such as Adam or SGD. Fortunately, the penalty is small even in our
unoptimized implementation. Specifically, for image classification task, SGDHess is roughly 1.7/1.6
times slower than SGD and Adam respectively (AdaHessian is 1.9/1.7 times slower than SGD/Adam).
For the NLP task, SGDHess is 1.3 times slower than SGD/Adam (AdaHessian is 1.7 times slower).
Furthermore, the tuning of SGDHess is relatively straighforward: in many cases, the optimal tuning of
SGDHess is the same as that of SGD. Thus, to reduce the computation overhead, one could try tuning
SGD first then using the optimal parameters of SGD for SGDHess. In term of memory overhead,
SGDHess used roughly 10% extra memory compared to SGD in Imagenet task. However, this issue
can be easily bypassed using parallel programming. Since our implementation was not optimized for
speed or memory, we suspect that there are improvements that can be made which we leave for future
work.

Comparison to Variance-Reduction. Our algorithm bears a resemblance to some variance-reduction
based algorithms, most notably STORM Cutkosky and Orabona [2019], in the sense that both ap-
proaches add some extra term to "correct" the bias in the momentum. However, while STORM makes

14



the typical variance-reduction assumption that each f(x⃗t, zt) is smooth (per-example smoothness)2,
SGDHess only requires F (x) = Ezt [f(x⃗t, zt)] to be smooth (on-average smoothness), which is
a weaker assumption and can be applied to a wider range of functions. Furthermore, the conver-
gence rate of STORM depends on this per-example smoothness constant, which is larger than the
on-average smoothness constant in the bound of SGDHess. To illustrate this difference, we performed

Figure 4: Largest smoothness constant per epoch (Cifar10/Resnet 32). Dotted lines represent
individual training runs, thick is the average.

some experiments to approximate these smoothness constants. We train Resnet32 on Cifar10 using
SGD with learning rate = 0.1 for 10 epochs with batch size = 1 (to approximate the per-example
smoothness needed in variance reduction) and batch size = 4096 (to approximate the on-average
smoothness needed by SGDHess). To obtain the true on-average smoothness constant we would need
a full-batch rather than a minibatch, so our estimate here is larger than the true value. We compute an
approximate smoothness constant at each iteration by computing the ratio ∥∇f(x⃗t,zt)−∇f(x⃗t+1,zt)∥

∥xt−xt+1∥
(or its minibatch equivalent with both gradients replaced with averages) and record the largest such
ratio encountered in every epoch in Figure 4. In the figure, the orange and blue dotted lines indicate
the smoothness constant of each run with batch size = 1 and 4096 respectively. The thicker lines are
the average of all 3 runs. From the graph, we can clearly see that the maximum smoothness constant
is consistently larger (by about 2X) when we evaluate on a single example rather then on a large
sample.

Another advantage of SGDHess over STORM and other SVRG-like algorithms is the ease of
implementation and deployment. SVRG-based algorithms require two gradient evaluations at different
weight values but the same minibatch. This means that typically in order to implement such an
algorithm one must build a custom training loop rather than using any built-in methods. The situation
is even more intricate when the model incorporates inherent randomness like drop-out, as this requires
both gradient evaluations to keep the same dropout mask. In contrast, implementing a hessian-vector
product is quite easy and can be done purely inside the optimizer without modifying external code.

Finally, it is unclear how effective variance reduction based algorithms are for deep learning in
practice Defazio and Bottou [2018]. In particular, STORM has not been tested in a wide variety of
deep learning tasks and in our own experiments it was not competitive (we include these results in
the appendix). STORM also has slightly higher run time than SGDHess. For Imagenet, the run time
per epoch of SGDHess and STORM were 36 minutes and 44 minutes respectively.

A.3 Supplemental Lemmas

Lemma 6. Let X = min{
√
A√
B
, A1/3

C1/3 }. Then:

A

X
+BX + CX2 ≤ 2

√
AB + 2A2/3C1/3

2Technically, one need only require E[∥∇f(x⃗t, zt) − ∇f(x⃗t+1, zt)∥2] ≤ E[L∥x⃗t − x⃗t+1∥2] if we are
willing to sacrifice adaptive convergence rates.
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Proof. Bound the first term:

A

X
≤ max{

√
AB,A2/3C1/3} ≤

√
AB +A2/3C1/3

Let us do some case work for the second term. If X =
√
A√
B

then BX =
√
AB. Otherwise, if

X = A1/3

C1/3 , then A1/3

C1/3 ≤
√
A√
B
⇒

√
B

C1/3 ≤ A1/6. Therefore,

BX =
BA1/3

C1/3
≤
√
BA1/6A1/3

≤
√
AB

In either case, BX ≤
√
AB. Now repeat the same arguments for CX2 term, we would get

CX2 ≤ A2/3C1/3. Then we can combine the bounds to get the desired result.

Lemma 7. Let X = max{B
2/3

A2/3 ,
C6/5

A6/5 ,
D4/3

A4/3 }. Then:

A
√
X +

B

X
+

C

X1/3
+

D

X1/4
≤ 2(B1/3A2/3 + C3/5A2/5

+D2/3A1/3)

Proof. The proof is almost the same as the proof of Lemma 6. First, we bound the first term:

A
√
X ≤ max{B

1/3

A2/3
,
C3/5

A2/5
,
D2/3

A1/3
} ≤ B1/3A2/3 + C3/5A2/5

+D2/3A1/3

Then we can do some case works for the other 3 terms, which would get us B
X + C

X1/3 + D
X1/4 ≤

B1/3A2/3 + C3/5A2/5 +D2/3A1/3. Now combining the bounds to get the desired results.

Lemma 8. With α = min{max{ 1
T 2/3 ,

∆4/5ρ2/5

T 4/5σ
6/5
G

, (2∆σH)2/3

T 2/3σ
4/3
G

}, 1} and η =

min{
√
2∆α1/4√

T (L
√
α+4σH)

, (∆α)1/3

(ρT )1/3
}, we have:

3∆

2ηT
+

3Lη

4
+

3σG

αT
+

3η2ρ

2α
+

3ησH√
α

+ 3σG

√
α

≤
6σG + 541/3(∆σH)1/3σ

1/3
G

T 1/3
+

6σ
2/5
G ∆2/5ρ1/5

T 2/5

+

√
9∆L+

√
72∆σH√

T
+

6∆2/3ρ1/3

T 2/3
+

√
18∆σH

T 3/2
+

3∆2/3ρ1/3

T 5/3

Proof. Let F = 3∆
2ηT + 3Lη

4 + 3σG

αT + 3η2ρ
2α + 3ησH√

α
+ 3σG

√
α. Applying Lemma 6 with A = 3∆

2T ,

B = 3L
4 + 3σH√

α
, and C = 3ρ

2α and η set to the value of X specified by the Lemma:

F ≤ 3
√
2

√
∆

T
(
L

4
+

σH√
α
) +

3∆2/3ρ1/3

T 2/3α1/3
+

3σG

αT
+ 3σG

√
α

Use
√
a+ b ≤

√
a+
√
b:

F ≤ 3√
2

√
∆L√
T

+ 3
√
2

√
∆σH√
Tα1/4

+
3∆2/3ρ1/3

T 2/3α1/3
+

3σG

αT

+3σG

√
α (8)
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Now applying Lemma 7 with X = α, A = 3σG, B = 3σG

T , C = 3∆2/3ρ1/3

T 2/3 , and D = 3
√
2
√
∆σH√
T

:

F ≤ 3
√
∆L√

2
√
T

+
6σG

T 1/3
+

6σ
2/5
G ∆2/5ρ1/5

T 2/5

+
541/3(∆σH)1/3σ

1/3
G

T 1/3

Let α = min{max{ 1
T 2/3 ,

∆4/5ρ2/5

T 4/5σ
6/5
G

, (2∆σH)2/3

T 2/3σ
4/3
G

}, 1}. Since 1
T 2/3 ≤ 1, let us examine the other two

cases when α ≥ 1.

