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Abstract

We consider dynamic multi-product pricing and assortment problems under an
unknown demand over T periods, where in each period, the seller decides on the
price for each product or the assortment of products to offer to a customer who
chooses according to an unknown Multinomial Logit Model (MNL). Such problems
arise in many applications, including online retail and advertising. We propose
a randomized dynamic pricing policy based on a variant of the Online Newton
Step algorithm (ONS) that achieves a O(d

√
T log(T )) regret guarantee under an

adversarial arrival model. We also present a new optimistic algorithm for the
adversarial MNL contextual bandits problem, which achieves a better dependency
than the state-of-the-art algorithms in a problem-dependent constant κ2 (potentially
exponentially small). Our regret upper bound scales as Õ(d

√
κ2T + log(T )/κ2),

which gives a stronger bound than the existing Õ(d
√
T/κ2) guarantees.

1 Introduction

In this paper, we consider the contextual dynamic pricing and assortment optimization problems faced
by a seller who sequentially observes a contextual demand under bandit feedback. The goal is to
learn the underlying model parameters in order to maximize the seller’s profit. These problems arise
in numerous applications, including pricing and product recommendation in online retail, as well as
click-through rate predictions for web search results. Sequential learning is especially important in
settings involving short selling seasons or where no historical data is available.

Problem formulation. In both the dynamic pricing and assortment problems, we consider a seller
who sells a set of N products over a time horizon of T periods. A new customer arrives in each
period t and is offered a set of products or prices. In the pricing problem, the customer arrives
with a consideration set and the seller has to decide on the prices of the different products in the
consideration set. In the assortment problem, the seller selects the subset of products to offer to the
customer. In both cases we assume that the customer’s purchase decisions are made according to a
multinomial logit model (MNL)([34], [30]) which is widely used in modeling customer preferences.
In both problems, the objective is to maximize the seller’s expected profit, which is equivalent to
minimizing its cumulative expected regret (i.e., the difference between the optimal value and the
value obtained by following a given policy).

In this paper, we study a feature-based model, where the product utilities are a function of both
products and customers features. In particular, we assume that in each period t, the customer’s utility
for each product j ∈ [N ] can be written under the form x⊤t,jθ

∗, where θ∗ is an unknown model
parameter and xt,j ∈ Rd is a feature vector, which can be adversarially chosen (see Sections 2.1 and
3.1 for exact definitions of the problems). Furthermore, we allow feature-dependent price sensitivities
in our pricing setting and suppose that the price sensitivities can be expressed as x⊤t,jα

∗ for some
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unknown parameter α∗. Typically, the number of products is significantly larger than the number of
features (d << N ). The objective is to learn across the products and obtain a regret upper bound
scaling with d instead of N .

Literature review. Non-feature-based dynamic pricing, where the seller sells identical products to
the customers over time, was initially investigated by [24] under various assumptions on the demand
curve, and has since been extensively studied (see for instance [8], [15], [7] and [16]). We refer the
reader to [14] for an in-depth survey of the area. On the other hand, non-feature-based dynamic
assortment optimization was first studied by [9] under the assumption of independent demand for the
different products. Dynamic assortment under a MNL choice model has been recently considered
(see for instance [38], [39] and [41]). In particular, UCB and Thompson sampling-based policies are
proposed in [3] and [4]. These policies achieve optimal regrets of O(

√
NT ) in the non-feature based

setting.

In this paper, we consider feature-based pricing and assortment problems. Feature-based dynamic
pricing has recently received a lot of attention. Most of the existing work study a single product
pricing setting under various demand models (linear, binary, generalized linear) and assume that
the price sensitivity of each product (i.e., the price coefficient in the demand model) is a known
constant (see for instance [21], [22], [5] , [13], [29], [28], [26] and [35]). In the single product
setting, the most related work is [6], which is the first to incorporate contextual information about the
customers under the form of feature-dependent price sensitivities. The benefit of this assumption is
illustrated on real datasets. [6] considers a high dimensional setting with a sparsity assumption under
a generalized demand model and propose a policy with near-optimal regret. However, they assume
i.i.d. features, whereas we consider a more specific demand model (MNL model), but with adversarial
features. In [23], is considered a multiple product version of the problem, with feature-based price
sensitivities and under the assumption that the demand follows a MNL model. In this last work, the
features are also assumed to be i.i.d. Our multi-product pricing setting directly extends [23], and
captures the single product setting with unknown (and feature-based) price sensitivity and adversarial
features under a binary demand model with logistic noise, for which, to the best of our knowledge,
no algorithm with near-optimal regret is known yet.

The MNL feature-based dynamic assortment problem is a variant of the contextual generalized linear
bandits problem (see for instance [18], [27] and [2]) with a more complicated state space, in which
multiple arms are pulled at the same time. UCB and TS based policies have recently been proposed
for the MNL contextual dynamic assortment problem (see for instance [33], [32] and [12]). However,
these work suffer from a dependency in a problem-dependent constant κ2 (potentially exponentially
small), which captures the ’degree of non-linearity’ of the problem.

Another related stream of literature is that of combinatorial bandits (see for instance [11], [25] and
[36]), and in particular, top k combinatorial bandits ([37]). In this framework, the agent can pull a
subset of arms of cardinality less than k in each round and the total reward obtained is a function
of the individual rewards for the arms played. However, the reward obtained in our setting for each
individual arm depends on the whole set of arms played in period t, whereas the rewards are supposed
independent in the aforementioned works.

1.1 Our contributions.

In this work, we introduce new algorithms for the dynamic contextual pricing and assortment
problems. Our main contribution is the following.

Dynamic pricing. We present a dynamic pricing policy for the multi-product MNL model with
adversarial contexts and feature-dependent price sensitivities that achieves a O(d log(T )

√
T ) regret

bound. This is near-optimal given the Ω(
√
T ) lower bound from [23]. Based on structural properties

of the MNL model, and more specifically, on the self-concordant-like property of the MNL log
likelihood function, we propose to use a variant of the Online Newton Step method ([20]) to update
our estimators of the model parameters. We combine it with a random price shock policy to force
exploration.

Closest to our pricing setting is [23], in which the authors design a multi-product dynamic pricing
policy under a MNL choice model and feature-dependent price sensitivities. The proposed algorithm
achieves a Õ(

√
T ) regret. However, it relies on a bayesian assumption, namely the feature vectors
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are drawn i.i.d. from some unknown distribution. Our work considers an adversarial context and
uses an ONS method to update the parameters. Note that the connection with the Online Convex
Optimization framework has been exploited in the literature (see for example the stochastic online
gradient descent in [21] for the single product setting without price sensitivities), however, the
problem we consider is more challenging since the presence of feature-dependent price sensitivities
implies the existence of uninformative prices (i.e. prices p such that no pricing policy can learn
the true model parameters when repeatedly pricing at price p). Note that all prices are informative
in [21]. The link between uninformative prices and the difficulty to design low regret policies
was first pointed out by [8], which shows that no algorithm can achieve better regret than Ω(

√
T )

in settings involving such prices. We address this challenge by using appropriate randomized
price shocks that force exploration (we note that adding random shocks was first used in the
context of dynamic pricing in [31]; however, our work is the first to simultaneously use random
price shocks and an ONS based update, and the analysis of our policy differs from the analysis in [31]).

Our results imply a O(d log(T )) regret in the single product setting with adversarial contexts and
without price sensitivity considered in [21], under the extra assumption that the noise follows a
logistic distribution. This improves over the O(

√
T ) regret bound of [21] in this case (note that

[21] studies more precisely the effect of drifts in the parameters). Note that in the same setting, but
with feature-dependent price coefficients, our results also imply a Õ(

√
T ) regret. We have become

aware that a concurrent recent paper [42] also obtained a logarithmic regret for the contextual single
product pricing problem without price sensitivity through a variant of the online newton method (for
a more general demand model with strictly log-concave noise). We would like to underscore that our
theoretical results were obtained independently from this work. Furthermore, the algorithm proposed
in [42] uses the exp-concavity parameter in the descent step and the regret upper bound provided
scales with this potentially exponentially small constant. By leveraging the self-concordance property
of the logistic loss, we design an algorithm which does not use such parameter, which may be better
in practical applications. However, our regret upper bound still depends on this constant. We present
in Appendix D some numerical comparison between the two algorithms, which confirms that our
algorithm achieves a significantly better regret than the one in [42] as the exp-concavity parameter
decreases.

In addition to our main contribution, we present a new algorithm for MNL contextual bandits.

MNL contextual bandits. We consider a setting with uniform product revenues and propose a new
UCB-based algorithm for the MNL assortment problem with adversarial contexts. Our algorithm
achieves a regret bound of order Õ(dK

√
T ), which is optimal as a function T . One major limitation

of the state-of-the-art algorithms for the MNL contextual bandits problem ([33], [32] and [12]) is
that the regret bounds scale with a problem dependent constant, which we will refer to as κ2 (see
Section 3 for a formal definition); κ2 quantifies the level of non-linearity of the model and can be
exponentially small even for moderate size instances ([17]). Our regret bound can be expressed as

C1d
√∑T

t=1 κ
∗
2,t + C2d

2 log(T )/κ2 (where κ∗2,t ≤ 1 are problem dependent constants, whose value
decrease as the model is further away from the linear model). Therefore, we give a significantly
stronger bound than [33], whose regret term of order

√
T scales with 1/κ2. Note that our first

order term improves for small values of {κ∗2,t}. Moreover, a prior knowledge of the value of κ2
is often presupposed in the existing algorithms, which may be a major hindrance to their practical
implementation. The quantity κ2 appears for example in the design of the exploration bonuses of
the UCB-MNL algorithm of [33]. Our algorithm does not rely on an a priori knowledge of κ2. Our
policy is based on optimistic parameter search instead of exploration bonuses, as used in [33]. The
analysis relies on a concentration result on the MLE estimators, which uses a generalization of the
Bernstein-like tail inequality for self-normalized vectorial martingales in [2] and [17], and leverages
the self-concordant property of the MNL log loss.

We would like to mention that a similar result is achieved by [17] and [2] in the logistic bandits
setting. Our results cannot, however, be derived from these two works since the MNL contextual
bandits problem cannot be formulated as a generalized bandits problem [12]. In this work, we show
that the techniques from [17] and [2] can be efficiently extended to the MNL bandit setting, which
involves overcoming a few technical challenges that are specific to the MNL problem.
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Notations. For any vector x ∈ Rd and any positive definite matrixM ∈ Rd×d, let ||x||M =
√
xTMx.

Also let Bd
p(0,W ) be the d-dimensional ball of radius W under the norm ℓp. In the special case of the

norm ℓ2, we will drop the index and refer to the d-dimensional ball as Bd(0,W ). For two symmetric
matrices A,B ∈ Rd×d, A ⪰ B means that A−B is semi-definite positive. For n ∈ N, we use the
notation [n] to denote the set {1, ..., n}. When it is not clear from the context, we use a bold font to
denote vectors.

2 Multi-product dynamic pricing

2.1 Model setting and preliminaries

We consider a dynamic pricing problem for a seller with N products represented by feature vectors
x1, x2, ..., xN ∈ Rd. In each period t, a customer arrives with context zt ∈ Rd and a consideration
set St ⊆ [N ], which can be chosen adversarially. For ease of notation, we consider a more general
setting where customer features zt and consideration set St are represented by |St| adversarially
chosen feature vectors xt,1, ..., xt,|St| ∈ Rd. For all t ∈ [T ], let kt = |St| and let K ≤ N be an upper
bound on kt for all t. We also define Xt as the matrix whose rows are xt,j for j ∈ [kt] and we refer
to it as the context at time t. In each period t,

1. The seller observes xt,1, ..., xt,kt
∈ Rd and offers prices pt,j for all j ∈ [kt].

2. The customer observes the prices, then purchases one single product j ∈ [kt]∪{0}. The probability
to purchase each product j is given by:

qt,j((θ
∗, α∗), p⃗t) =


e
x⊤
t,jθ

∗−x⊤
t,jα

∗pt,j

1+
∑kt

i=1 e
x⊤
t,i

θ∗−x⊤
t,i

α∗pt,i
if j ≥ 1

1

1+
∑kt

i=1 e
x⊤
t,i

θ∗−x⊤
t,i

α∗pt,i
if j = 0

, (1)

where θ∗, α∗ ∈ Rd are two model parameters, which are unknown to the policy maker. For all
j ∈ [kt], x⊤t,jα

∗ represents the price sensitivity of customer t for product j. Note that the customer
has always the possibility to leave without making any purchase (by selecting product j = 0).

3. The policy maker observes only the customer’s purchase decision. The binary variable yt,j
indicates whether the customer has purchased product j at time t.

For brevity, let γ∗ = (θ∗, α∗) and x̃t,j = [xt,j ,−pt,jxt,j ]. We can more simply write the utility
ut,j = x⊤t,jθ

∗ − x⊤t,jα
∗pt,j associated with each product as ut,j = x̃⊤t,jγ

∗. Also, for each t and for a
given estimator γt of the true parameter at time t, we denote by qt,j(γt, p⃗t) the estimated purchase
probability for product j (obtained by replacing γ∗ by γt in (1)).

We make the following assumptions, which are standard in the dynamic pricing literature:
Assumption 2.1. For all t, j ∈ [kt], ||xt,j ||2 ≤ 1.
Assumption 2.2. ||(θ∗, α∗)||2 ≤W for some known constant W .

Although the contexts {xt,j}t∈[T ],j∈[kt] can be adversarially chosen, we need to slightly restrict the
set of feasible contexts to guarantee the positiveness of the price sensitivity for all products. Following
[23], we make the following assumption, which implies that the price-sensitivity of each product is
not too close to zero. This assumption may be reasonable in practice: when the price of a product
goes to infinity, its utility should decrease significantly.
Assumption 2.3. For all t ∈ T, j ∈ [kt], x⊤t,jα

∗ ≥ L for some known constant L.
Assumption 2.4. The upper bound K on the number of products in each set St is constant.