Case 1: ∆4/5ρ2/5

T 4/5G6/5 ≥ 1. Then we have σG ≤ ∆2/3ρ1/3

T 2/3 . Substitute to (8) with α = 1:

F ≤ 3
√
∆L√

2
√
T

+
3
√
2
√
∆σH√
T

+
3∆2/3ρ1/3

T 2/3
+

3σG

T
+ 3σG

≤ 3
√
∆L√

2
√
T

+
3
√
2
√
∆σH√
T

+
3∆2/3ρ1/3

T 2/3
+

3∆2/3ρ1/3

T 5/3
+

3∆2/3ρ1/3

T 2/3

Case 2: (2∆σH)2/3

T 2/3σ
4/3
G

≥ 1. Then we have σG ≤
√
2∆σH√

T
. Substitute to (8) with α = 1:

F ≤ 3
√
∆L√

2
√
T

+
3
√
2
√
∆σH√
T

+
3∆2/3ρ1/3

T 2/3
+

3
√
2∆σH

T 3/2
+

3
√
2∆σH√
T

Now combine the bounds to get the desired result.

A.4 Proof of section 2

Lemma 2. [Cutkosky and Orabona [2019] Lemma 1] Define:

ϵ̂t = ĝclipt −∇F (x⃗t)

Suppose ηt is a deterministic and non-increasing choice of learning rate. Then, so long as ηt ≤ 1
4L ,

E[F (x⃗t+1)− F (x⃗t)] ≤ −
ηt
4
E[∥∇F (x⃗t)∥2] +

3ηt
4

E[∥ϵ̂t∥2]

Proof.

F (x⃗t+1) ≤ F (x⃗t) + ⟨∇F (x⃗t), x⃗t+1 − x⃗t⟩+
L

2
∥x⃗t+1 − x⃗t∥2

= F (x⃗t)− ηt⟨∇F (x⃗t), ĝ
clip
t ⟩+ η2tL∥ĝ

clip
t ∥2

2

Taking expectation of both sides:

E[F (x⃗t+1)] ≤ E[F (x⃗t)]− ηt E[⟨∇F (x⃗t), ĝ
clip
t ⟩] + η2tLE[∥ĝclipt ∥2]

2

≤ E[F (x⃗t)]− ηt E[∥∇F (x⃗t)∥2]− η E[⟨∇F (x⃗t), ϵ̂t⟩] +
η2tLE[∥ĝclipt ∥2]

2

Using Young’s inequality:

≤ E[F (x⃗t)]− ηt E[∥∇F (x⃗t)∥2] +
ηt
2
E[∥∇F (x⃗t)∥2] +

ηt
2
E[∥ϵ̂t∥2] +

η2tLE[∥ĝclipt ∥2]
2

≤ E[F (x⃗t)]−
ηt
2
E[∥∇F (x⃗t)∥2] +

ηt
2
E[∥ϵ̂t∥2] +

η2tLE[∥∇F (x⃗t) + ϵ̂t∥2]
2

Using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2:

≤ E[F (x⃗t)]−
ηt
2
E[∥∇F (x⃗t)∥2] +

ηt
2
E[∥ϵ̂t∥2] +

η2tLE[2∥∇F (x⃗t)∥+ 2∥ϵ̂t∥2]
2
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Using ηt ≤ 1
4L :

≤ E[F (x⃗t)]−
ηt
2
E[∥∇F (x⃗t)∥2] +

ηt
2
E[∥ϵ̂t∥2] +

ηt E[∥∇F (x⃗t)∥+ ∥ϵ̂t∥2]
4

= E[F (x⃗t)]−
ηt
4
E[∥∇F (x⃗t)∥2] +

3ηt
4

E[∥ϵ̂t∥2]

Lemma 3. Suppose that f(x⃗, z) satisfies (2), (4), (6), and (5). Define:

ϵ̂t = ĝclipt −∇F (x⃗t)

Now, for some constant C and σH , set K = 2G2ρ2

−2σ2
H+

√
4σ4

H+ ρ2G2

2

, ηt = 1
Ct1/3

with C ≥
√
2K, and

αt = 2Kηtηt+1. Then we have:

6

5Kηt+1
E[∥ϵ̂t+1∥2]−

6

5Kηt
E[∥ϵ̂t∥2] ≤ −

3ηt
4

E[∥ϵ̂t∥2] +
ηt
5
E[∥∇F (x⃗t)∥2] + η3t

(
24

5
KG2 +

16C6G2

25K2

)
Proof. Let us additionally define:

ϵGt = ∇f(x⃗t, zt)−∇F (x⃗t)

ϵHt = ∇2f(x⃗t+1, zt+1)(x⃗t+1 − x⃗t)−∇2F (x⃗t+1)(x⃗t+1 − x⃗t)

Note that we have the important properties:

E[ϵGt ] = 0

E[ϵHt ] = 0

Note however that E[ϵ̂t] ̸= 0. Further, we have:

E[∥ϵGt ∥2] = E[∥∇f(x⃗t, zt)∥2 − 2⟨∇f(x⃗t, zt),∇F (x⃗t)⟩+ ∥∇F (x⃗t)∥2]
≤ G2 − E[∥∇F (x⃗t)∥2]
≤ G2

From (4) we have:

E[∥ϵHt ∥2] ≤ E[∥∇2f(x⃗t+1, zt+1)(x⃗t+1 − x⃗t)−∇2F (x⃗t+1)(x⃗t+1 − x⃗t)∥2]
≤ σ2

H∥x⃗t+1 − x⃗t∥2

Also,

E[∥ϵ̂t∥2] ≤ E[∥ĝclipt −∇F (x⃗t)∥2]
≤ 4G2

Finally, also note that we must have:

∥ĝclipt ∥ ≤ G

for all t due to our definition of ĝclipt .
Let us define another quantity:

ϵ̂noclip
t+1 = ĝt+1 −∇F (x⃗t+1)

Now, we derive a recursive formula for ϵ̂noclip
t+1 in terms of ϵ̂t:

ϵ̂noclip
t+1 = ĝt+1 −∇F (x⃗t+1)

= (1− αt)(ĝ
clip
t +∇2f(x⃗t+1, zt+1)(x⃗t+1 − x⃗t)) + αt∇f(x⃗t+1, zt+1)−∇F (x⃗t+1)

= (1− αt)(ĝ
clip
t +∇2f(x⃗t+1, zt+1)(x⃗t+1 − x⃗t)−∇F (x⃗t+1)) + αt(∇f(x⃗t+1, zt+1)−∇F (x⃗t+1))