Pricing policy and Benchmark. We consider non-anticipating pricing policies π, which depend only
on the history up to time t− 1, Ht−1 = (X1, p⃗1, y⃗1, ..., Xt−1, ⃗pt−1, ⃗yt−1), and the current context
Xt. The objective is to design a pricing policy so as to minimize the sellers’ cumulative expected
regret:

Rπ(T ) =

T∑
t=1

[
kt∑
i=1

qt,i(γ
∗, p⃗∗t )p

∗
t,i − Eπ

(
kt∑
i=1

qt,i(γ
∗, p⃗t)pt,i

)]
,
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where p⃗∗t is the optimal vector of prices in period t. The expectation is taken over the random feedback
and any source of randomization in the policy.

Let pmax := 1+K max(W,1)
L + 1

K . We show in Lemma B.2 that for the algorithm we propose, the
prices posted at each time t satisfy pt,j ∈ [0, pmax] for all j ∈ [kt]. Hence we can consider policies
π that only post prices in [0, pmax].

Finally, we define the following constant, which provides information about how much a feasible
demand curve can deviate from the linear model (a smaller κ1 implies a larger deviation from the
linear model).

κ1 = min
γ∈B2d(0,W ),t≥1,j∈{1,...kt},p⃗∈[0,pmax]kt

qt,j(γ, p⃗)qt,0(γ, p⃗).

Note that our pricing policy does not directly use the value of κ1. However, this constant still appears
in our regret bound (see Section 2.2 for more discussion).

2.2 Dynamic pricing policy

Our algorithm combines the two following ingredients: a variant of the ONS method and random
price shocks. In particular, we maintain estimators of the parameters which are updated in each
iteration by using a variant of ONS on the log likelihood. In each step, our algorithm selects a myopic
vector of prices based on the current estimators and adds random price shocks to force exploration
and avoid uninformative prices.

We first give the details on the update of the parameters. Given our estimator γt of the true parameters
at time t, we let ℓt denote the log loss at time t:

ℓt,1(γt) = −
kt∑
j=0

yt,j log(qt,j(γt, p⃗t)).

For a time-dependent sequence of positive regularizers {λt}t≥1 (the exact value of the regularizers
used in our algorithm is given in Theorem 2.5), the estimator obtained before projection after
conducting one step of our descent method is:

γ̂t = γt−1 − 1
µH

−1
t−1∇ℓt−1(γt−1),

where µ = 1
2(1+(1+pmax)2

√
6KW )

and Ht =
∑t

s=1 ∇2ℓs(γs) + λtId is the regularized Hessian of
the negative log likelihood. Note that for the MNL model, ℓt,1 is convex (as can be deduced from
Lemma B.5 1.), hence Ht ≻ 0 for all t.

Let Bt denote the set B2d(0,W ) ∩ {(θ, α) | x⊤t,jα ≥ L for j ∈ [kt]}. Bt represents the set of
parameters which satisfy Assumptions 2.2 and 2.3. We obtain the new estimator γt by projecting γ̂t
on the feasible set of parameters:

γt = Π
Ht−1

Bt
(γ̂t),

where ΠHt−1

Bt
(y) = argminx∈Bt

(x−y)THt−1(x−y) is the projection relatively to the norm induced
by Ht−1. As a result, during all the course of the algorithm, our estimator γt also satisfies the lower
and upper boundedness assumptions.

Finally, the seller chooses a perturbation factor δt = 1
Wt1/4

and computes, independently for each
product j ∈ [kt], a random price shock ∆pt,j which takes value δt with probability 1/2 and −δt with
probability 1/2. The seller posts the vector of prices p⃗t which is the sum of the random price shocks
and the myopic vector of prices g(Xtαt, Xtθt) (see Appendix B for a formal definition). The pseudo
code of our dynamic pricing policy is presented in Algorithm 1.

Running time: The two main computational steps of Algorithm 1 are calculating the inverse of Ht

and projecting the parameter back in the set of feasible parameters relative to the norm Ht. The time
complexity of the first step is O(d3), which is reasonable when d is not too large as in the setting we
consider. The projection step can also be done efficiently by formulating the problem as a Quadratic
Programming problem.

Using an online descent method for the parameters estimation allows us to obtain a low regret
algorithm despite the presence of adversarial contexts. We would like to note that based on our
current analysis, a simpler online method such as a stochastic online gradient descent (as proposed
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Algorithm 1 Online Newton method for multiple product pricing

Input: Upper bound W on ||(θ∗, α∗)||2, lower bound L, sequence of regularizers {λt}t≥1.

Initialize θ1, α1 ∈ B1

for all t ≥ 1 do

For j ∈ [kt], let ∆pt,j =
{

1
Wt1/4

w/p 1
2

−1
Wt1/4

w/p 1
2

For j ∈ [kt], set pt,j = g(Xtαt, Xtθt)j +∆pt,j
Post prices p⃗t
Observe feedback y⃗t
Set γt+1 = (θt+1, αt+1) as follows: γt+1 = ΠHt

Bt+1

(
γt − 1

µH
−1
t ∇ℓt,1(γt)

)
end for

in [21] for single-product dynamic pricing without price sensitivity) would not allow us to obtain
sublinear regret. We would also like to mention that our method is different from the Online Newton
Step presented in [20], which is the classic online analogue of the Newton method. The ONS method
moves into the direction of A−1

t ∇ℓt,1, where A−1
t is an approximation of the inverse of the Hessian.

In our case, we move directly into the direction of the inverse of the Hessian multiplied by ∇ℓt,1, and
leverage self-concordant-like properties of the negative log likelihood function of the MNL model to
show the convergence of the estimators. This allows us to avoid using the parameter 1/κ1 (which
corresponds to the exp-concavity parameter β in the literature) in the descent step, as is done by the
ONS algorithm.

We are ready to present our regret bound.
Theorem 2.5. Setting λ1 = 1, λt = d log(t) for all t ≥ 1, there is a constant C depending only on
W,L,K such that the regret of Algorithm 1 is bounded as:

Rπ(T ) ≤ Cd log(T )
√
T .

The proof of Theorem 2.5 is presented in Appendix B. We would like to point out that, even though
our algorithm does not use the parameter 1/κ1, it still appears within the constant C.

Under the assumptions of [21] (single product dynamic pricing with adversarial contexts and constant
price sensitivity), and assuming that the noise has a logistic distribution, we can show the following
regret bound, which contrasts with the O(

√
T ) upper bound established in [21].

Corollary 2.6. If kt = 1 for all t, and if the price coefficient is a known constant, then setting λ1 = 1,
λt = d log(t) for all t ≥ 1, and letting ∆pt,1 = 0 at each step, there is a constant C depending
only on W such that the regret of Algorithm 1 with regularizers {λt} and price shocks {∆pt,1} is
bounded as:

Rπ(T ) ≤ Cd log(T ).

2.3 High level ideas and sketch of the proof.

We provide here the main ideas in the proof of Theorem 2.5. The technical details are presented in
Appendix B. We first follow the classical regret analysis for dynamic pricing policies and decompose
the regret between a term due to the error in the estimation of the parameters and a term due to the
random price shocks. In particular, we have the following lemma.
Lemma 2.7. There exist constants C1, C2 depending only on W,L,K, such that:

Rπ(T ) ≤ E

[
C1C2

T∑
t=1

kt∑
j=1

[((αt − α∗)Txt,j)
2 + ((θt − θ∗)xt,j)

2] + C1

T∑
t=1

||∆p⃗t||2
]
. (2)

Since the variances of the random price shocks are 1
W 2

√
t
, the second term is O(

√
T ). Therefore,

to exhibit a Õ(
√
T ) regret bound, it suffices to focus on upper bounding the first term. Note that it

follows from (2) that the regret upper bound does not require the global convergence of the estimators
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to the true parameters. We only need to show that they converge sufficiently fast in the directions
given by the contexts seen throughout the T periods.

For any sequence of prices {p⃗t}Tt=1, our online descent method allows us to control the convergence
of the estimated utilities ut,j = x⊤t,jθt − x⊤t,jαtpt,j to the true utilities u∗t,j = x⊤t,jθ

∗ − x⊤t,jα
∗pt,j for

each product j ∈ [kt]. In particular, we have the following lemma.

Lemma 2.8. There is a constant C̃ depending only on W,L,K such that with probability at least
1− log(T )

T 2 ,

T∑
t=1

kt∑
j=1

(x⊤t,j(θt − θ∗)− x⊤t,j(αt − α∗)pt,j)
2 ≤ C̃d log(T ).

We present the proof in Appendix B. Note that the upper bound in Lemma 2.8 is valid for any
sequence of prices posted by the seller. However, it is not possible, in general, to derive directly
Theorem 2.5 from Lemma 2.8 without an appropriate price experimentation scheme. Suppose at each
step we only post the myopic vector of prices p⃗t = g(Xtαt, Xtθt). If the prices {pt,j} happened
to be uninformative (i.e. x⊤t,j(θt − θ∗)− x⊤t,j(αt − α∗)pt,j = 0), then the left-hand side in Lemma
2.8 would be zero and the bound provided would not be useful. However, adding random price
shocks allows us to deviate from uninformative prices and to derive an upper bound on the first term
of (2) based on Lemma 2.8. This concludes the proof of Theorem 2.5. If there is a single product
(kt = 1), and there is no price sensitivity (i.e. for all t, the coefficient in front of pt,1 is a known
constant, that we assume to be 1 without loss of generality), note that from Lemma 2.8, we get∑

t x
T
t (θt − θ∗) = O(d log(T )) . Combining this with (2) and the choice of ∆pt,1 = 0 for all t, we

immediately obtain Corollary 2.6.

In [21], where no price sensitivity is involved and the utility is simply written under the form
ut = x⊤t θ

∗, the use of a stochastic gradient descent method allows the author to directly obtain a
O(

√
T ) bound on the sum

∑T
t=1 x

⊤
t (θt − θ∗)2. Such a bound, when combined with our random

price shocks, would only give us a linear regret. By exploiting the special structure of the MNL
function and using our variant of the ONS instead of an online gradient descent, we obtain the
stronger O(log(T )) bound of Lemma 2.8.

The proof of Lemma 2.8 is based on a lower and an upper bound on
∑T

t=1 ℓt,1(γt)− ℓt,1(γ
∗). Both

involve
∑T

t=1

∑kt

j=1(x
⊤
t,j(θt − θ∗) − x⊤t,j(αt − α∗)pt,j)

2. The proof of the lower bound exploits
the convexity of ℓt,1 and is based on a Bernstein inequality for martingales difference sequences.
This is similar to the inequality used in [21]. The main technical hindsight lies in the proof of
the upper bound. It mimics the analysis of the Online Newton Step method presented in [20], but
relies on the specific structure of the gradient and Hessian of ℓt,1 for the MNL model. Moreover,
it unically exploits the self concordant-like property of ℓt,1. Let’s first recall the definition of a
self-concordant-like function.
Definition 2.9 (self-concordant-like functions [40]). A convex function f ∈ C3(Rn) is called a
self-concordant-like function if:

|ϕ′′′(t)| ≤Mfϕ
′′(t)||u||2

for t ∈ R and Mf > 0, where ϕ(t) := f(x+ tu) for any x ∈ dom(f) and u ∈ Rn.

By adapting the proof of Lemma 4 in [40], we show in Appendix A the following property.

Proposition 2.10. ℓt,1 is self-concordant-like with Mf = (1 + pmax)
√
6|St|.

We also detail in Appendix A some useful properties satisfied by self-concordant-like functions.

3 Improved algorithm for MNL contextual bandits

3.1 Problem formulation

We consider the following MNL dynamic assortment optimization problem, also referred as the
MNL contextual bandits. In each period t, the seller observes feature vectors {xt,j}Nj=1 ∈ Rd. As
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before, this represents a combination of customer and product features which can be adversarially
chosen. The seller needs to decide on the set St ⊆ [N ] to offer, with |St| ≤ K. Given the offered
assortment, the customer purchases one single product j ∈ St ∪ {0}. Each product j is purchased
with probability:

qt,j(St, θ
∗) =


e
x⊤
t,jθ

∗

1+
∑

i∈St
e
x⊤
t,i

θ∗ if j ∈ St

1

1+
∑

i∈St
e
x⊤
t,i

θ∗ if j = 0
(3)

where θ∗ ∈ Rd is an underlying model parameter. As before, the binary variable yt,j indicates
whether the customer has purchased product j at time t. Note that our model encompasses the
contextual logistic bandit problem with finitely many arms (which corresponds to the case where
K = 1). The objective is to minimize the cumulative expected regret over the T periods:

R(T ) =

T∑
t=1

[ ∑
j∈S∗

t

qt,j(S
∗
t , θ

∗)−
∑
j∈St

qt,j(St, θ
∗)

]
,

where S∗
t denotes the optimal assortment at time t.

In [33], the authors study a more general model where a reward rt,j ∈ [0, 1] is also revealed for each
product at time t. We consider the case of uniform rewards (rt,j = 1) for all products. Maximizing∑

j∈St
qt,j(St, θ) over all sets S ⊆ [N ] of cardinality at most K is now equivalent to selecting the K

products which have the highest utility x⊤t,jθ. Hence the set St as well as the optimal set S∗
t always

contain exactly K products.

Similarly as in the pricing setting, we make the following two assumptions:
Assumption 3.1. For all t ∈ [T ], j ∈ [N ], ||xt,j ||2 ≤ 1.
Assumption 3.2. ||θ∗||2 ≤W for some known constant W.

Following [33], we also introduce the following constant, which typically appears in connection to
the link function in the generalized linear bandits ([18], [27]).

κ2 := min
|S|≤K,j∈S,t≥1

min
∥θ∗∥≤W

qt,j(S, θ)qt,0(S, θ) > 0.

A smaller value of κ2 can be interpreted as a bigger deviation from the linear model. As mentioned
before, the regret bound of the dynamic assortment policies of [33] and [12] exhibit a harmful
dependency in κ2. Besides, an a priori knowledge of the value of κ2 is presupposed. Our goal is
to design a dynamic assortment policy which does not require prior knowledge of κ2 and achieves
a regret with a better dependency in κ2. For all t ∈ [T ], let κ∗2,t =

∑
j∈S∗

t
qt,j(S

∗
t , θ

∗)qt,0(S
∗
t , θ

∗).
κ∗2,t represents the degree of non-linearity for the optimal set S∗

t and depends on the unknown
parameter θ∗ as well as on the feature vectors present at time t. We show that the Õ(

√
T ) term of our

regret bound can be replaced by a Õ
(√∑T

t=1 κ
∗
2,t

)
term. Note that we always have κ∗2,t ≤ 1 hence

this is a strict improvement. As a result, a high level of non-linearity at time t induces a smaller κ∗2,t
and positively impacts the regret.