= (1− αt)(ĝ
clip
t −∇F (x⃗t)) + (1− αt)(∇2f(x⃗t+1, zt+1)−∇2F (x⃗t+1)(x⃗t+1 − x⃗t))

+ (1− αt)(∇F (x⃗t) +∇2F (x⃗t+1)(x⃗t+1 − x⃗t)−∇F (x⃗t+1)) + αtϵ
G
t+1
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Now, let’s compare ∥ϵ̂t+1∥ and ∥ϵ̂noclip
t+1 ∥. If ∥ĝt+1∥ ≤ G (no clipping),

ĝt+1 = ĝclipt+1

⇒ ∥ϵ̂t+1∥ = ∥ϵ̂noclip
t+1 ∥ (9)

If ∥ĝt+1∥ > G, ∥ĝclipt+1∥ = G. Since ∥ĝclipt+1∥ and ∥ĝt+1∥ are co-linear, ∥ĝt+1∥ − ∥ĝclipt+1∥ = ∥ĝt+1 −
ĝclipt+1∥. Therefore:

(∥ĝt+1∥+ ∥ĝclipt+1∥)(∥ĝt+1∥ − ∥ĝclipt+1∥) ≥ 2G∥ĝt+1 − ĝclipt+1∥ (10)

Using (6) and applying Cauchy-Schwarz inequality, we have:

2G∥ĝt+1 − ĝclipt+1∥ ≥ 2∥∇F (x⃗t+1)∥∥ĝt+1 − ĝclipt+1∥

≥ 2⟨ĝt+1 − ĝclipt+1,∇F (x⃗t+1)⟩ (11)

Combining (10) and (11):

(∥ĝt+1∥+ ∥ĝclipt+1∥)(∥ĝt+1∥ − ∥ĝclipt+1∥) ≥ 2⟨ĝt+1 − ĝclipt+1,∇F (x⃗t+1)⟩

∥ĝt+1∥2 − ∥ĝclipt+1∥2 ≥ 2⟨ĝt+1,∇F (x⃗t+1)⟩ − 2⟨ĝclipt+1,∇F (x⃗t+1)⟩

∥ĝt+1∥2 − 2⟨ĝt+1,∇F (x⃗t+1)⟩ ≥ ∥ĝclipt+1∥2 − 2⟨ĝclipt+1,∇F (x⃗t+1)⟩

∥ĝt+1∥2 − 2⟨ĝt+1,∇F (x⃗t+1)⟩+ ∥∇F (x⃗t+1)∥2 ≥ ∥ĝclipt+1∥2 − 2⟨ĝclipt+1,∇F (x⃗t+1)⟩+ ∥∇F (x⃗t+1)∥2

∥ĝt+1 −∇F (x⃗t+1)∥2 ≥ ∥ĝclipt+1 −∇F (x⃗t+1)∥2

∥ϵ̂noclip
t+1 ∥2 ≥ ∥ϵ̂t+1∥2

∥ϵ̂noclip
t+1 ∥ ≥ ∥ϵ̂t+1∥ (12)

From relation (9) and (12):

∥ϵ̂t+1∥ ≤ ∥ϵ̂noclip
t+1 ∥ (13)

We have:

ϵ̂noclip
t+1 = (1− αt)(ĝ

clip
t −∇F (x⃗t)) + (1− αt)(∇2f(x⃗t+1, zt+1)−∇2F (x⃗t+1)(x⃗t+1 − x⃗t))

+ (1− αt)(∇F (x⃗t) +∇2F (x⃗t+1)(x⃗t+1 − x⃗t)−∇F (x⃗t+1)) + αtϵ
G
t+1 (14)

Let:

δt = ∇F (x⃗t) +∇2F (x⃗t+1)(x⃗t+1 − x⃗t)−∇F (x⃗t+1)

∥δt∥2 ≤
ρ2

4
∥x⃗t+1 − x⃗t∥4 (15)

Equation (14) becomes:

ϵ̂noclip
t+1 = (1− αt)ϵ̂t + (1− αt)ϵ

H
t + (1− αt)δt + αtϵ

G
t+1

Now, remember that we are actually interested in E[∥ϵ̂t∥2], so let us take the norm-squared of both
sides in the above and use relation (13):

E[∥ϵ̂t+1∥2] ≤ (1− αt)
2 E[∥ϵ̂t∥2] + (1− αt)

2 E[∥ϵHt ∥2] + (1− αt)
2 E[∥δt∥2] + α2

t E[||ϵGt+1∥2] + 2(1− αt)
2 E[⟨ϵ̂t, δt⟩]

Applying Young’s inequality, for any λ we have:

⟨ϵ̂t, δt⟩ ≤
λ∥ϵ̂t∥2

2
+
∥δt∥2

2λ
(16)

Using (15) and (16), we have:

E[∥ϵ̂t+1∥2] ≤ (1− αt)
2 E[∥ϵ̂t∥2] + (1− αt)

2σ2
H E[∥x⃗t+1 − x⃗t∥2] + (1− αt)

2 ρ
2

4
E[∥x⃗t+1 − x⃗t∥4] + α2

tG
2

+ (1− αt)
2(λE[∥ϵ̂t∥2] +

E[∥δt∥2]
λ

)

≤ (1− αt)
2 E[∥ϵ̂t∥2] + (1− αt)

2σ2
H E[∥x⃗t+1 − x⃗t∥2] + (1− αt)

2 ρ
2

4
E[∥x⃗t+1 − x⃗t∥4] + α2

tG
2

+ (1− αt)
2(λE[∥ϵ̂t∥2]) + (1− αt)

2 ρ
2

4λ
E[∥x⃗t+1 − x⃗t∥4]
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Next, we observe:

∥x⃗t − x⃗t+1∥ ≤ ηt∥ĝclipt ∥
≤ ηt(∥∇F (x⃗t)∥+ ∥ϵ̂t∥)

and:

∥ĝclipt ∥4 ≤ G2∥ĝclipt ∥2

So plugging this back in yields:

E[∥ϵ̂t+1∥2] ≤ (1− αt)
2 E[∥ϵ̂t∥2] + (1− αt)

2σ2
Hη2t E(∥∇F (x⃗t)∥2 + 2⟨∥∇F (x⃗t)∥, ∥ϵ̂t∥⟩+ ∥ϵ̂t∥2)

+ α2
tG

2 + (1− αt)
2 ρ

2

4
η4tG

2 E[∥∇F (x⃗t)∥2 + 2⟨∥∇F (x⃗t)∥, ∥ϵ̂t∥⟩+ ∥ϵ̂t∥2] + (1− αt)
2(λE[∥ϵ̂t∥2])

+ (1− αt)
2 ρ

2

4λ
η4tG

2 E[]||∇F (x⃗t)||2 + 2⟨∥∇F (x⃗t)∥, ∥ϵ̂t∥⟩+ ∥ϵ̂t||2]

Again applying Young’s Inequality with λ = 1:

E[∥ϵ̂t+1∥2] ≤ (1− αt)
2 E[∥ϵ̂t∥2] + (1− αt)

2σ2
Hη2t E[2∥∇F (x⃗t)∥2 + 2∥ϵ̂t∥2]

+ (1− αt)
2 ρ

2

4
η4tG

2 E[2∥∇F (x⃗t)∥2 + 2∥ϵ̂t∥2] + α2
tG

2

+ (1− αt)
2(λE[∥ϵ̂t∥2]) + (1− αt)

2 ρ
2

4λ
η4tG

2 E(2∥∇F (x⃗t)∥2 + 2∥ϵ̂t∥2)

Since (1− αt)
2 ≤ 1:

E[∥ϵ̂t+1∥2] ≤ (1− αt)
2 E[∥ϵ̂t∥2] + 2σ2

Hη2t E[∥∇F (x⃗t)∥2 + ∥ϵ̂t∥2] + α2
tG

2 +
ρ2

2
η4tG

2 E[∥∇F (xt)∥2

+ ∥ϵ̂t∥2] + (λE[∥ϵ̂t∥2]) +
ρ2

2λ
η4tG

2 E[∥∇F (x⃗t)∥2 + ∥ϵ̂t∥2]

≤ E[∥ϵ̂t∥2]
[
(1− αt)

2 + 2σ2
Hη2t +

ρ2

2
η4tG

2 + λ+
ρ2

2λ
η4tG

2

]
+ α2

tG
2

+ E[∥∇F (x⃗t)∥2]
[
η4t

(
ρ2

2
G2 +

ρ2

2λ
G2

)
+ 2σ2

Hη2t

]
Now, we will choose parameters in such a way as to ensure:

(1− αt)
2 + 2σ2

Hη2t +
ρ2

2
η4tG

2 + λ+
ρ2

2λ
η4tG

2 ≤ 1− 5

12
αt (∗)

To this end, let
αt ≤ 1

and
λ =

αt

2
For (*) to be satisfied:

η4t

(
ρ2

2
G2 +

ρ2

2λ
G2

)
+ 2σ2

Hη2t −
αt

12
≤ 0

Solving the quadratic equation, we get:

η2t ≤
−2σ2

H +
√

4σ4
H + ρ2G2αt

6 + ρ2G2

3

G2ρ2 + 2G2ρ2

αt

≤
−2σ2

H +
√

4σ4
H + ρ2G2

6 + ρ2G2

3

G2ρ2 + 2G2ρ2

αt

≤
−2σ2

H +
√

4σ4
H + ρ2G2

2

G2ρ2
αt

2
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Let K = 2G2ρ2

−2σ2
H+

√
4σ4

H+ ρ2G2

2

, and suppose that:

η2tK ≤ αt (17)

So overall we get:

E[∥ϵ̂t+1∥2] ≤
(
1− 5

12
αt

)
E[∥ϵ̂t∥2] +

1

12
αt E[∥∇F (x⃗t)∥2] + α2

tG
2

12ηt
5αt

E[∥ϵ̂t+1∥2 − ∥ϵ̂t∥2] ≤ −ηt E[∥ϵ̂t∥2] +
ηt
5
E[∥∇F (x⃗t)∥2] +

12

5
ηtαtG

2

Pick αt = 2Kηtηt+1 and ηt =
1

Ct1/3
( ηt

ηt+1
< 2 so αt satisfied (17)):

6

5Kηt+1
E[∥ ˆϵt+1∥2 − ∥ϵ̂t∥2] ≤ −ηt E[|ϵ̂t∥2] +

ηt
5
E[∥∇F (x⃗t)∥2] +

24

5
η3tKG2

Unfortunately, the coefficient on E[∥ϵ̂t∥2] above is wrong - it has ηt+1 instead of ηt. Let’s correct
that:

6

5Kηt+1
E[∥ ˆϵt+1∥2]−

6

5Kηt
E[∥ϵ̂t∥2] ≤

6

5K
(

1

ηt+1
− 1

ηt
)E[∥ϵ̂t∥2]− ηt E[∥ϵ̂t∥2] +

ηt
5
E ∥∇F (x⃗t)∥2] +

24

5
η3tKG2

So, we need to understand 1
ηt+1
− 1

ηt
:

1

ηt+1
− 1

ηt
= C((t+ 1)1/3 − t1/3)

≤ C

3t2/3

≤ C3η2t
3

Now use Young’s Inequality (ab ≤ a2λ
2 + b2

2λ ) with a =
√
ηt and b = η

3/2
t :

≤ C3ληt
6

+
C3η3t
6λ

Thus for any λ we have:

6

5Kηt+1
E[∥ϵ̂t+1∥2]−

6

5Kηt
E[∥ϵ̂t∥2] ≤

6

5K

(
λC3ηt

6
+

C3η3t
6λ

)
E[∥ϵ̂t∥2]− ηt E[∥ϵ̂t∥2]

+
ηt
5
E[∥∇F (x⃗t)∥2] +

24

5
KG2η3t

= −ηt
(
1− C3λ

5K

)
E[∥ϵ̂t∥2] +

ηt
5
E[∥∇F (x⃗t)∥2]

+ η3t

(
24

5
KG2 +

C3E[∥ϵ̂t∥2]
5Kλ

)
So, let us set λ = 5K

4C3 and use E[∥ϵ̂t∥2] ≤ 4G2:

6

5Kηt+1
E[∥ϵ̂t+1∥2]−

6

5Kηt
E[∥ϵ̂t∥2] ≤ −

3ηt
4

E[∥ϵ̂t∥2] +
ηt
5
E[∥∇F (x⃗t)∥2]

+ η3t

(
24

5
KG2 +

16C6G2

25K2

)

A.5 Proof of section 3

Lemma 9. Define:

ϵ̂t = ĝt −∇F (x⃗t)
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Suppose x⃗1, . . . , x⃗T is a sequence of iterates defined by x⃗t+1 = x⃗t− ĝt
∥ĝt∥ for some arbitrary sequence

ĝ1, . . . , ĝT . Then if x⃗t is chosen uniformly at random from x⃗1, . . . , x⃗T , we have:

E[∥∇F (x⃗t)∥] ≤
3∆

2ηT
+

3Lη

4
+

3

T

T∑
t=1

∥ϵ̂t∥

Proof. Assuming (2) holds, with x⃗ = x⃗t and δ = x⃗t+1 − x⃗t = ηĝt, we have:

F (x⃗t+1) ≤ F (x⃗t)− η⟨∇F (x⃗t),
ĝt
∥ĝt∥
⟩+ Lη2

2
(18)

Let us analyze the inner product term via some case-work: Suppose ∥ϵ̂t∥ ≤ 1
2∥∇F (x⃗t)∥. Then we

have ∥∇F (x⃗t) + ϵ̂t∥ ≤ 3
2∥∇F (x⃗t)∥ so that:

−⟨∇F (x⃗t),
ĝt
∥ĝt∥
⟩ = −⟨∇F (x⃗t),

∇F (x⃗t) + ϵ̂t
∥∇F (x⃗t) + ϵ̂t∥

⟩

≤ −∥∇F (x⃗t)∥2

∥∇F (x⃗t) + ϵ̂t∥
+
∥∇F (x⃗t)∥∥ϵ̂t∥
∥∇F (x⃗t) + ϵ̂t∥

≤ −2

3
∥∇F (x⃗t)∥+ 2∥ϵ̂t∥

On the other hand, if ∥ϵ̂t∥ > 1
2∥∇F (x⃗t)∥, then we have:

−⟨∇F (x⃗t),
ĝt
∥ĝt∥
⟩ ≤ 0

≤ −2

3
∥∇F (x⃗t)∥+

2

3
∥∇F (x⃗t)∥

≤ −2

3
∥∇F (x⃗t)∥+

4

3
∥ϵ̂t∥

So either way, we have −⟨∇F (x⃗t),
ĝt

∥ĝt∥ ⟩ ≤ −
2
3∥∇F (x⃗t)∥ + 2∥ϵ̂t∥. Now sum (18) over t and

rearrange to obtain:

E[∥∇F (x⃗t)∥] ≤
3(F (x⃗1)− F (x⃗T+1))

2η
+

3LηT

4
+ 3

T∑
t=1

∥ϵ̂t∥

≤ 3∆

2η
+

3LηT

4
+ 3

T∑
t=1

∥ϵ̂t∥

Finally, observe that since x⃗t is chosen uniformly at random from x⃗1, ..., x⃗T , we have E ∥∇F (x⃗t)∥ =
1
T

∑T
t=1 ∥∇F (x⃗t)∥ to conclude the results.

Theorem 4. Assuming (1), (2), (3), (4), and (5) hold (but not assuming (6)), with α =

min{max{ 1
T 2/3 ,

∆4/5ρ2/5

T 4/5σ
6/5
G

, (2∆σH)2/3

T 2/3σ
4/3
G

}, 1} and η = min{
√
2∆α1/4√

T (L
√
α+4σH)

, (∆α)1/3

(ρT )1/3
}, Algorithm 2

guarantees

E[∥∇F (x⃗t)∥] ≤
6σG + 541/3(∆σH)1/3σ

1/3
G

T 1/3
+

6σ
2/5
G ∆2/5ρ1/5

T 2/5
+

√
9∆L+

√
72∆σH√

T
+

6∆2/3ρ1/3

T 2/3

+

√
18∆σH

T 3/2
+

3∆2/3ρ1/3

T 5/3

In words, Algorithm 2 achieves O(1/T 1/3) with large σH and σG, and achieves O(1/
√
T ) in

noiseless case, without requiring a Lipschitz bound on the objective.

Proof. Let us write a recursive expression for ϵ̂t:
ϵ̂t = ĝt −∇F (x⃗t)

= (1− α)(ĝt−1 +∇2f(x⃗t, zt)(x⃗t − x⃗t−1)) + α∇f(x⃗t, zt)−∇F (x⃗t)

= (1− α)(ĝt−1 +∇2f(x⃗t, zt)(x⃗t − x⃗t−1)−∇F (x⃗t)) + α(∇f(x⃗t, zt)−∇F (x⃗t))
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Let us define vt = ∇f(x⃗t, zt) − ∇F (x⃗t) and wt = ∇2f(x⃗t,zt)(x⃗t−x⃗t−1)−∇2F (x⃗t)(x⃗t−x⃗t−1)
∥x⃗t−x⃗t−1∥ . Note

that:

wt =
∇2f(x⃗t, zt)(x⃗t − x⃗t−1)−∇2F (x⃗t)(x⃗t − x⃗t−1)

∥x⃗t − x⃗t−1∥

=
∇2f(x⃗t, zt)(x⃗t − x⃗t−1)−∇2F (x⃗t)(x⃗t − x⃗t−1)

η

Finally, define δt = ∇F (x⃗t−1)+∇2F (x⃗t)(x⃗t− x⃗t−1)−∇F (x⃗t). Since F is ρ-second-order smooth,
we must have ∥δt∥ ≤ ρ

2∥x⃗t − x⃗t−1∥2 = ρ
2η

2. Now we write:

ϵ̂t = (1− α)[ĝt−1 +∇2f(x⃗t, zt)(x⃗t − x⃗t−1)−∇F (x⃗t)] + α(∇f(x⃗t, zt)−∇F (x⃗t))

= (1− α)[ĝt−1 −∇F (x⃗t−1) + ∥x⃗t − x⃗t−1∥wt +∇F (x⃗t−1) +∇2F (x⃗t, zt)(x⃗t − x⃗t−1)−∇F (x⃗t)] + αvt
= (1− α)(ϵ̂t−1 + ∥x⃗t − x⃗t−1∥wt + δt) + αvt

Now unroll this recursive expression:

ϵ̂t = (1− α)t−1ϵ̂1 +

t−1∑
τ=0

(1− α)τ+1(∥x⃗t − x⃗t−1∥wt−τ + δt−τ ) + α(1− α)τyt−τ

Observe that ϵ̂1 = v1 and apply triangle inequality:

ϵ̂t ≤ (1− α)t−1∥v1∥+
η2ρ

2

t−1∑
τ=0

(1− α)τ+1 + η∥
t−1∑
τ=0

(1− α)τ+1wt−τ∥+ α∥
t−1∑
τ=0

(1− α)τvt−τ∥

Take expectation of the expression:

E[∥ϵ̂t∥] ≤ (1− α)t−1σG +
η2ρ

2

t−1∑
τ=0

(1− α)τ+1 + ησH

√√√√t−1∑
τ=0

(1− α)2τ+2 + σGα

√√√√t−1∑
τ=0

(1− α)2τ

All the sums can be upper bounded by
∑∞

τ=0(1− α)τ = 1
α :

≤ (1− α)t−1σG +
η2ρ

2α
+

ησG√
α

+ σG

√
α

Next, sum over t:
T∑

t=1

E[∥ϵ̂t∥] ≤
σG

α
+

η2ρT

2α
+

ησHT√
α

+ σG

√
αT

Applying Lemma 9:

E[∥∇F (x⃗t)∥] ≤
3∆

2ηT
+

3Lη

4
+

3

T

T∑
t=1

∥ϵ̂t∥

≤ 3∆

2ηT
+

3Lη

4
+

3σG

Tα
+

3η2ρ

2α
+

3ησH√
α

+ 3σG

√
α

Now, with α = min{max{ 1
T 2/3 ,

∆4/5ρ2/5

T 4/5σ
6/5
G

, (2∆σH)2/3

T 2/3σ
4/3
G

}, 1} and η = min{
√
2∆α1/4√

T (L
√
α+4σH)

, (∆α)1/3

(ρT )1/3
},

use Lemma 8 in the appendix to finish the proof.