3.2 Dynamic assortment policy

We design a tight confidence set for the true parameter θ∗ and use it to construct upper confidence
bounds on the utility of each product at time t. Our algorithm relies on optimistic parameter search
over the confidence interval, as used by [2] in the logistic bandits setting. However, in our setting, the
seller’s decision at time t involves the choice of multiple products. Hence we cannot build a unique
optimistic estimator θt as in [2]. The key idea is to do the optimistic parameter search independently
for each product, generating a set of parameters {θ̃t,j}Nj=1 such that with high probability, x⊤t,j θ̃t,j is
an upper bound on the utility x⊤t,jθ

∗ of product j.

Confidence set. The main ingredient is the design of a confidence set for θ∗. We classically start
by computing the maximum likelihood estimator of θ∗. Let θ̂t be the unique minimizer of the
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following function, for a sequence of time-dependent regularizers {λt}Tt=1 (the exact values are given
in Theorem 3.4):

Lλt
t (θ) = −

t−1∑
s=1

∑
j∈Ss

ys,j log(qs,j(Ss, θ)) +
λt

2 ∥θ∥2.

θ̂t satisfies the equation ∇Lλt
t (θ) = 0, where the gradient of Lλt

t (θ) is given by: ∇Lλt
t (θ) =∑t−1

s=1

∑
j∈Ss

(qs,j(Ss, θ) − ys,j)xs,j + λtθ̂t. Following [2], for all δ ∈ [0, 1), we now define a
confidence set Ct(δ) for θ∗ as follows:

Ct(δ) := {θ ∈ Θ|∥gt(θ)− gt(θ̂t)∥H−1
t (θ) ≤ γt(δ)},

where gt(θ) :=
∑t−1

s=1

∑
j∈Ss

qs,j(Ss, θ)xs,j + λtθ, where Ht(θ) is the Hessian of the regularized
negative log likelihood evaluated at θ, i.e.,

Ht(θ) :=

t−1∑
s=1

[∑
i∈Ss

qs,i(Ss, θ)xs,ix
T
s,i −

∑
i∈Ss

∑
j∈Ss

qs,i(Ss, θ)qs,j(Ss, θ)xs,ix
T
s,j

]
+ λtId

and where
γt(δ) =

√
λt(W + 1

2 ) +
2d√
λt

log

(
4

δ

(
1 +

2tK

dλt

))
.

The following proposition is the analogue, in the multi-product setting, of Proposition 1 in [2] and
establishes that Ct(δ) is a confidence set for θ∗. The details are given in Appendix C.3.
Proposition 3.3. Let δ ∈ (0, 1]. Then P(∀t, θ∗ ∈ Ct(δ)) ≥ 1− δ.

The proof of Proposition 3.3 builds upon the new Bernstein-like tail inequality for self-normalized
vectorial martingales presented in [17]. However, Theorem 1 in [17] does not directly apply to our
setting because of the correlation between the variables {εt,j := yt,j − qt,j(St, θ

∗)}j∈St
induced by

the presence of multiple purchase options in period t. We thus present a generalization of Theorem 1
in [17] for the multiple products setting that handles such correlation.

Algorithm. Before describing our algorithm, let’s introduce the following notation, which generalizes
the choice probabilities given by (3) to the case where the model parameters corresponding to each
product are uncorrelated. More precisely, we now consider some estimator θ̃ ∈ Rd×N of the true
parameters. For all j ∈ [N ], θ̃j represents the parameter associated with product j. The estimated
probability that item j is purchased at time t if assortment S ⊆ [N ] is offered is computed as:

q̃t,j(S, θ̃) =


e
x⊤
t,j θ̃j

1+
∑

i∈S e
x⊤
t,i

θ̃i
if j ∈ S

1

1+
∑

i∈S e
x⊤
t,i

θ̃i
if j = 0

Now, at time t, our algorithm uses the previous contexts and observations to compute the maximum
likelihood estimator θ̂t as defined above and constructs the confidence set Ct(δ). Then, for each
product j ∈ [N ], the algorithm finds an optimistic parameter θ̃t,j = argmaxθ∈Ct(δ) x

⊤
t,jθ. We offer

the set St of the K items maximizing the optimistic expected revenue r̃t(S, θ̃):

r̃t(S, θ̃) =
∑
j∈S

q̃t,j(S, θ̃).

Since we assumed all prices to be unit, this is equivalent to offering the K products with highest
x⊤t,j θ̃t,j . In the case of non-uniform revenues, our algorithm is still valid; however, an extra factor
1/κ2 would appear in the regret upper bound with our current analysis. We also note that Algorithm
2 is mainly of theoretical interest, since computing each θ̃t,j remains computationally expensive.

We now present the our upper bound on the regret of our policy.
Theorem 3.4. For δ = 1

K2T 2 , λ1 = 1, and λt = d log(tK) for all t ≥ 1, the regret of Algorithm
2 satisfies, for some constants C̃1 and C̃2 that do not depend on d,K, T and that depend only
polynomially on W :

R(T ) ≤ C̃1Kd log(KT )


√√√√ T∑

t=1

κ∗2,t

+
C̃2d

2K4

κ2
log(KT )2.
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Algorithm 2 OFU-MNL

Input: Upper bound K on the size of an assortment, δ, sequence {λt}Tt=1

for all t ≥ 1 do
Observe feature vectors {xt,1, ..., xt,N}
Set θ̂t = argminLλt

t (θ)

For j = 1, ..., N , set θ̃t,j = argmaxθ∈Ct(δ) x
⊤
t,jθ

Offer set St = argmax|S|≤K r̃t(S, θ̃).
Receive feedback y⃗t

end for

3.3 High level ideas and sketch of the proof

We first condition on the event that θ∗ ∈ Ct(δ), for all t ≥ 1. Proposition 3.3 shows that this happens
with high probability. From Lemma C.4 (Appendix C.2), we have the following concentration result
on the optimistic parameter θ̃t,j associated with each product j ∈ [N ]:

∥θ∗ − θ̃t,j∥Ht(θ∗) ≤ (1 +
√
6KW )γt(δ). (4)

Now, using the optimistic choice of assortment made by the algorithm as well as the fact that x⊤t,j θ̃t,j
is an upper bound on the true utility for each product, we can first bound the regret as follows:

R(T ) =

T∑
t=1

∑
j∈S∗

t

qt,j(S
∗
t , θ

∗)−
∑
j∈St

qt,j(St, θ
∗)

 ≤
T∑

t=1

∑
j∈St

q̃t,j(St, θ̃t)−
∑
j∈St

q̃t,j(St, θ̃
∗)


≤

T∑
t=1

∑
j∈St

qt,j(St, θ
∗)qt,0(St, θ

∗)x⊤t,j(θ̃t,j − θ∗) +R2(T ) := R1(T ) +R2(T ).

where R2(T ) is a second order term which we will prove to be of order O(d2K4 log(KT )2/κ2). To

show that the first term is of order O
(
Kd log(KT )

√∑T
t=1 κ

∗
2,t

)
, we first use the concentration

result stated in (4), which implies the following upper bound, for some C > 0:

R1(T ) ≤ C
√
d log(KT )

T∑
t=1

∑
j∈St

[
qt,j(St, θ

∗)qt,0(St, θ
∗)||xt,j ||Ht(θ∗)−1

]
.

Using that Ht(θ
∗) ⪰ κ2

∑T
s=1

∑
j∈Ss

xs,jx
⊤
s,j , we could already show that this term is of order

Õ(
√
T ) by applying the Elliptical Potential Lemma from [1]. However, we would then obtain

a term with linear dependency in 1/κ2. We show that the local information given by the terms
{qt,j(St, θ

∗)qt,0(St, θ
∗)} and the self-concordance-like property of the log loss can be used to derive

a tighter bound on the above sum. The complete version of the proof is provided in Appendix C.2.

4 Conclusion

In this paper, we study contextual dynamic pricing and assortment optimization problems under a
MNL choice model. We present a dynamic pricing policy based on a variant of the Online Newton
Step method combined with random price shocks that achieves near-optimal regret for the MNL model
with adversarial contexts and feature-dependent price sensitivities. We also propose a new optimistic
algorithm for the adversarial MNL contextual bandits problem. Both our algorithms leverage the self-
concordant property of the MNL log likelihood function to achieve better dependency on potentially
exponentially small parameters than existing algorithms. An interesting research direction would be
to extend our results to other choice models, such as the nested logit model, which is another widely
used model in the Revenue Management literature.
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A Self-concordant properties

In this section, we derive some useful properties of self-concordant-like functions which will be used
in the subsequent regret proofs. We first remind the reader of the definition of self-concordant-like
functions.
Definition A.1 (self-concordant-like functions [40]). A convex function f ∈ C3(Rn) is called a
self-concordant-like function with constant Mf if:

|ϕ′′′(t)| ≤Mfϕ
′′(t)||u||2

for t ∈ R and Mf > 0, where ϕ(t) := f(x+ tu) for any x ∈ Rn and u ∈ Rn.

Our results essentially rely on the following property of self-concordant-like functions.
Proposition A.2 (Theorem 4 in [40]). Let f : Rn → R be a Mf - self-concordant-like function and
let x, y ∈ dom(f), then:

e−Mf ||y−x||2∇2f(x) ⪯ ∇2f(y)

Now, for any X > 0,m ≥ 0, d′ > 0, {zj}j∈[m] ∈ Rd′
satisfying ||zj ||2 ≤ X for all j ∈ [m], and

{yj}j∈[m] ∈ R, we consider the function ℓ : Bd′
(0,W ) −→ R defined as:

ℓ(β) = −
m∑
i=1

yiz
T
i β + log

1 +

m∑
j=1

ez
T
j β

 . (5)

Note that the negative log likelihood ℓt,1 and ℓt,2 can be written as

ℓt,1(γ) = −
|St|∑
i=0

yt,i log(qt,i(γ, p⃗t))

= −
|St|∑
i=1

yt,ix̃
⊤
t,iγ +

 |St|∑
i=0

yt,i

 log

1 +

|St|∑
j=0

ex̃
⊤
t,jγ


= −

|St|∑
i=1

yt,ix̃
⊤
t,iγ + log

1 +

|St|∑
j=1

ex̃
⊤
t,jγ

 , (since
∑|St|

i=0 yt,i = 1)

with ∥x̃t,j∥2 = ∥[xt,j ,−pt,jxt,j ]∥2 ≤
√
1 + p2max∥xt,j∥2 ≤ 1 + pmax.

Similarly,

ℓt,2(θ) = −
∑
i∈St

yt,i log(qt,i(St, θ)) = −
∑
i∈St

yt,ix
⊤
t,iθ + log

(
1 +

∑
i∈St

ex
⊤
t,iθ

)
,

with ∥xt,j∥2 ≤ 1.

Hence for all t ≥ 0, ℓt,1 and ℓt,2 are of the form given in 5 with (zj = x̃t,j and X = 1 + pmax) and
(zj = xt,j and X = 1), respectively. In particular, ℓt,1, ℓt,2 satisfy all properties stated below with
the corresponding constants.

Proposition A.3. The function ℓ is self-concordant-like with Mℓ = X
√
6m.

Proof. By following the proof of Lemma 4 in [40], we obtain that the for all a, µ ∈ Rn, the function
ψ(s) := log (

∑n
i=0 e

ais+µi) satisfies the inequality:

|ψ′′′(s)| ≤
√
6||a||2ψ′′(s). (6)

Now, let f(β) := log
(
1 +

∑m
j=1 e

zT
t,jβ
)

.

Let d ∈ Rd and let ϕ(s) := f(β + sd) = log (
∑m

i=0 e
ais+µi), where µi = βT zi, ai = dT zi and
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µ0, a0 = 0. Then using (6), we obtain:

|ϕ′′′(s)| ≤
√
6∥a∥2ϕ′′(s) =

√
6

√√√√ m∑
i=1

(dT zi)2ϕ
′′(s)

≤
√
6

√√√√ m∑
i=1

∥d∥22∥zi∥22ϕ′′(s) ≤ X
√
6m∥d∥2ϕ′′(s),

where the second inequality comes from Cauchy-Schwartz and the last one is since ||zj ||2 ≤ X for
all j ∈ [m]. This shows that f is self-concordant-like with constant Mf = X

√
6m.

Since ℓ is the sum of f and a linear operator (for which the third derivatives are zero), we obtain that ℓ
is self-concordant-like with constant X

√
6m.

Proposition A.4. The hessian of ℓ satisfies, for all u ∈ Rd, β1, β2 ∈ Bd′
(0,W ):

uT
(∫ 1

0

∫ 1

0

z∇2ℓ(β1 + zw(β2 − β1))dzdw

)
u ≥ 1

2(1+X2
√
6mW )

uT∇2ℓ(β1)u

Proof. From Proposition A.2, we obtain:

uT
∫ 1

0

∫ 1

0

z∇2ℓ(β1 + zw(β2 − β1))dzdwu ≥ uT∇2ℓ(β1)u

∫ 1

0

∫ 1

0

e−Mℓ||zw(β2−β1)||2zdzdw

Besides, ∫ 1

0

∫ 1

0

e−Mℓ||zw(β2−β1)||2zdzdw =

∫ 1

0

z

(
1− e−Mℓz||β1−β2||2

Mℓz||β1 − β2||2

)
dz

Noting that 1−e−x

x ≥ 1
1+x for x > 0 (derived from ex ≥ (1 + x)) we obtain:∫ 1

0

∫ 1

0

e−Mℓ||zw(β2−β1)||2zdzdw ≥
∫ 1

0

z
(

1
1+Mℓz||β1−β2||2

)
dz

≥
∫ 1

0

z
(

1
1+Mℓ||β1−β2||2

)
dz

= 1
2(1+Mℓ||β1−β2||2)

≥ 1
2(1+X2

√
6mW )

where the last inequality comes from the fact that β1, β2 ∈ Bd′
(0,W ).

Proposition A.5. The hessian of ℓ satisfies, for all u ∈ Rd, β1, β2 ∈ B2(0,W ):

uT
∫ 1

0

∇2ℓt(β1 + z(β2 − β1))dzu ≥ 1
(1+X2

√
6mW )

uT∇2ℓt(β1)u

Proof. From Proposition A.2 and using the inequality 1−e−x

x ≥ 1
1+x for x ≥ 0, we obtain:

uT
∫ 1

0

∇2ℓt(β1 + z(β2 − β1))dzu ≥ uT∇2ℓ(β1)u

∫ 1

0

e−Mℓ||z(β2−β1)||2dz

≥ uT∇2ℓ(β1)u

(
1− e−Mℓ||β1−β2||2

Mℓ||β1 − β2||2

)
≥ uT∇2ℓ(β1)u

(
1

1+Mℓ||β1−β2||2

)
≥ uT∇2ℓ(β1)u

1
(1+X2

√
6mW )

where the last inequality comes from the fact that β1, β2 ∈ Bd′
(0,W ).
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B Dynamic pricing technical proofs

B.1 Proof of Theorem 2.5

We provide here the full proof of the regret upper bound given in Theorem 2.5. We first state a few
technical lemmas.

To begin with, we characterize the greedy price corresponding to the current context and some given
estimators of the parameters. The proposition below can be found in [23].

Proposition B.1. ([23] Proposition 3.1) If the true utility model parameters are θ, α, then the optimal
prices {pt,i}i∈[kt] are as follows. For all t ≥ 1 and product i ∈ [kt],

p∗t,i =
1

x⊤t,iα
+B0

t ≡ g(Xtα,Xtθ)i , (7)

where B0
t is the unique fixed point B of the following equation:

B =

kt∑
i=1

1

x⊤t,iα
e−(1+x⊤

t,iαB)ex
⊤
t,iθ . (8)

The following lemma then guarantees the boundedness of the prices posted by Algorithm 1 as well as
the boundedness of the resulting product utilities. The proof is deferred to Appendix B.2

Lemma B.2. Let p⃗t = g(Xtαt, Xtθt) + ∆⃗pt be the vector of prices posted at time t and let
pmax := 1+K max(W,1)

L + 1
W . Then, for all j ∈ [kt], we have g(Xtαt, Xtθt)j ∈ [0, pmax] and

pt,j ∈ [0, pmax].

It follows that the product utilities satisfy x̃⊤t,jγt ≤W (1 + pmax) ≡M for all t ≥ 1, j ∈ [kt].

We now borrow two lemmas from [23]. First, let ht(p⃗) =
∑kt

j=1 qt,j(γ
∗, p⃗)pj be the expected

revenue at time t after posting prices p⃗. The following lemma shows the boundedness of ||∇2ht(p⃗)||2.

Lemma B.3. ([23], proof of Lemma 5.4) There is a constant C1 depending only on W, L and K such
that the operator norm ||∇2ht(p⃗)||2 satisfies ||∇2ht(p⃗)||2 ≤ C1 for all t ≥ 0 and p⃗ ∈ [0, pmax]

kt .

The next lemma gives an upper bound in the difference of myopic prices for different values of the
estimators.

Lemma B.4 ([23], Lemma 5.2). Let γ1 = (θ1, α1) ∈ B2d(0,W ) and γ2 = (θ2, α2) ∈ B2d(0,W )
be such that for all j ∈ [kt], x⊤t,jαi ≥ L. Then there exists a constant C2 depending only on W,L,K
such that:

||g(Xtα1, Xtθ1)− g(Xtα2, Xtθ2)||22 ≤ C2(||Xt(αt − α∗)||22 + ||Xt(θt − θ∗)||22)

We are now ready to present the proof of Theorem 2.5.

Proof of Theorem 2.5.

Recall that ht(p⃗) =
∑kt

j=1 qt,j(γ
∗, p⃗)pj is the expected revenue at time t after posting prices p⃗. Since

for all t ≥ 0, p⃗∗t = argmaxht(p⃗), we have that ∇ht(p⃗∗t ) = 0.

Hence, by doing a Taylor expansion of ht at p⃗∗t , we obtain that the regret is bounded as follows:

Rπ(T )

= E

 T∑
t=1

kt∑
j=1

qt,j(γ
∗, p⃗t

∗)p∗t,j − qt,j(γ
∗, p⃗t)pt,j


= E

[
T∑

t=1

h(p⃗∗t )− h(p⃗t)

]

17



= E

[
T∑

t=1

(∇h(p⃗∗t )(p⃗t − p⃗∗t ) +
1

2
(p⃗t − p⃗∗t )

⊤∇2h(⃗̃p)(p⃗t − p⃗∗t ))

]

= E

[
T∑

t=1

1

2
(p⃗t − p⃗∗t )

⊤∇2h(⃗̃p)(p⃗t − p⃗∗t )

]
(∇ht(p⃗∗t ) = 0)

≤ E

[
C1

2

T∑
t=1

||p⃗t − p⃗∗t ||22

]
. (Lemma B.3)

= E

[
C1

2

T∑
t=1

||g(Xtαt, Xtθt) + ∆⃗pt − g(Xtα
∗, Xtθ

∗)||22

]

≤ E

[
C1

2

T∑
t=1

||g(Xtαt, Xtθt)− g(Xtα
∗, Xtθ

∗)||22 +
C1

2

T∑
t=1

||∆⃗pt||22

]

≤ E

[
C1C2

2

T∑
t=1

kt∑
j=1

((αt − α∗)Txt,j)
2 + ((θt − θ∗)Txt,j)

2

]
+ E

[C1

2

T∑
t=1

||∆⃗pt||22
]

(Lemma B.4)

≤ E

[
C1C2

2

T∑
t=1

kt∑
j=1

((αt − α∗)Txt,j)
2 + ((θt − θ∗)Txt,j)

2

]
+ C1

T∑
t=1

K

W 2
√
t

≤ E

[
C1C2

2

T∑
t=1

kt∑
j=1

((αt − α∗)Txt,j)
2 + ((θt − θ∗)Txt,j)

2

]
+

2C1K
√
T

W 2
, (9)

where in the third equality, ⃗̃p is a linear combination of p⃗ and p⃗∗.

Using Lemma 2.8, we obtain that with probability at least 1− log2(T )
T 2 :

T∑
t=1

kt∑
j=1

((θt − θ∗)Txt,j − (αt − α∗)Txt,jpt,j)
2 ≤ C̃d log(T ) ≡ C(T ).

Besides, since αt, α
∗, θt, θ

∗, Xt, p⃗t are bounded by constants depending only on W,L,K, there
is a constant C0 depending only on W,L,K such that

∑T
t=1

∑kt

j=1((θt − θ∗)Txt,j − (αt −
α∗)Txt,jpt,j)

2 ≤ C0KT .

Let AT denote the event that
∑T

t=1

∑kt

j=1((θt − θ∗)Txt,j − (αt − α∗)Txt,jpt,j)
2 ≤ C(T ).

We have that:

E

 T∑
t=1

kt∑
j=1

((θt − θ∗)Txt,j − (αt − α∗)Txt,jpt,j)
2


= E

1AT

T∑
t=1

kt∑
j=1

((θt − θ∗)Txt,j − (αt − α∗)Txt,jpt,j)
2


+ E

1AT

T∑
t=1

kt∑
j=1

((θt − θ∗)Txt,j − (αt − α∗)Txt,jpt,j)
2


≤ C(T ) + C0KT × log2(T )

T 2
≡ C̃(T )

This implies

E

 T∑
t=1

kt∑
j=1

((θt − θ∗)Txt,j − (αt − α∗)Txt,j(g(Xtαt, Xtθt)j +∆pt,j))
2

 ≤ C̃(T ).

18



Given that for all t, j, ∆pt,j has zero mean, developing the above sum implies the following inequali-
ties:

E
T∑

t=1

kt∑
j=1

((x⊤t,j(θt − θ∗))− g(Xtαt, Xtθt)j(x
⊤
t,j(αt − α∗)))2 ≤ C̃(T ) (10)

and

E
T∑

t=1

kt∑
j=1

((αt − α∗)Txt,j)
2∆p2t,j ≤ C̃(T ). (11)

We now use the two above inequalities to provide bounds on E
∑T

t=1

∑kt

j=1((αt − α∗)Txt,j)
2 and

on E
∑T

t=1

∑kt

j=1((θt − θ∗)Txt,j)
2.

First, since for all t ≤ T , ∆p2t,j ≥ 1
W 2

√
T

, it follows that

E
T∑

t=1

kt∑
j=1

((αt − α∗)Txt,j)
2 ≤W 2C̃(T )

√
T . (12)

Then, using the Cauchy-Schwartz inequality and noting that g(Xtαt, Xtθt)j ≤ pmax by Lemma B.2,
we have

E

 T∑
t=1

kt∑
j=1

2g(Xtαt, Xtθt)jx
⊤
t,j(θt − θ∗)x⊤t,j(αt − α∗)


≤ 2pmaxE

 T∑
t=1

kt∑
j=1

x⊤t,j(θt − θ∗)x⊤t,j(αt − α∗)


≤ 2pmax

√√√√√E

 T∑
t=1

kt∑
j=1

x⊤t,j(αt − α∗)2


√√√√√E

 T∑
t=1

kt∑
j=1

x⊤t,j(θt − θ∗)2



≤ 2pmaxT
1/4

√
W 2C̃(T )

√√√√√E

 T∑
t=1

kt∑
j=1

x⊤t,j(θt − θ∗)2

.
Hence, first noting that (10) implies that

E

 T∑
t=1

kt∑
j=1

x⊤t,j(θt − θ∗)2

−E

 T∑
t=1

kt∑
j=1

2g(Xtαt, Xtθt)jx
⊤
t,j(θt − θ∗)x⊤t,j(αt − α∗)

 ≤ C̃(T ),

we obtain

E

 T∑
t=1

kt∑
j=1

x⊤t,j(θt − θ∗)2

− 2pmaxT
1/4

√
W 2C̃(T )

√√√√√E

 T∑
t=1

kt∑
j=1

x⊤t,j(θt − θ∗)2

 ≤ C̃(T ).

(13)
Let A := E

[∑T
t=1

∑kt

j=1 x
⊤
t,j(θt − θ∗)2

]
. Consider the two following cases:

• 2pmaxT
1/4

√
W 2C̃(T )

√
A ≤ A

2 . Then, from (13), we obtain that A ≤ 2C̃(T ).

• 2pmaxT
1/4

√
W 2C̃(T )

√
A > A

2 . Then A ≤ 16p2max

√
TW 2C̃(T ).
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So A ≤ 16max(2, pmax)
2
√
TW 2C̃(T ).

Coming back to the upper bound on the regret given by equation (9), we obtain that the total regret is
bounded as follows:

Rπ(T ) ≤ C1C2

[√
TW 2C̃(T )(1 + 16max(2, pmax)

2) +W 2C̃(T )
√
T
]
+

2C1K
√
T

W 2
.

Using the definition of C̃(T ) = C̃d log(T ), we conclude that for some constant C > 0 depending on
W,K,L,

Rπ(T ) ≤ Cd log(T )
√
T .

B.2 Proof of the main lemmas

Throughout this section, we will use the following closed form expressions of the gradient and hessian
of the loss ℓt,1.

Remember that yt,j is the binary variable which indicates whether the customer has purchased product
j at time t. The loss at time t can be expressed as:

ℓt,1(γ) =

kt∑
j=0

−yt,j log (qt,j(γ, p⃗t)) = log

1 +

kt∑
j=1

ex̃
⊤
t,jγ

−
kt∑
j=1

yt,ix̃
⊤
t,iγ

We can then write the gradient and hessian of ℓt,1 as:

∇ℓt,1(γ) =
kt∑
j=1

(qt,j(γ, p⃗t)− yt,j)x̃t,j (14)

and

∇2ℓt,1(γ) =

∑kt

j=1 e
x̃⊤
t,jγ x̃t,j x̃

T
t,j(1 +

∑kt

j=1 e
x̃⊤
t,jγ)− (

∑kt

j=1 e
x̃⊤
t,jγ x̃t,j)(

∑kt

j=1 e
x̃⊤
t,jγ x̃Tt,j)

(1 +
∑kt

j=1 e
x̃⊤
t,jγ)2

=

kt∑
j=1

qt,j(γ, p⃗t)x̃t,j x̃
T
t,j −

kt∑
j=1

kt∑
i=1

qt,j(γ, p⃗t)qt,i(γ, p⃗t)x̃t,j x̃
T
t,i. (15)

Lemma B.5. All following properties hold for all t ≥ 0 and γ ∈ Rd:

1. ∇2ℓt,1(γ) ⪰ κ1
∑kt

j=1 x̃t,j x̃
T
t,j ,

2. ∇2ℓt,1(γ) ⪯ 2
∑kt

j=1 x̃t,j x̃
T
t,j ,

3. ∇ℓt,1(γ)∇ℓt,1(γ)T ⪯ 2
∑kt

j=1 x̃t,j x̃
T
t,j ,

4. ∇ℓt,1(γ)T∇ℓt,1(γ) ≤ 2
∑kt

j=1 x̃
T
t,j x̃t,j .