A.6 Proof of section 4

Lemma 10. Define:

ϵ̂t = ĝclipt −∇F (x⃗t)
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Now, for some constant σH , set K = 2G2ρ2

−4σ2
H+

√
16σ4

H+ ρ2G2

2

, ηt = c
(w+

∑t−2
i=1 G2

i )
1/3

with c ≤ 2G2/3
√
K

and w = max{(4Lc)3, 3G2}, αt = 2Kηtηt+1. Then we have:

T∑
t=1

E
[

6

5Kηt+1
∥ϵ̂t+1∥2 −

6

5Kηt
∥ϵ̂t∥2

]
≤

T∑
t=1

E

[
−3ηt

4
∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2

]
+

48

5
Kc2 ln(T + 1) +

16G4

25K2c3
lnT

Proof. Similar to Lemma 3, let us define:

ϵGt = ∇f(x⃗t, zt)−∇F (x⃗t)

ϵHt = ∇2f(x⃗t+1, zt+1)(x⃗t+1 − x⃗t)−∇2F (x⃗t+1)(x⃗t+1 − x⃗t)

Note that we have the important properties:

E[ϵGt |z1, z2, ..., zt−1] = 0

E[ϵHt |z1, z2, ..., zt] = 0

Further, we have:

E[∥ϵGt ∥2] ≤ E[G2
t ]

And:

E[∥ϵHt ∥2] ≤ E[∥∇2f(x⃗t+1, zt+1)(x⃗t+1 − x⃗t)−∇2F (x⃗t+1)(x⃗t+1 − x⃗t)∥2]
≤ σ2

H∥x⃗t+1 − x⃗t∥2

Also,

E[∥ϵ̂t∥2] ≤ E[∥ĝclipt −∇F (x⃗t)∥2]
≤ 4G2

Finally, also note that we must have:

∥ĝclipt ∥ ≤ G

for all t due to our definition of ĝclipt .
Let us define another quantity:

ϵ̂noclip
t+1 = ĝt+1 −∇F (x⃗t+1)

Now, we derive a recursive formula for ϵ̂noclip
t+1 in terms of ϵ̂t:

ϵ̂noclip
t+1 = ĝt+1 −∇F (x⃗t+1)

= (1− αt)(ĝ
clip
t +∇2f(x⃗t+1, zt+1)(x⃗t+1 − x⃗t)) + αt∇f(x⃗t+1, zt+1)−∇F (x⃗t+1)

= (1− αt)(̂̂gtclip +∇2f(x⃗t+1, zt+1)(x⃗t+1 − x⃗t)−∇F (x⃗t+1)) + αt(∇f(x⃗t+1, zt+1)−∇F (x⃗t+1))

= (1− αt)(ĝ
clip
t −∇F (x⃗t)) + (1− αt)(∇2f(x⃗t+1, zt+1)−∇2F (x⃗t+1)(x⃗t+1 − x⃗t))

+ (1− αt)(∇F (x⃗t) +∇2F (x⃗t+1)(x⃗t+1 − x⃗t)−∇F (x⃗t+1)) + αtϵ
G
t+1

From the analysis of Lemma 3, we have the relation:

∥ϵ̂t+1∥ ≤ ∥ϵ̂noclipt+1 ∥ (19)

And we also have:

ϵ̂noclip
t+1 = (1− αt)(ĝ

clip
t −∇F (x⃗t)) + (1− αt)(∇2f(x⃗t+1, zt+1)−∇2F (x⃗t+1)(x⃗t+1 − x⃗t)) + (1− αt)(∇F (x⃗t)

+∇2F (x⃗t+1)(x⃗t+1 − x⃗t)−∇F (x⃗t+1)) + αtϵ
G
t+1 (20)
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Let:

δt = ∇F (x⃗t) +∇2F (x⃗t+1)(x⃗t+1 − x⃗t)−∇F (x⃗t+1)

∥δt∥2 ≤
ρ2

4
∥x⃗t+1 − x⃗t∥4 (21)

Equation (20) becomes:

ϵ̂noclip
t+1 = (1− αt)ϵ̂t + (1− αt)ϵ

H
t + (1− αt)δt + αtϵ

G
t+1

Now use relation (19), we have:

∥ϵ̂t+1∥2 ≤ ∥(1− αt)ϵ̂t + (1− αt)ϵ
H
t + (1− αt)δt + αtϵ

G
t+1∥2

Multiply 12ηt

5ηt
to both sides and take the expectation of the above equation:

E[
12ηt
5αt
∥ϵ̂t+1∥2] ≤ E[

12ηt
5αt
∥(1− αt)ϵ̂t + (1− αt)ϵ

H
t + (1− αt)δt + αtϵ

G
t+1∥2]

Notice that by definition ηt

αt
= ηt

2Kηtηt+1
= 1

2Kηt+1
=

2K(w+
∑t−1

i=1 G2
i )

1/3

c which is independent of
the current sample zt. Thus when we take expectation with respect to sample zt, we can consider ηt

αt

as a constant. For example, let us analyze E
[
ηt

αt
⟨ϵ̂t, ϵHt ⟩

]
:

E
z1,...,zt

[
ηt
αt
⟨ϵ̂t, ϵHt ⟩⟩

]
= E

z1,...,zt−1

[
E
zt

[
ηt
αt
⟨ϵ̂t, ϵHt ⟩|z1, ..., zt−1

]]
= E

z1,...,zt−1

[
ηt
αt

E
zt

[
⟨ϵ̂t, ϵHt ⟩|z1, ..., zt−1

]]
Then the cross-terms E[⟨ϵ̂t, ϵHt ⟩], E[⟨δt, ϵHt ⟩], E[⟨ϵGt+1, ϵ̂t⟩], E[⟨ϵGt+1, δt⟩] all become zero in expec-
tation. Then:

E[
12ηt
αt
∥ϵ̂t+1∥2] ≤ E[

12ηt
5αt

[(1− αt)
2(∥ϵ̂t∥2 + ∥ϵHt ∥2 + ∥δt∥2) + α2

t ∥ϵGt+1∥2 + 2(1− αt)
2⟨ϵ̂t, δt⟩

+ 2⟨(1− αt)ϵ
H
t , αtϵ

G
t+1⟩]]

Applying Young’s inequality, for any λ we have:

⟨ϵ̂t, δt⟩ ≤
λ∥ϵ̂t∥2

2
+
∥δt∥2

2λ
(22)

and:

⟨(1− αt)ϵ
H
t , αtϵ

G
t+1⟩ ≤

(1− αt)
2∥ϵHt ∥2

2
+

α2
t ∥ϵGt+1∥2

2
(23)

Using (21),(22), and (16), we have:

E[
12ηt
αt
∥ϵ̂t+1∥2] ≤ E[

12ηt
αt

[(1− αt)
2∥ϵ̂t∥2 + 2(1− αt)

2σ2
H∥x⃗t+1 − x⃗t∥2 + (1− αt)

2 ρ
2

4
∥x⃗t+1 − x⃗t∥4 + 2α2

tG
2
t

+ (1− αt)
2(λ∥ϵ̂t∥2 +

∥δt∥2

λ
)]]

≤ E[
12ηt
αt

[(1− αt)
2∥ϵ̂t∥2 + 2(1− αt)

2σ2
H∥x⃗t+1 − x⃗t∥2 + (1− αt)

2 ρ
2

4
∥x⃗t+1 − x⃗t∥4 + 2α2

tG
2
t

+ (1− αt)
2(λ∥ϵ̂t∥2) + (1− αt)

2 ρ
2

4λ
∥x⃗t+1 − x⃗t∥4]]

Next, we observe:

∥x⃗t − x⃗t+1∥ ≤ ηt∥ĝclipt ∥
≤ ηt(∥∇F (x⃗t)∥+ ∥ϵ̂t∥)
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and:

∥ĝclipt ∥4 ≤ G2∥ĝclipt ∥2

So plugging this back in yields:

E[
12ηt
αt
∥ϵ̂t+1∥2] ≤ E[

12ηt
αt

[(1− αt)
2[∥ϵ̂t∥2 + 2(1− αt)

2σ2
Hη2t (∥∇F (x⃗t)∥2 + 2⟨∥∇F (x⃗t)∥, ∥ϵ̂t∥⟩+ ∥ϵ̂t∥2) + 2α2

tG
2
t

+ (1− αt)
2 ρ

2

4
η4tG

2(∥∇F (x⃗t)∥2 + 2⟨∥∇F (x⃗t)∥, ∥ϵ̂t∥⟩+ ∥ϵ̂t∥2) + (1− αt)
2(λ∥ϵ̂t∥2)

+ (1− αt)
2 ρ

2

4λ
η4tG

2(||∇F (x⃗t)||2 + 2⟨∥∇F (x⃗t)∥, ∥ϵ̂t∥⟩+ ∥ϵ̂t||2)]]

Again applying Young’s Inequality with λ = 1:

E[
12ηt
αt
∥ϵ̂t+1∥2] ≤ E[

12ηt
αt

[(1− αt)
2∥ϵ̂t∥2] + 2(1− αt)

2σ2
Hη2t (2∥∇F (x⃗t)∥2 + 2∥ϵ̂t∥2)

+ (1− αt)
2 ρ

2

4
η4tG

2(2∥∇F (x⃗t)∥2 + 2∥ϵ̂t∥2)

+ (1− αt)
2(λ∥ϵ̂t∥2) + (1− αt)

2 ρ
2

4λ
η4tG

2(2∥∇F (x⃗t)∥2 + 2∥ϵ̂t∥2)]] + 2α2
tG

2
t

Since (1− αt)
2 ≤ 1:

E[
12ηt
αt
∥ϵ̂t+1∥2] ≤ E[

12ηt
αt

[(1− αt)
2∥ϵ̂t∥2] + 4σ2

Hη2t (||∇F (x⃗t)||2 + ∥ϵ̂t∥2) + 2α2
tG

2
t

+
ρ2

2
η4tG

2(∥∇F (xt)∥2 + ∥ϵ̂t∥2) + (λ∥ϵ̂t∥2) +
ρ2

2λ
η4tG

2(∥∇F (x⃗t)∥2 + ∥ϵ̂t∥2)]]

= E[
12ηt
αt

[∥ϵ̂t∥2((1− αt)
2 + 4σ2

Hη2t +
ρ2

2
η4tG

2 + λ+
ρ2

2λ
η4tG

2)

+ ∥∇F (x⃗t)∥2(4σ2
Hη2t +

ρ2

2
η4tG

2 + λ+
ρ2

2λ
η4tG

2) + 2α2
tG

2
t ]]

Now we want the coefficient of the error to be something like 1-O(αt):

(1− αt)
2 + 4σ2

Hη2t +
ρ2

2
η4tG

2 + λ+
ρ2

2λ
η4tG

2 ≤ 1− 5

12
αt (∗)

Let
αt ≤ 1

and
λ =

αt

2

For (*) to be satisfied:

η4t (
ρ2

2
G2 +

ρ2

2λ
G2) + 4σ2

Hη2t −
αt

12
≤ 0

Solving the quadratic equation, we get:

η2t ≤
−4σ2

H +
√

16σ4
H + ρ2G2αt

6 + ρ2G2

3

G2ρ2 + 2G2ρ2

αt

≤
−4σ2

H +
√

16σ4
H + ρ2G2

6 + ρ2G2

3

G2ρ2 + 2G2ρ2

αt

≤
−4σ2

H +
√

16σ4
H + ρ2G2

2

G2ρ2
αt

2
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Let K = 2G2ρ2

−4σ2
H+

√
16σ4

H+ ρ2G2

2

:

η2tK ≤ αt (24)

So overall we get:

E[
12ηt
5αt
∥ϵ̂t+1∥2] ≤ E[

12ηt
5αt

[(1− 5

12
αt)∥ϵ̂t∥2 +

1

12
αt∥∇F (x⃗t)∥2

+ 2α2
tG

2
t ]]

Let ηt = c
(w+

∑t−2
i=1 G2

i )
1/3

and αt = 2Kηtηt+1. Then:

E[
12ηt
5αt
∥ϵ̂t+1∥2] ≤ E

[
12ηt
5αt

[(1− 5

12
αt)∥ϵ̂t∥2 +

1

12
αt∥∇F (x⃗t)∥2 + 2α2

tG
2
t ]

]
= E

[
12ηt
5αt
∥ϵ̂t∥2 − ηt∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2 +

24

5
ηtαtG

2
t

]
⇒ E[

12ηt
5αt
∥ϵ̂t+1∥2 −

12ηt
5αt
∥ϵ̂t∥2] ≤ E

[
−ηt∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2 +

24

5
ηtαtG

2
t

]
⇔ E[

6

5Kηt+1
∥ϵ̂t+1∥2 −

6

5Kηt+1
∥ϵ̂t∥2] ≤ E

[
−ηt∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2 +

48

5
η3tKG2

t

]
Subtract E[ 6

5Kηt
∥ϵ̂t∥2] from both sides:

E[
6

5Kηt+1
∥ϵ̂t+1∥2 −

6

5Kηt
∥ϵ̂t∥2] ≤ E

[
6

5K
(

1

ηt+1
− 1

ηt
)∥ϵ̂t∥2 − ηt∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2 +

48

5
η3tKG2

t

]
Now, let us analyze 1

ηt+1
− 1

ηt
:

1

ηt+1
− 1

ηt
=

1

c

[
(w +

t−1∑
i=1

G2
i )

1/3 − (w +

t−2∑
i=1

G2
i )

1/3

]

≤
G2

t−1

3c(w +
∑t−2

i=1 G
2
i )

2/3

=
k2G2

t−1

3c3(w +
∑t−2

i=1 G
2
i )

2/3

=
η2tG

2
t−1

3c3

≤
G2

t−1ληt

6c3
+

G2
t−1η

3
t

6c3λ

Plug in:

E[
6

5Kηt+1
∥ϵ̂t+1∥2 −

6

5Kηt
∥ϵ̂t∥2] ≤ E

[
6

5K
(
G2

t−1ληt

6c3
+

G2
t−1η

3
t

6c3λ
)∥ϵ̂t∥2 − ηt∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2 +

24

5
η3tKG2

t

]
= E

[
−ηt∥ϵ̂t∥2

(
1−

G2
t−1λ

5Kc3

)
+

ηt
5
∥∇F (x⃗t)∥2 + η3t

(
48

5
KG2

t +
G2

t−1∥ϵ̂t∥2

5Kc3λ

)]
Let λ = 5Kc3

4G2
t−1

and use the fact that E[∥ϵ̂∥2] ≤ 4G2:

≤ E
[
−3ηt

4
∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2 + η3t

(
48

5
KG2

t +
16G2G4

t−1

25K2c6

)]
≤ E

[
−3ηt

4
∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2 + η3t

(
48

5
KG2

t +
16G4G2

t−1

25K2c6

)]
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Now sum over t:
T∑

t=1

E[
6

5Kηt+1
∥ϵ̂t+1∥2 −

6

5Kηt
∥ϵ̂t∥2] ≤

T∑
t=1

E
[
−3ηt

4
∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2 + η3t

(
48

5
KG2

t +
16G4G2

t−1

25K2c6

)]
From Lemma 4 of Cutkosky and Orabona [2019], we have the following:

T∑
t=1

at

a0 +
∑t

i=1 ai
≤ ln

(
1 +

∑t
i=1 ai
a0

)
Analyze third term:

T∑
t=1

48

5
Kη3tG

2
t =

T∑
t=1

48

5
Kc3

G2
t

w +
∑t−2

i=1 G
2
i

Now with w ≥ 3G2 ≥ G2 +G2
t−1 +G2

t , we would get:

T∑
t=1

48

5
Kη3tG

2
t ≤

T∑
t=1

48

5
Kc3

G2
t

G2 +
∑t

i=1 G
2
i

≤ 48

5
Kc2 ln

(
1 +

∑T
i=1 G

2
i

G2

)

≤ 48

5
Kc2 ln(T + 1)

Analyze the fourth term:

T∑
t=1

16G4G2
t−1η

3
t

25K2c6
=

T∑
t=1

16G4

25K2c3
G2

t−1

w +
∑t−2

i=1 G
2
i

≤
T∑

t=1

16G4

25K2c3
G2

t−1

2G2 +
∑t−1

i=1 G
2
i

≤ 16G4

25K2c3
ln

(
1 +

T−1∑
i=1

G2
i

G2

)

≤ 16G4

25K2c3
lnT

Then:
T∑

t=1

E[
6

5Kηt+1
∥ϵ̂t+1∥2 −

6

5Kηt
∥ϵ̂t∥2] ≤

T∑
t=1

E

[
−3ηt

4
∥ϵ̂t∥2 +

ηt
5
∥∇F (x⃗t)∥2

]
+

48

5
Kc2 ln(T + 1) +

16G4

25K2c3
lnT

Theorem 5. With K = 2G2ρ2

−4σ2
H+

√
16σ4

H+ ρ2G2

2

, ηt = c
(w+

∑t−2
i=1 G2

i )
1/3

with c ≤ 2G2/3
√
K

and w =

max{(4Lc)3, 3G2}, αt = 2Kηtηt+1. Algorithm 3 guarantees:

E

[
1

T

T∑
t=1

∥∇F (x⃗t)∥

]
≤ w1/6

√
2M + 2M3/4

√
T

+
2σ

1/3
G

T 1/3

Where M = 1
c (20(∆ +

6σ2
Gw1/3

5Kc ) + 192Kc2 ln(T + 1) + 64G4

5K2c3 lnT ).

Proof. Define the potential:

Φt = F (x⃗t) +
6

5Kηt
∥ϵ̂t∥2

28



Then:

E[Φt+1 − Φt] = E
[
F (x⃗t+1)− F (x⃗t) +

6

5Kηt+1
∥ϵ̂t+1∥2 −

6

5Kηt
∥ϵ̂t∥2

]
Applying Lemma 10 and Lemma 2 then sum over t:

E[ΦT+1 − Φ1] ≤
T∑

t=1

E
[
−ηt

4
∥∇F (x⃗t)∥2 +

3ηt
4
∥ϵ̂t∥2 +

6

5Kηt+1
∥ϵ̂t+1∥2 −

6

5Kηt
∥ϵ̂t∥2

]

≤ E

[
T∑

t=1

− ηt
20
∥∇F (x⃗t)∥2 +

48

5
Kc2 ln(T + 1) +

16G4

25K2c3
lnT

]
Reordering the term:

E

[
T∑

t=1

ηt∥∇F (x⃗t)∥2
]
≤ E

[
20(Φ1 − ΦT+1) + 192Kc2 ln(T + 1) +

64G4

5K2c3
lnT

]
Also:

E[Φ1 − ΦT+1] = E[F (x⃗1)− F (x⃗T+1) +
6

5Kη1
∥ϵ̂1∥2 −

6

5KηT+1
∥ϵ̂T+1∥2]

≤ ∆+
6σ2

Gw
1/3

5Kc
Plug in:

E

[
T∑

t=1

ηt∥∇F (x⃗t)∥2
]
≤ 20

(
∆+

6σ2
Gw

1/3

5Kc

)
+ 192Kc2 ln(T + 1) +

64G4

5K2c3
lnT

Now, let us relate E
[∑T

t=1 ηt∥∇F (x⃗t)∥2
]

to E
[∑T

t=1 ∥∇F (x⃗t)∥2
]
. Since ηt is decreasing:

E

[
T∑

t=1

ηt∥∇F (x⃗t)∥2
]
≥ E

[
ηT

T∑
t=1

∥∇F (x⃗t)∥2
]

From Cauchy-Schwartz:

E[1/ηT ]E

[
ηT

T∑
t=1

∥∇F (x⃗t)∥2
]
≥ E


√√√√ T∑

t=1

∥∇F (x⃗t)∥2

2

Let M = 1
c

(
20(∆ +

6σ2
Gw1/3

5Kc ) + 192Kc2 ln(T + 1) + 64G4

5K2c3 lnT
)

, then:

E


√√√√ T∑

t=1

∥∇F (x⃗t)∥2

2

≤ E
[
cM

ηT

]

≤ E

[
M(w +

T∑
t=1

G2
t )

1/3

]
Let ζt = ∇f(x⃗t, z) − ∇F (x⃗t) so that E[∥ζt∥2] ≤ σ2

G. Then we have G2
t = ∥∇F (x⃗t) + ζt∥2 ≤

2∥∇F (x⃗t)∥2 + 2∥ζt∥2. Thus:

E


√√√√ T∑

t=1

∥∇F (x⃗t)∥2

2

≤ E

M (
w + 2

T∑
t=1

∥ζt∥2)

)1/3

+ 21/3M

(
T∑

t=1

∥∇F (x⃗t)∥2
)1/3


≤M(w + 2Tσ2

G)
1/3 + E

21/3M

√√√√ T∑

t=1

∥∇F (x⃗t)∥2

2/3
≤M(w + 2Tσ2

G)
1/3 + 21/3M

E


√√√√ T∑

t=1

∥∇F (x⃗t)∥2

2/3
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Define X =
√∑T

t=1 ∥∇F (x⃗t)∥2. The the above can be rewritten as:

(E[X])2 ≤M(w + 2Tσ2
G)

1/3 + 21/3M(E[X])2/3

This implies that either (E[X])2 ≤ 2M(w+2Tσ2
G)

1/3 or (E[X])2 ≤ 2×21/3M(E[X])2/3. Solving
for E[X] in these two cases, we get:

E[X] ≤
√
2M(w + 2Tσ2

G)
1/6 + 2M3/4

Finally, by Cauchy-Schwartz we have
∑T

t=1 ∥∇F (x⃗t)∥/T ≤ X/
√
T . Therefore:

E

[
T∑

t=1

∥∇F (x⃗t)∥
T

]
≤ w1/6

√
2M + 2M3/4

√
T

+
2σ

1/3
G

T 1/3

with M = 1
c

(
20(∆ +

6σ2
Gw1/3

5Kc ) + 192Kc2 ln(T + 1) + 64G4

5K2c3 lnT
)
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