Proof. First note that for all i, j ∈ [kt]:

(x̃t,j − x̃t,i)
T (x̃t,j − x̃t,i) = x̃t,j x̃

T
t,j + x̃t,ix̃

T
t,i − x̃t,j x̃

T
t,i − x̃t,ix̃

T
t,j ⪰ 0

(x̃t,j + x̃t,i)
T (x̃t,j + x̃t,i) = x̃t,j x̃

T
t,j + x̃t,ix̃

T
t,i + x̃t,j x̃

T
t,i + x̃t,ix̃

T
t,j ⪰ 0

Hence for all α ∈ R,

|α|(x̃t,j x̃Tt,j + x̃t,ix̃
T
t,i) ⪰ α(x̃t,j x̃

T
t,i + x̃t,ix̃

T
t,j). (16)
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Similarly, for all α ∈ R,

|α|(x̃Tt,j x̃t,j + x̃Tt,ix̃t,i) ≥ α(x̃Tt,j x̃t,i + x̃Tt,ix̃t,j). (17)

It follows that:

1. ∇2ℓt,1(γ) =

kt∑
j=1

qt,j(γ, p⃗t)x̃t,j x̃
T
t,j −

kt∑
j=1

kt∑
i=1

qt,j(γ, p⃗t)qt,i(γ, p⃗t)x̃t,j x̃
T
t,i

=

kt∑
j=1

qt,j(γ, p⃗t)x̃t,j x̃
T
t,j −

1

2

kt∑
j=1

kt∑
i=1

qt,j(γ, p⃗t)qt,i(γ, p⃗t)(x̃t,j x̃
T
t,i + x̃t,ix̃

T
t,j)

⪰
kt∑
j=1

qt,j(γ, p⃗t)x̃t,j x̃
T
t,j −

1

2

kt∑
j=1

kt∑
i=1

qt,j(γ, p⃗t)qt,i(γ, p⃗t)(x̃t,ix̃
T
t,i + x̃t,j x̃

T
t,j)

=

kt∑
j=1

qt,j(γ, p⃗t)

(
1−

kt∑
i=1

qt,j(γ, p⃗t)

)
x̃t,j x̃

T
t,j

=

kt∑
j=1

qt,j(γ, p⃗t)qt,0(γ, p⃗t)x̃t,j x̃
T
t,j

⪰ κ1

kt∑
j=1

x̃t,j x̃
T
t,j .

2. ∇2ℓt,1(γt) =

kt∑
j=1

qt,j(γ, p⃗t)x̃t,j x̃
T
t,j −

kt∑
j=1

kt∑
i=1

qt,j(γ, p⃗t)qt,i(γ, p⃗t)x̃t,j x̃
T
t,i

⪯
kt∑
j=1

qt,j(γ, p⃗t)x̃t,j x̃
T
t,j +

1

2

kt∑
j=1

kt∑
i=1

qt,j(γ, p⃗t)qt,i(γ, p⃗t)(x̃t,ix̃
T
t,i + x̃t,j x̃

T
t,j)

=

kt∑
j=1

qt,j(γ, p⃗t)

(
1 +

kt∑
i=1

qt,j(γ, p⃗t)

)
x̃t,j x̃

T
t,j

⪯ 2

kt∑
j=1

x̃t,j x̃
T
t,j .

3. ∇ℓt,1(γt)∇ℓt,1(γt)T =

kt∑
j=1

kt∑
i=1

(qt,j(γ, p⃗t)− yt,j)(qt,i(γ, p⃗t)− yt,i)x̃t,j x̃
T
t,i

=
1

2

kt∑
j=1

kt∑
i=1

(qt,j(γ, p⃗t)− yt,j)(qt,i(γ, p⃗t)− yt,i)(x̃t,j x̃
T
t,i + x̃t,ix̃

T
t,j)

⪯ 1

2

kt∑
j=1

kt∑
i=1

|qt,j(γ, p⃗t)− yt,j ||qt,i(γ, p⃗t)− yt,i|(x̃t,j x̃Tt,j + x̃t,ix̃
T
t,i)

by (16)

=

kt∑
j=1

|qt,j(γ, p⃗t)− yt,j |x̃t,j x̃Tt,j
kt∑
i=1

|qt,i(γ, p⃗t)− yt,i|

⪯ 2

kt∑
j=1

x̃t,j x̃
T
t,j ,
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where the last inequality uses that for all i ∈ [kt], |qt,i(γ, p⃗t)− yt,i| ≤ 1 and that

kt∑
i=1

|qt,i(γ, p⃗t)− yt,i| =

{∑
i∈[kt]\{it} qt,i(γ, p⃗t) + (1− qt,it(γ, p⃗t)) if it ∈ [kt]∑
i∈[kt]\{it} qt,i(γ, p⃗t) if it = 0

≤ 2.

4. Similarly,

∇ℓt,1(γt)T∇ℓt,1(γt)T =

kt∑
j=1

kt∑
i=1

(qt,j(γ, p⃗t)− yt,j)(qt,i(γ, p⃗t)− yt,i)x̃
T
t,j x̃t,i

≤ 1

2

kt∑
j=1

kt∑
i=1

|qt,j(γ, p⃗t)− yt,j ||qt,i(γ, p⃗t)− yt,i|(x̃Tt,j x̃t,j + x̃Tt,ix̃t,i)

by (17)

≤ 2

kt∑
j=1

x̃t,j x̃
T
t,j .

B.3 Proof of Lemma 2.8

In order to prove Lemma 2.8, we will combine the lower and upper bounds on
∑T

t=1[ℓt,1(γt) −
ℓt,1(γ

∗)] provided in the two following lemmas. The proofs are deferred to Appendices B.4 and B.5,
respectively.

Lemma B.6 (Upper bound
∑T

t=1 ℓt,1(γt)−
∑T

t=1 ℓt,1(γ
∗)).

T∑
t=1

[ℓt,1(γt)− ℓt,1(γ
∗)] ≤ 2d

κ1
log

(
λT +

2TK

d

)
+ 2µW 2 − µκ1

2

T∑
t=1

kt∑
j=1

((γt − γ∗)T x̃t,j)
2

Lemma B.7 (Lower bound
∑T

t=1 ℓt,1(γt)−
∑T

t=1 ℓt,1(γ
∗)).

P
( T∑

t=1

[ℓt,1(γt)− ℓt,1(γ
∗)] ≤− 2

√√√√2 log T

T∑
t=1

kt∑
j=1

((γt − γ∗)T x̃t,j)2

−KW (1 + pmax)
(

4 log(T )
3 + 1

))
≤ ⌈2 log2(T ) + 1⌉

T 2
. (18)

We now prove the following expanded version of Lemma 2.8.

Lemma 2.8 1. With probability at least 1− log2(T )
T 2 ,

T∑
t=1

kt∑
j=1

(x⊤t,j(θt − θ∗)− x⊤t,j(αt − α∗)pt,j)
2 ≤ C(T ) := max

{
128 log(T )

κ21µ
2

,

4

µκ1

(
2d

κ1
log

(
λT +

2TK

d

)
+ 2µW 2 +KW (1 + pmax)

(
4 log(T )

3 + 1
))}

Using that λt = d log(t) for all t ≥ 2, we get that for a constant C̃ depending only on W,L,K:

T∑
t=1

kt∑
j=1

(x⊤t,j(θt − θ∗)− x⊤t,j(αt − α∗)pt,j)
2 ≤ C̃d log(T ).
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Proof. To ease the presentation, let

B(T ) :=
2d

κ1
log

(
λT +

2TK

d

)
+ 2µW 2 +KW (1 + pmax)

(
4 log(T )

3 + 1
)

We obtain by combining Lemmas B.6 and B.7 that with probability at least 1− ⌈log(T )⌉
T 2 :

µκ1
2

T∑
t=1

kt∑
j=1

((γt − γ∗)T x̃t,j)
2 − 2

√
2 log T

{ T∑
t=1

kt∑
j=1

((γt − γ∗)T x̃t,j)
2
}1/2

≤ B(T ) (19)

Now let A =
∑T

t=1

∑kt

j=1((γt − γ∗)T x̃t,j)
2 and consider the two following cases:

• Suppose 1
2
µκ1A

2 ≥ 2
√
2 log(T )

√
A. Then from equation (19), we obtain that: A ≤ 4B(T )

µκ1
.

• Else, 1
2
µκ1A

2 < 2
√
2 log(T )

√
A hence by reorganizing the terms, we get A ≤ 128 log(T )

κ2
1µ

2 .

The proof is complete.

B.4 Proof of Lemma B.6

Proof. Consider γ̂t+1 = γt − 1
µH

−1
T+1∇ℓt,1(γt), so that γt+1 is the projection of γ̂t+1 in the norm

induced by Ht.

By doing a Taylor expansion of ℓt,1, we obtain:

ℓt,1(γt)− ℓt,1(γ
∗) = ∇ℓt,1(γt)T (γt − γ∗)

− (γt − γ∗)T
∫ 1

0

∫ 1

0

z∇2ℓt,1(γt + zw(γ∗ − γt))dzdw(γt − γ∗)

Using Proposition A.4 and the definition of µ = 1
2(1+(1+pmax)2

√
6KW )

, this leads to:

ℓt,1(γt)− ℓt,1(γ
∗) ≤ ∇ℓt,1(γt)T (γt − γ∗)− µ(γt − γ∗)T∇2ℓt,1(γt)(γt − γ∗) (20)

Note that in the classical Online Newton Step analysis, a similar equation as the above equation is
used, but with the potentially exponentially small exp-concavity parameter β instead of µ. The next
part of the proof globally follows the ONS analysis in [20]. We include it here for completeness.

By definition of γ̂t+1, we can write the following two equalities:

γ̂t+1 − γ∗ = γt − γ∗ − 1
µH

−1
t ∇ℓt,1(γt)

and
Ht(γ̂t+1 − γ∗) = Ht(γt − γ∗)− 1

µ∇ℓt,1(γt).
Hence, by multiplying the transpose of the first inequality with the second inequality, we obtain

(γ̂t+1 − γ∗)THt(γ̂t+1 − γ∗)

= (γt − γ∗)THt(γt − γ∗)− 2

µ
∇ℓTt,1(γt)(γt − γ∗) +

1

µ2
∇ℓt,1(γt)TH−1

t ∇ℓt,1(γt)

Since γt+1 is the projection of γ̂t+1 on Bt+1 relatively to the norm induced by Ht, we have the
following inequality:

(γ̂t+1 − γ∗)THt(γ̂t+1 − γ∗)T ≥ (γt+1 − γ∗)THt(γt+1 − γ∗) (21)

Combining equations (??) and (21) gives the following bound on ∇ℓt,1(γt)T (γt − γ∗):

∇ℓt,1(γt)T (γt − γ∗)

≤ 1

2µ
∇ℓt,1(γt)TH−1

t ∇ℓt,1(γt) +
µ

2
(γt − γ∗)Ht(γt − γ∗)− µ

2
(γt+1 − γ∗)THt(γt+1 − γ∗)
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Hence, summing from t = 1 to T :

T∑
t=1

∇ℓt,1(γt)T (γt − γ∗) ≤ 1

2µ

T∑
t=1

∇ℓt,1(γt)TH−1
t ∇ℓt,1(γt)

+
µ

2
(γ1 − γ∗)H1(γ1 − γ∗)− µ

2
(γT+1 − γ∗)HT+1(γT+1 − γ∗)

+
µ

2

T∑
t=2

(γt − γ∗)T (Ht −Ht−1)(γt − γ∗)

≤ 1

2µ

T∑
t=1

∇ℓt,1(γt)TH−1
t ∇ℓt,1(γt)

+
µ

2
(γ1 − γ∗)T (H1 −∇2l1(γ1))(γ1 − γ∗)

+
µ

2

T∑
t=1

(γt − γ∗)T (Ht −Ht−1)(γt − γ∗)

In the last part of the proof, we bring out more specifically the sum
∑T

t=1

∑kt

j=1((γt − γ∗)T x̃t,j)
2.

Since Ht − Ht−1 = ∇2ℓt,1(γt), we obtain, by combining the above inequality with (20) and by
using the lower bound on ∇ℓ2t,1 provided in Lemma B.5:

T∑
t=1

ℓt,1(γt)− ℓt,1(γ
∗)

≤
T∑

t=1

∇ℓt,1(γt)T (γt − γ∗)− µ

T∑
t=1

(γt − γ∗)T∇2ℓt,1(γt)(γt − γ∗)

≤ 1

2µ

T∑
t=1

∇ℓt,1(γt)TH−1
t ∇ℓt,1(γt) +

µ

2
(γ1 − γ∗)T (H1 −∇2l1(γ1))(γ1 − γ∗)

− µ

2

T∑
t=1

(γt − γ∗)T∇2ℓt,1(γt)(γt − γ∗)

≤ 1

2µ

T∑
t=1

∇ℓt,1(γt)TH−1
t ∇ℓt,1(γt) +

µ

2
(γ1 − γ∗)T (H1 −∇2l1(γ1))(γ1 − γ∗)

− µκ1
2

T∑
t=1

kt∑
j=1

((γt − γ∗)T x̃t,j)
2

Applying Lemma B.8 (stated below) and noting that µ
2 (γ1 − γ∗)T (H1 − ∇2l1(γ1))(γ1 − γ∗) =

µ
2 (γ1 − γ∗)T (λ1Id)(γ1 − γ∗) = µλ1∥γ1−γ∗∥2

2 ≤ µλ1(2W )2

2 = 2µW 2 concludes the proof of the
lemma.

Lemma B.8.

T∑
t=1

∇ℓt,1(γt)TH−1
t ∇ℓt,1(γt) ≤

2d

κ1
log

(
λT +

2TK

d

)
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Proof. By definition of Ht:

Ht+1 = Ht +∇2ℓt+1,1(γt+1) + (λt+1 − λt)Id

⪰ Ht + κ1

kt+1∑
j=1

x̃t+1,j x̃
T
t+1,j (by Lemma B.5 and using λt+1 ≥ λt)

⪰ Ht +
κ1
2
∇ℓt+1,1(γt+1)∇ℓt+1,1(γt+1)

T . (by Lemma B.5)

The proof now globally uses similar techniques as in the proof of Lemma 11.11 in [10]. From above,
we obtain

det(Ht+1) · det
(
Id −

κ1
2
H

−1/2
t+1 ∇ℓt+1,1(γt+1)∇ℓt+1,1(γt+1)

TH
−1/2
t+1

)
≥ det(Ht). (22)

Using that for all z ∈ Rd, det(1 − zzT ) = 1 − zT z (see [10], Lemma 11.11), and that Ht+1 is
symmetric, we get

det
(
Id −

κ1
2
H

−1/2
t+1 ∇ℓt+1,1(γt+1)∇ℓt+1,1(γt+1)

TH
−1/2
t+1

)
= det

(
Id −

(√
κ1
2
H

−1/2
t+1 ∇ℓt+1,1(γt+1)

)(√
κ1
2
H

−1/2
t+1 ∇ℓt+1,1(γt+1)

)T
)

= 1− κ1
2
∇ℓt+1,1(γt+1)

TH−1
t+1∇ℓt+1,1(γt+1).

Hence, combining this with (22) and reorganizing the terms, we obtain

κ1
2
∇ℓt+1,1(γt+1)

TH−1
t+1∇ℓt+1,1(γt+1) ≤ 1− det(Ht)

det(Ht+1)
.

Summing from t = 0 to T − 1 and translating the indices gives:

κ1
2

T∑
t=1

∇ℓt,1(γt)TH−1
t ∇ℓt,1(γt) ≤

T∑
t=1

(
1− det(Ht−1)

det(Ht)

)

≤
T∑

t=1

log

(
det(Ht)

det(Ht−1)

)
(1− x ≤ − log(x) for all x > 0)

= log

(
det(HT )

det(λ1Id)

)
. (23)

We now bound log(det(HT )). First note that for all t ∈ [T ], we have by Lemma B.5 that ∇2ℓt,1(γt) ⪯
2
∑kt

j=1 x̃t,j x̃
T
t,j . Since ||xt,j ||2 ≤ 1 for all t ∈ [T ], j ∈ [kt], it follows that:

trace(HT ) = trace

(
λT Id +

T∑
t=1

∇2ℓt,1(γt)

)

≤ trace (λT Id) + 2

T∑
t=1

kt∑
j=1

trace
(
x̃t,j x̃

T
t,j

)
= trace (λT Id) + 2

T∑
t=1

kt∑
j=1

trace
(
x̃Tt,j x̃t,j

)
≤ dλT + 2TK.

Hence, using the determinant-trace inequality det(HT ) ≤
(

trace(HT )
d

)d
(see [10]) and λ1 = 1, we

obtain that:

log

(
det(HT )

det(λ1Id)

)
= log

(
det(HT )

λd1

)
≤ d log

(
λT +

2TK

d

)
(24)

Putting (23) and (24) together concludes the proof of the lemma.
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B.5 Proof of Lemma B.7

The proof relies on a Bernstein type inequality for martingales difference sequences from [19]:
Proposition B.9. ([19], Th 1.6) Let X1, ..., Xn be a bounded martingale difference sequence with
respect to the filtration (Fi)1≤i≤n such that |Xi| ≤M for all i.

Let Σ2
n denote the sum of the conditional variances.

Σ2
n =

n∑
i=1

E(X2
i |Fi−1)

Then,

P(
n∑

i=1

Xi ≥ ϵ,Σ2
n ≤ k) ≤ exp

(
−ϵ2

2(k + ϵM
3 )

)
.

We are now ready to prove Lemma B.7.

Proof. By convexity of ℓt,1:

ℓt,1(γ
∗)− ℓt,1(γt) ≤ ∇ℓt,1(γ∗)T (γ∗ − γt),

Hence, letting Dt = ∇ℓt,1(γ∗)T (γ∗ − γt), we have

P
( T∑

t=1

ℓt,1(γt)−
T∑

t=1

ℓt,1(γ
∗) ≤ −2

√√√√2 log T

T∑
t=1

kt∑
j=1

((γt − γ∗)T x̃t,j)2 −
4B log(T )

3
−B

)

≤ P
( T∑

t=1

Dt ≥ 2

√√√√2 log T

T∑
t=1

kt∑
j=1

((γt − γ∗)T x̃t,j)2 +
4B log(T )

3
+B

)
. (25)

Let Ft be the filtration generated by {X1, ∆⃗p1, z1, ..., Xt, ∆⃗pt, zt, Xt+1, ⃗∆pt+1}. Since γt, p⃗t are
Ft−1 measurable, and using the expression of ∇ℓt in (14), and the fact that for all j ∈ [kt], E[yt,j ] =
qt,j(γ

∗, p⃗t), we have that:

E(Dt|Ft−1) = E

 kt∑
j=1

(qt,j(γ
∗, p⃗t)− yt,j)x̃t,j

∣∣∣∣∣Ft−1

T

(γ∗ − γt) = 0

Therefore, {Dt}Tt=1 is a martingale difference sequence adapted to the filtration Ft.

Moreover, using the Cauchy-Schwartz inequality, we have that Dt is uniformly bounded: |Dt| =
|
∑kt

j=1(qt,j(γ
∗, p⃗t) − yt,j)x̃

T
t,j(γt − γ∗)| ≤

∑kt

j=1 |(γt − γ∗)T x̃t,j | ≤ KW (1 + pmax). We let
B = KW (1 + pmax).

Now, consider Σ2
n the sum of the conditional variances:

Σ2
t =

t∑
i=1

E(D2
i |Fi−1).

By Lemma B.5, we can bound Σ2
t as follows:

Σ2
t =

t∑
s=1

(γs − γ∗)T∇ℓs,1(γ∗)∇ℓs,1(γ∗)T (γs − γ∗) ≤
t∑

s=1

2

ks∑
j=1

((γs − γ∗)T x̃s,j)
2 ≡ At.

Note that we cannot directly apply here the Bernstein inequality from Proposition B.9 with k = At

since At is also a random variable. We address this issue as in [43], making use of a peeling process.
First note that by using the Cauchy-Scwhartz inequality, we have At =

∑t
s=1 2

∑ks

j=1((γs −
γ∗)T x̃s,j)

2 ≤ 2KTW 2(1 + pmax)
2 ≤ 2B2T .

Now, consider two cases:
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• AT < B2

T . Then, using the Cauchy-Schwartz inequality, we get

T∑
t=1

Dt ≤

√√√√T

T∑
t=1

D2
t ≤

√√√√T (

T∑
t=1

2

kt∑
j=1

((γt − γ∗)T x̃t,j)2 <

√
TB2

T
= B.

Thus,

P
( T∑

t=1

Dt ≥
√
2AT log(T 2) +

4B log(T )

3
+B

∣∣∣∣∣AT <
B2

T

)
= 0.

• AT ≥ B2

T . Then, since by definition of B and Σ2
T , we always have the upper bounds

AT ≤ 2B2T and Σ2
T ≤ AT , we have

P

(
T∑

t=1

Dt ≥
√
2AT log(T 2) +

2B

3
log(T 2)

∣∣∣∣∣AT ≥ B2

T

)

= P

(
T∑

t=1

Dt ≥
√
2AT log(T 2) +

2B

3
log(T 2),Σ2

T ≤ AT ,
B2

T
≤ AT ≤ 2B2T

)

≤
m∑
i=1

P

(
T∑

t=1

Dt ≥
√

2B22ilog(T 2)

T
+

2B

3
log(T 2),Σ2

T ≤ AT ,
B2

T
2i−1 ≤ AT ≤ B2

T
2i

)

≤
m∑
i=1

P

(
T∑

t=1

Dt ≥
√

2B22ilog(T 2)

T
+

2B

3
log(T 2),Σ2

T ≤ B2

T
2i

)
≤ me−log(T 2)

with m = ⌈log2(T 2)⌉+ 1. The last inequality follows from the Bernstein’s inequality for
martingales (Proposition B.9) with k = B2

T 2i and ϵ =
√
2k log(T 2) + 2B log(T 2)

3 .

Hence, combining this with (25) we obtain:

P
( T∑

t=1

ℓt,1(γt)−
T∑

t=1

ℓt,1(γ
∗) ≤ −2

√√√√2 log T

T∑
t=1

kt∑
j=1

((γt − γ∗)T x̃t,j)2 −
4B log(T )

3
−B

)

≤ P
( T∑

t=1

Dt ≥
√
2AT log(T 2) +

4B log(T )

3
+B

)

≤ P
( T∑

t=1

Dt ≥
√
2AT log(T 2) +

4B log(T )

3
+B

∣∣∣∣∣AT ≥ B2

T

)
· P(AT ≥ B2

T
) + 0

≤ ⌈log2(T 2)⌉+ 1

T 2
. (26)

B.6 Proof of Lemmas B.2

Proof. Remember that the myopic prices are set as follows: for all t ≥ 1, j ∈ [kt], g(Xtαt, Xtθt)j =
1

xt,j ,⊤αt
+B0

t , where B0
t is the unique fixed of the following equation:

B =

kt∑
j=1

1

x⊤t,jαt
e−(1+x⊤

t,jαtB)ex
⊤
t,jθt . (27)

Define the functions f1(B) :=
∑kt

j=1
1

x⊤
t,jαt

e−(1+x⊤
t,jαtB)ex

⊤
t,jθt and f2(B) := K 1

Le
−(1+LB)+W .
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By Assumptions 2.2 and 2.3, we have that for for all B ≥ 0, f1(B) ≤ K 1
Le

−(1+LB)+W = f2(B).
Now, let Bu be the solution of the following equation:

B = f2(B).

Since both f1 and f2 are strictly decreasing, we have that for all B > Bu,

f1(B) ≤ f2(B) < f2(B
u) = Bu < B,

thus B is not solution of (27). Hence, we deduce that B0
t ≤ Bu. It follows that the myopic prices are

bounded above by 1
L +Bu.

Next, recall that Bu satisfies

Bu = K
1

L
e−(1+LBu)+W ,

which, by reorganizing the terms, is equivalent to

BueLBu

= K
1

L
e−1+W .

Since for B = Kmax(W, 1)/L, we have that BeLB = K max(W,1)
L eK max(W,1) ≥ K 1

Le
−1+W

and since B 7−→ BeLB is nondecreasing, we get that Bu ≤ Kmax(W, 1)/L. Hence for all
t ≥ 1, j ∈ [kt], g(Xtαt, Xtθt)j ≤ 1

L + Bu ≤ 1+K max(W,1)
L . Using that |∆pt,j | ≤ 1

W , we deduce
that pt,j = g(Xtαt, Xtθt)j +∆pt,j ≤ 1+K max(W,1)

L + 1
W .

C MNL bandits technical proofs

C.1 Proof of Theorem 3.4

Before presenting the proof of Theorem 3.4, we need to introduce a few useful lemmas, whose proofs
can be found in Appendix C.2. Lemma C.1 is the analogue of the elliptical potential lemma appearing
in [1], but uses the local curvature information provided by the terms {qt,j(St, θ

∗)qt,0(St, θ
∗)} to

obtain an upper bound that no longer depends on the exponential constant 1/κ2. In particular, the
proof uses the self-concordance-like property of the log-loss.
Lemma C.1.

T∑
t=1

∑
j∈St

qt,j(St, θ
∗)qt,0(St, θ

∗)||xt,j ||2Ht(θ∗)−1 ≤ 2dK log

(
λT+1 +

2TK

d

)
and

T∑
t=1

∑
j∈St

||xt,j ||2Ht(θ∗)−1 ≤ 2d(K + 1
κ2
) log

(
λT+1 +

2TK

d

)
Lemma C.2.

T∑
t=1

∑
j∈St

qt,j(St, θ
∗)qt,0(St, θ

∗) ≤
T∑

t=1

κ∗2,t +R(T )

Note that we always have
∑T

t=1

∑
j∈St

qt,j(St, θ
∗)qt,0(St, θ

∗) ≤ T . In Lemma C.2 we give a tighter
upper bound on this sum when the instance is further away from linearity (i.e., when the parameters
{κ∗2,t}Tt=1 are small).

Lemma C.3. Define Q : RK −→ R, such that for all u = {u1 . . . , uK} ∈ Rn, Q(u) =∑n
i=1

eui

1+
∑n

j=1 euj . Then for all i, j ∈ [K]× [K],∣∣∣ ∂2Q
∂i∂j

∣∣∣ ≤ 5.

Lemma C.4. For all θ1, θ2 ∈ B(0,W )

||θ1 − θ2||Ht(θ1) ≤ (1 +
√
6KW )||gt(θ1)− gt(θ2)||H−1

t (θ1)
.
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We now give the proof of Theorem 3.4.

Proof. Set δ = 1
K2T 2 and let Aδ denote the event that θ∗ ∈ Ct(δ) for all t ∈ [T ]. We know from

Proposition 3.3 that Aδ occurs with probability at least 1− δ. We first assume that Aδ is satisfied.

Let θ̃∗ = (θ∗, ..., θ∗) ∈ Rd×N . Since θ∗ ∈ Ct(δ), we have by definition of θ̃t,j that for all
j ∈ [kt], x⊤t,j θ̃t,j ≥ x⊤t,jθ

∗, from which we deduce r̃t(S∗
t , θ̃t) ≥ r̃t(S

∗
t , θ̃

∗). Then, by definition of
Algorithm 2, the assortment St offered at time t satisfies r̃t(St, θ̃t) ≥ r̃t(S

∗
t , θ̃t) for all t. Hence

we obtain
∑T

t=1

∑
j∈St

q̃t,j(St, θ̃t) = r̃t(St, θ̃t) ≥ r̃t(S
∗
t , θ̃

∗) =
∑T

t=1

∑
j∈S∗

t
q̃t,j(S

∗
t , θ̃

∗) =∑T
t=1

∑
j∈S∗

t
qt,j(S

∗
t , θ

∗), where the last inequality follows by noting that q̃t,j(S∗
t , θ̃

∗) =

qt,j(S
∗
t , θ

∗) for all t ≥ 1, j ∈ [kt]. Hence, by noting that for all t ≥ 1, j ∈ [kt], we also have
that q̃t,j(St, θ̃

∗) = qt,j(St, θ
∗), we can bound the regret as follows:

R(T ) =

T∑
t=1

∑
j∈S∗

t

qt,j(S
∗
t , θ

∗)−
∑
j∈St

qt,j(St, θ
∗)


≤

T∑
t=1

∑
j∈St

q̃t,j(St, θ̃t)−
∑
j∈St

q̃t,j(St, θ̃
∗)

 .
Now, define Q : RK −→ R, such that for all u = {u1 . . . , uK} ∈ RK , Q(u) =

∑K
i=1

eui

1+
∑K

j=1 euj
.

Noting that St always contain K elements, we write St = {i1, . . . , iK} where for all j , ij ∈ [N ].
Finally, for all t ∈ [T ], we let ut = (x⊤t,i1θt,1, . . . , x

T
t,iK

θt,K)T and u∗t = (x⊤t,i1θ
∗, ..., x⊤t,iKθ

∗)T .

We obtain, by a second order Taylor expansion for all t ≥ 1, that for some convex combination ūt of
ut and u∗t , we have:

T∑
t=1

∑
j∈St

q̃t,j(St, θ̃t)−
∑
j∈St

q̃t,j(St, θ̃
∗)


=

T∑
t=1

Q(ut)−Q(u∗t )

=

T∑
t=1

∇Q(u∗t )
T (ut − u∗t ) +

1

2

T∑
t=1

(ut − u∗T )
⊤∇2Qt(ūt)(ut − u∗T )

=

T∑
t=1

∇Q(u∗t )
T (ut − u∗t ) +R2(T ), (28)

where R2(T ) is a second order term that we will explicit later. Now,
T∑

t=1

∇Q(u∗t )
T (ut − u∗t )

=

T∑
t=1

∑
j∈St

e
x⊤
t,jθ

∗
(uj−u∗

j )

1+
∑

j∈St
e
x⊤
t,j

θ∗ −
∑

j∈St
(e

x⊤
t,jθ

∗ ∑
i∈St

e
x⊤
t,iθ

∗
(uj−u∗

j ))(
1+

∑
j∈St

e
x⊤
t,j

θ∗
)2


=

T∑
t=1

∑
j∈St

qt,j(St, θ
∗)x⊤t,j(θt,j − θ∗)−

∑
j∈St

∑
i∈St

qt,j(St, θ
∗)qt,i(St, θ

∗)x⊤t,i(θt,i − θ∗)


=

T∑
t=1

∑
j∈St

qt,j(St, θ
∗)

(
1−

∑
i∈St

qt,i(St, θ
∗)

)
x⊤t,j(θt,j − θ∗)


=

T∑
t=1

∑
j∈St

qt,j(St, θ
∗)qt,0(St, θ

∗)x⊤t,j(θt,j − θ∗)
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≤
T∑

t=1

∑
j∈St

qt,j(St, θ
∗)qt,0(St, θ

∗)||xt,j ||Ht(θ∗)−1 ||θt,j − θ∗||Ht(θ∗)

(a)

≤ (1 +
√
6KW )

T∑
t=1

γt(δ)
∑
j∈St

qt,j(St, θ
∗)qt,0(St, θ

∗)||xt,j ||Ht(θ∗)−1

(b)

≤ (1 +
√
6KW )γ̄T (δ)

√√√√ T∑
t=1

∑
j∈St

qt,j(St, θ∗)qt,0(St, θ∗)

·

√√√√ T∑
t=1

∑
j∈St

qt,j(St, θ∗)qt,0(St, θ∗)||xt,j ||2Ht(θ∗)−1 , (29)

where γ̄T (δ) := maxt∈[T ] γt(δ). Since θ̃t,j ∈ Ct(δ) for all t ≥ 1, inequality (a) is a consequence of
Lemma C.4 and the assumption that Aδ is satisfied. Inequality (b) results from the Cauchy-Schwartz
inequality.

Noting that, since δ = 1
K2T 2 , we have that for some constant C which depends only polynomially on

W and does not depend on T, d,K, γ̄T (δ) ≤ C
√
d log(KT ). Thus, by combining Lemmas C.1 and

C.2 with inequality (29), we get that for some constant C1 which depends only polynomially on W
and does not depend on T, d,K:

T∑
t=1

∇Q(u∗t )
T (ut − u∗t ) ≤ C1Kd log(KT )


√√√√ T∑

t=1

κ∗2,t +R(T )


≤ C1Kd log(KT )


√√√√ T∑

t=1

κ∗2,t +
√
R(T )

 (30)

We now provide a crude upper bound on the second order term R2(T ).

R2(T ) =
1

2

T∑
t=1

(ut − u∗T )
⊤∇2Q(ūt)(ut − u∗T )

≤ 5

2

T∑
t=1

K∑
j=1

K∑
i=1

x⊤t,j(θ̃t,j − θ∗)x⊤t,i(θ̃t,i − θ∗)

≤ 5

2

T∑
t=1

1

2

K∑
j=1

K∑
i=1

[(x⊤t,j(θ̃t,j − θ∗))2 + (x⊤t,i(θ̃t,i − θ∗))2]

=
5

2
K

T∑
t=1

K∑
j=1

(x⊤t,j(θ̃t,j − θ∗))2

≤ 5

2
K

T∑
t=1

K∑
j=1

||xt,j ||2Ht(θ∗)−1 ||θ̃t,j − θ∗||2Ht(θ∗)

≤ 5

2
Kγ̄T (δ)

2(1 +
√
6KW )22d(K + 1

κ2
) log

(
λT+1 +

2TK

d

)
(31)

where the first inequality results from Lemma C.3 and the last one from Lemmas C.1 and C.4 and the
fact that θ̃t,j ∈ Ct(δ) for all j ∈ [K].

Using again that γ̄T (δ) ≤ C
√
d log(KT ), we obtain that for some constant C2 which depends only

polynomially on W and does not depend on T, d,K:

R2(T ) ≤
C2d

2K3

κ2
log(KT )2
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Coming back to equation (28) and using the upper bounds given by (30) and (31), we obtain:

R(T )− C1Kd log(KT )
√
R(T ) ≤ C2d

2K3

κ2
log(KT )2 + C1Kd log(KT )


√√√√ T∑

t=1

κ∗2,t

 .

Consider the two following cases:

• C1Kd log(KT )
√
R(T ) ≤ R(T )

2 .

Then R(T ) ≤ 2

(
C2d

2K3

κ2
log(KT )2 + C1Kd log(KT )

(√∑T
t=1 κ

∗
2,t

))

• Otherwise, C1Kd log(KT ) ≥
√

R(T )

2 , hence R(T ) ≤ 4K2C2
1d

2 log(KT )2.

Hence,

R(T ) ≤ max

 2C2d
2K3

κ2
log(KT )2 + 2C1Kd log(KT )


√√√√ T∑

t=1

κ∗2,t

 , 4K2C2
1d

2 log(KT )2

 .

To finish the proof, we consider the case where Aδ is not satisfied. In this case, R(T ) is still upper
bounded by KT .

Hence, using that δ = 1
K2T 2 and by using the law of total probabilities, we conclude that there are

some constants C̃1, C̃2 which depends only polynomially on W and do not depend on T, d,K such
that:

R(T ) ≤ C̃1Kd log(KT )


√√√√ T∑

t=1

κ∗2,t

+
C̃2d

2K3

κ2
log(KT )2.

C.2 Proofs of the main lemmas

Proof of Lemma C.1. The proof is similar in spirit to the proof of Lemma B.8 and once again is
inspired by the proof of the elliptical potential lemma in [1], while incorporating the local curvature
information given by the terms {qt,j(St, θ

∗)qt,0(St, θ
∗)}.

Ht(θ
∗) = Ht−1(θ

∗) +
∑
i∈St

qt,i(St, θ
∗)xt,ix

T
t,i

−
∑
i∈St

∑
j∈St

qt,i(St, θ
∗)qt,j(St, θ

∗)xt,ix
T
t,j + (λt − λt−1)Id

⪰ Ht−1(θ
∗) +

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)xt,ix
T
t,i, (32)

where we used in the last inequality that λt ≥ λt−1 and a similar argument as used before. Hence we
obtain that

det(Ht(θ
∗)) = det(Ht−1(θ

∗))

(
1 +

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)∥xt,i∥2Ht(θ∗)−1

)
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Taking the log on both sides and summing from t = 1 to T , we get:
T∑

t=1

log

(
1 +

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)∥xt,i∥2Ht(θ∗)−1

)

≤
T∑

t=1

log(det(Ht(θ
∗)))− log(det(Ht−1(θ

∗)))

= log

(
det(HT+1(θ

∗))

det(H1(θ∗))

)
= log(det(HT+1(θ

∗))) (λ1 = 1))

≤ log

(
(trace(HT+1))

d

d

)
(determinant-trace inequality (see [10]))

≤ d log

(
λT+1 +

2TK

d

)
. (similarly as in C.1)

Since

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)∥xt,i∥2Ht(θ∗)−1

≤ 1

λmin(Ht(θ∗))

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)∥xt,i∥22 ≤ K
λ1

= K,

we get:
T∑

t=1

log

(
1 +

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)∥xt,i∥2Ht(θ∗)−1

)

≥
T∑

t=1

log

(
1 +

1

K

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)∥xt,i∥2Ht(θ∗)−1

)

≥
T∑

t=1

1

2K

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)∥xt,i∥2Ht(θ∗)−1 (log(1 + x) ≥ x
2 for x ∈ [0, 1])

We deduce:
T∑

t=1

∑
i∈St

qt,i(St, θ
∗)qt,0(St, θ

∗)∥xt,i∥2Ht(θ∗)−1 ≤ 2dK log

(
λT+1 +

2TK

d

)
.

To show the second inequality, we come back to equation (32) and further lower bound it using the
definition of κ2:

Ht(θ
∗) ⪰ Ht−1(θ

∗) + κ2
∑
i∈St

xt,ix
T
t,i.

We then conclude on the same way:

d log

(
λT+1 +

2TK

d

)
≥

T∑
t=1

log

(
1 +

∑
i∈St

κ2∥xt,i∥2Ht(θ∗)−1

)

≥
T∑

t=1

log

(
1 +

1

max(1,Kκ2)

∑
i∈St

κ2∥xt,i∥2Ht(θ∗)−1

)

≥ 1

2(1 +Kκ2)

∑
i∈St

κ2∥xt,i∥2Ht(θ∗)−1
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Hence,

∑
i∈St

∥xt,i∥2Ht(θ∗)−1 ≤ 1

κ2
2d(1 + κ2K) log

(
λT+1 +

2TK

d

)

Proof of Lemma C.2. Since S∗
t and St both contain K elements, we write St = {i1, ..., iK},

S∗
t = {j1, ..., jK}, and we define ut := (x⊤t,i1θ

∗, ..., x⊤t,iKθ
∗)T , u∗t := (x⊤t,j1θ

∗, ..., x⊤t,jKθ
∗)T the

vectors of the true utilities from products in St and S∗
t , respectively.

Without loss of generality, we assume that the elements of ut and u∗t are sorted by ascending order.
Since S∗

t contains the products with the K top utilities, we thus have that for all i ∈ [kt], u
∗
ti ≥ uti.

Now, let:

g(u) :=

K∑
j=1

euj

(1 +
∑N

j=1 e
uj )2

Note that g(ut) =
∑

j∈St
qt,j(St, θ

∗)qt,0(St, θ
∗).

Using the mean value theorem, we obtain that:

g(ut) (33)

= g(u∗t ) +

∫ 1

0

∇g(u∗t + z(ut − u∗t ))dz
⊤(ut − u∗t )

= g(u∗t ) +

K∑
i=1

∫ 1

0

eu
∗
ti+z(uti−u∗

ti)

(1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)
)2

(
1− 2

K∑
k=1

eu
∗
tk+z(utk−u∗

tk)

1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)

)
(uti − u∗ti)dz

≤ g(u∗t ) +

K∑
i=1

∣∣∣∣∣
∫ 1

0

eu
∗
ti+z(uti−u∗

ti)

(1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)
)2

(
1− 2

K∑
k=1

eu
∗
tk+z(utk−u∗

tk)

1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)

)
(uti − u∗ti)dz

∣∣∣∣∣
(a)

≤ g(u∗t ) +

K∑
i=1

∫ 1

0

∣∣∣∣∣ eu
∗
ti+z(uti−u∗

ti)

(1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)
)2

(
1− 2

K∑
k=1

eu
∗
tk+z(utk−u∗

tk)

1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)

)∣∣∣∣∣ dz(u∗ti − uti)

(b)

≤ g(u∗t ) +

K∑
i=1

∫ 1

0

eu
∗
ti+z(uti−u∗

ti)

(1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)
)2
dz(u∗ti − uti)

(c)
= g(u∗t ) +

K∑
i=1

∫ 1

0

euti+z(u∗
ti−uti)

(1+
∑K

j=1 e
utj+z(u∗

tj
−utj))2

dz(u∗ti − uti), (34)

where inequality (a) comes from the fact that u∗ti ≥ uti for all i, (b) uses the inequality∣∣∣∣1− 2
∑K

k=1
eu

∗
tk+z(utk−u∗

tk)

1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)

∣∣∣∣ ≤ 1, and equality (c) comes from a change of variable.

We will now link this last term to the regret at time t. For u ∈ RK , recall the definition:

Q(u) :=

K∑
i=1

eui

1 +
∑K

j=1 e
uj

We can express the regret as follows:

R(T ) =

T∑
t=1

Q(u∗t )−Q(ut)
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By doing a Taylor expansion at u∗t :

R(T ) =

T∑
t=1

∫ 1

0

∇Q(ut + z(u∗t − ut))dz
⊤(u∗t − ut)

=

T∑
t=1

K∑
i=1

∫ 1

0

euti+z(u∗
ti−uti)

1+
∑K

j=1 e
utj+z(u∗

tj
−utj)

(
1−

K∑
k=1

eutk+z(u∗
tk−utk)

1+
∑K

j=1 e
utj+z(u∗

tj
−utj)

)
dz(u∗ti − uti)

=

K∑
i=1

∫ 1

0

euti+z(u∗
ti−uti)

(1+
∑K

j=1 e
utj+z(u∗

tj
−utj))2

dz(u∗ti − uti).

Noting the correspondence of this last term with the second term of (34), we can complete the proof
of the lemma as follows:
T∑

t=1

∑
j∈St

qt,j(St, θ
∗)qt,0(St, θ

∗) =

T∑
t=1

g(ut)

≤
T∑

t=1

g(u∗t ) +

T∑
t=1

K∑
i=1

∫ 1

0

eu
∗
ti+z(uti−u∗

ti)

(1+
∑K

j=1 e
u∗
tj

+z(utj−u∗
tj

)
)2
dz(u∗ti − uti)

=

T∑
t=1

g(u∗t ) +R(T )

=

T∑
t=1

∑
j∈S∗

t

qt,j(S
∗
t , θ

∗)qt,0(S
∗
t , θ

∗) +R(T )

=

T∑
t=1

κ∗2,t +R(T ). (by definition of κ∗2,t)

Proof of Lemma C.3. Let i, k ∈ [K]. We first write:

∂Q

∂i
=

eui

1 +
∑K

j=1 e
uj

−
eui(

∑K
j=1 e

uj )

(1 +
∑K

j=1 e
uj )2

.

Then,
∂2Q

∂i∂k
= − euieuk

(1 +
∑K

j=1 e
uj )2

−
[euieuk + 1i=ke

ui
∑K

j=1 e
uj ](1 +

∑K
j=1 e

uj )2 − eui(
∑K

j=1 e
uj )2euk(1 +

∑K
j=1 e

uj )

(1 +
∑K

j=1 e
uj )4

= − euieuk

(1 +
∑K

j=1 e
uj )2

−
euieuk + 1i=ke

ui
∑K

j=1 e
uj

(1 +
∑K

j=1 e
uj )2

+
2eui(

∑K
j=1 e

uj )euk

(1 +
∑K

j=1 e
uj )3

.

Thus,∣∣∣ ∂2Q
∂i∂k

∣∣∣ ≤ ∣∣∣ euieuk

(1 +
∑K

j=1 e
uj )2

∣∣∣+ ∣∣∣ euieuk

(1 +
∑K

j=1 e
uj )2

∣∣∣+ ∣∣∣ eui
∑K

j=1 e
uj

(1 +
∑K

j=1 e
uj )2

∣∣∣+ 2
∣∣∣eui(

∑K
j=1 e

uj )euk

(1 +
∑K

j=1 e
uj )3

∣∣∣
≤ 5.

Proof of Lemma C.4.

By the multivariate mean value theorem:

gt(θ1)− gt(θ2) = ∇Lλt
t (θ2)−∇Lλt

t (θ1)

=

∫ 1

0

∇2Lλt
t (θ1 + z(θ2 − θ1))dz(θ2 − θ1)
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Hence
∥gt(θ1)− gt(θ2)∥G−1

t (θ1,θ2)
= ∥θ1 − θ2∥Gt(θ1,θ2) (35)

where Gt(θ1, θ2) :=
∫ 1

0
∇2Lλt

t (θ1 + z(θ2 − θ1))dz.

Using Proposition A.5, we have that:

Gt(θ1, θ2) ⪰ 1
(1+

√
6KW )

Ht(θ1) (36)

As a result, by combining (36) and (35):

∥θ1 − θ2∥Ht(θ1) ≤ (1 +
√
6KW )1/2∥θ1 − θ2∥Gt(θ1,θ2)

= (1 +
√
6KW )1/2∥gt(θ1)− gt(θ2)∥G−1

t (θ1,θ2)

≤ (1 +
√
6KW )∥gt(θ1)− gt(θ2)∥H−1

t (θ1)
.

C.3 Construction of the confidence set

In this section, we build upon the new Bernstein-like tail inequality for self-normalized vectorial
martingales developed in [17] to derive a confidence set on θ∗.

Remember that:
Ct(δ) := {θ ∈ Θ|||gt(θ)− gt(θ̂t)||H−1

t (θ) ≤ γt(δ)}
Our objective is to prove the following proposition.
Proposition 3.3 2. Let δ ∈ (0, 1]. Then P(∀t, θ∗ ∈ Ct(δ)) ≥ 1− δ.

We start by a few technical considerations and auxiliary lemmas. The proof of this result relies on a
Bernstein concentration inequality which is a variant of the following theorem:
Theorem C.5 (Theorem 4 in [2]). Let {Ft}∞t=1 be a filtration. Let {xt}∞t=1 be a stochastic process in
B2(d) such that xt is Ft measurable. Let {εt}∞t=2 be a martingale difference sequence such that εt is
Ft−1 measurable. Furthermore, assume that conditionally on Ft we have |εt| ≤ 1 almost surely, and
note σ2

t = E
[
ε2t |Ft

]
. Let {λt}∞t=1 be a predictable sequence of non-negative scalars. For any t ≥ 1

define:

Ht =

t−1∑
s=1

σ2
sxsx

T
s + λtId, St =

t−1∑
s=1

εsxs.

Then for any δ ∈ (0, 1]:

P

(
∃t ≥ 1, ∥St∥H−1

t
≥

√
λt
2

+
2√
λt

log

(
2d det (Ht)

1
2λ−

d
2

δ

))
≤ δ.

The above Bernstein inequality is of the same flavor as Theorem 1 in [1], but is taking into account
information on the local curvature of the reward function.

In our setting, we consider:

Ht =

t−1∑
s=1

∑
i∈Ss

qs,i(Ss, θ
∗)xs,ix

T
s,i −

∑
i∈Ss

∑
j∈Ss

qs,i(Ss, θ
∗)qs,j(Ss, θ

∗)xs,ix
T
s,j

+ λtId

Ut =

t−1∑
s=1

∑
j∈Ss

εs,jxs,j

where εs,j = ys,j − qs,j(Ss, θ
∗).

Note that we cannot directly write Ht, Ut under the form required in Theorem C.5 since for all s,
the variables {εs,j}j∈Ss

are correlated. We show below that we can still prove similar concentration
guarantees on ∥Ut∥H−1

t
.
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Theorem C.6. for any δ ∈ (0, 1]:

P

(
∃t ≥ 1, ∥Ut∥H−1

t
≥

√
λt
4

+
4√
λt

log

(
2d det (Ht)

1
2λ

− d
2

t

δ

))
≤ δ.

Note that this expression is almost identical to the one in Theorem C.5 except for some minor constant
modification.

The proof follows the same line as the proof of Theorem 4 in [2], but the analysis differs because
of the non independence of the variables {εs,j}j∈Ss . In particular, we analyse the behavior of the
global variable zs :=

∑
j∈Ss

εs,jξ
⊤xs,j .

As in [2], we consider the non regularized hessian

H̄t =

t−1∑
s=1

∑
i∈Ss

qs,i(Ss, θ
∗)xs,ix

T
s,i −

∑
i∈Ss

∑
j∈Ss

qs,i(Ss, θ
∗)qs,j(Ss, θ

∗)xs,ix
T
s,j


and for all ξ ∈ B(0, 1/2), we let:

M0(ξ) = 1 and Mt(ξ) = exp(ξUt − ∥ξ∥2H̄t
).

Note that we define only Mt(ξ) for ξ ∈ B(0, 1/2) whereas ξ ∈ B(0, 1) in [17] and [2]. In the
following, we consider the filtration Ft engendered by {{x⃗s, ϵ⃗s}t−1

s=1, x⃗t}. The main ingredient of the
proof is to show that relatively to Ft, Mt(ξ) is still a super martingale. The rest of the proof follows
immediately from [17] and [2].

To bound E
[
exp(ξTUt)|Ft−1

]
, we first state the following lemma, whose proof can be found in [2]:

Lemma C.7. Let ε be a centered random variable of variance σ2 and such that |ε| ≤ 1 almost surely.
Then for all λ ∈ [−1, 1]:

E [exp(λϵ)] ≤ 1 + λ2σ2.

Lemma C.8. For all ξ ∈ B(0, 1/2), {Mt(ξ)}∞t=0 is a nonnegative super martingale.

Proof. Note that for all s ≥ 1, there is a single index i ∈ Ss ∪ {0} for which ys,i = 1, and ys,j = 0
for all j ∈ Ss ∪ {0} \ {i}. Besides, we have P(ys,i = 1) = qs,i(Ss, θ

∗). Hence, conditional on Fs,
the variance of ξ⊤zs can be expressed as:

σ2(ξ⊤zs|Fs)

= E


∑

j∈Ss

(ys,j − qs,j(Ss, θ
∗))ξ⊤xs,j

∣∣∣Fs

2
−

E

∑
j∈Ss

(ys,j − qs,j(Ss, θ
∗))ξ⊤xs,j

∣∣∣Fs

2

= E


∑

j∈Ss

(ys,j − qs,j(Ss, θ
∗))ξ⊤xs,j

∣∣∣Fs

2


= E

∑
j∈Ss

∑
i∈Ss

(ys,jξ
⊤xs,j)(ys,iξ

⊤xs,i)
∣∣∣Fs


− 2E

∑
j∈Ss

ys,jξ
⊤xs,j

∣∣∣Fs

 ·

∑
j∈Ss

ξ⊤xs,jqs,j(Ss, θ
∗)

+

∑
j∈Ss

ξ⊤xs,jqs,j(Ss, θ
∗)

2

= E

∑
j∈Ss

ys,j(ξ
⊤xs,j)

2
∣∣∣Fs

− 2

∑
j∈Ss

ξ⊤xs,jqs,j(Ss, θ
∗)

2

+

∑
j∈Ss

ξ⊤xs,jqs,j(Ss, θ
∗)

2

=
∑
j∈Ss

(ξ⊤xs,j)
2qs,j(Ss, θ

∗)−

∑
j∈Ss

ξ⊤xs,jqs,j(Ss, θ
∗)

2

. (37)
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Now, noting that Ut−1 is Ft−1-measurable, we have that for all t ≥ 1:

E
[
exp(ξTUt)|Ft−1

]
= exp(ξTUt−1)E

[
exp(ξ⊤zt−1)|Ft−1

]
.

Let i ∈ St−1 ∪ {0} be the index for which yt−1,j = 1. We have yt−1,j = 0 for all j ∈ St−1 \ {i}.

If i ∈ St−1, using that ∥xt,j∥ ≤ 1 for all t, j and ∥ξ∥ ≤ 1/2, we have the following inequality:

|zt−1| ≤ (1− qt−1,i(St−1, θ
∗))|ξ⊤xt−1,i|+

∑
j∈St−1\{i}

qt−1,j(St−1, θ
∗)|ξ⊤xt−1,j |

≤ 1

2

1 +
∑

j∈St−1

qt−1,j(St−1, θ
∗)


≤ 1

Otherwise, i = 0 and we have that:

|zt−1| ≤
∑

j∈St−1

qt−1,j(St−1, θ
∗)|ξ⊤xt−1,j | ≤ 1

Since |zt−1| ≤ 1, we can apply Lemma C.7 and obtain:

E
[
exp(ξTUt)|Ft−1

]
= exp(ξTUt−1)E

[
exp(ξ⊤zt−1)|Ft−1

]
≤ exp(ξTUt−1)(1 + σ2(ξ⊤zt−1|Ft−1)

2)

≤ exp(ξTUt−1 + σ2(ξ⊤zt−1)
2|Ft−1) (1 + x ≤ ex)

Noting that from (37), σ2(ξ⊤zt−1

∣∣∣Ft−1)
2 is exactly equal to ∥ξ∥2

H̄t
− ∥ξ∥2

H̄t−1
, it leads to:

E [Mt(ξ)|Ft−1]

= E
[
exp

(
ξTUt − ∥ξ∥2H̄t

∣∣∣Ft−1

)]
= E

[
exp

(
ξTUt

)∣∣Ft−1

]
exp

(
−∥ξ∥2H̄t

)
(H̄t is Ft−1- measurable)

≤ exp
(
ξTUt−1 + σ2(ξ⊤zt−1|Ft−1)

2 − ∥ξ∥2H̄t

)
= exp

(
ξTUt−1 − ∥ξ∥2H̄t−1

)
=Mt−1(ξ)

which shows that {Mt(ξ)}∞t=0 is a super martingale.

Proof of Theorem C.6. Using that {Mt(ξ)}∞t=0 is a super martingale by Lemma C.8, the proof
follows the proof of Theorem 4 in [2] and Theorem 1 in [17], with some minor modification since ξ
now belongs to B(0, 1/2) instead of B(0, 1) to guarantee that {Mt(ξ)}∞t=0 is a super martingale. In
the proof of Theorem 1 in [17], for any scalar β, we now define h to be the density of an isotropic
normal distribution of precision β2 truncated on B(0, 1/2) (instead of B(0, 1)), and g the density
of the normal distribution of precision 2Ht truncated on the ball B(0, 1/4) (instead of B(0, 1/2)).
The upper bound on the ratio of the normalisation constants N(g)

N(h) given by Lemma 6 of [17] remains

identical, hence following [2], [17] and taking ξ0 =
H−1

t Ut

∥Ut∥H
−1
t

β

4
√
2

instead of ξ0 =
H−1

t Ut

∥Ut∥H
−1
t

β

2
√
2

, we

finally obtain that:

P

(
∃t ≥ 1, ∥Ut∥H−1

t
≥

√
λt
4

+
4√
λt

log

(
2d det (Ht)

1
2λ

− d
2

t

δ

))
≤ δ.
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We are now ready to complete the proof of Proposition 3.3.

Proof of Proposition 3.3. Since, θ̂t minimizes Lλt
t (θ), we have that ∇Lλt

t (θ̂t) = 0. Hence,

gt(θ̂t) =

t−1∑
s=1

∑
j∈Ss

qs,j(Ss, θ)xt,j + λtθ̂t =

t−1∑
s=1

∑
j∈Ss

ys,jxs,j

As a result,

gt(θ̂t)− gt(θ
∗) =

t−1∑
s=1

∑
j∈Ss

(ys,j − qs,j(Ss, θ
∗))xs,j − λtθ

∗

= Ut − λtθ
∗.

Therefore, since ∥θ∗∥ ≤W and Ht(θ
∗)−1 ⪯ 1

λt
Id, we get

∥gt(θ̂t)− gt(θ
∗)∥Ht(θ∗)−1 ≤ ∥Ut∥Ht(θ∗)−1 +

√
λtW.

The proof concludes with a straightforward application of Theorem C.6, combined with the following
upper bound on det(Ht) resulting from the determinant-trace inequality:

det(Ht) ≤
(

trace(Ht)

d

)d

≤
(
λt +

2tK

d

)d

.

D Numerical experiments - Comparison to the ONSP policy from [42]

In this section, we numerically compare the performance of our ONS based pricing policy for self
concordant functions (ONSSC) and the ONSP policy from [42] when only a single product needs to
be priced and the price sensitivity is unitary (which is the setting of ([42]), and the noise has a logistic
distribution.

We study the performance of these two algorithms for different values of W,d and different
distributions of the contexts {xt}. The optimal parameter θ∗ is set as θ∗ = Y × Z/||Z|| where
Y ∼ U([0,W ]) and Z is sampled from a multivariate Gaussian distribution N (0, Id). In the
two first set of experiments, we assume that the contexts {xt} are generated independently at
each period according to a multivariate Gaussian distribution N (0, Id), then renormalized so
that ||xt|| = 1. In the third set of experiments, we assume that the product feature vectors {xt}
are generated independently at each period according to a multivariate exponential distribution
with scale parameter β = 1, then renormalized so that ||xt|| = 1. In the fourth and last set of
experiments, we consider adversarial contexts constructed similarly as in [42]: we set d = 2 and
we divide the time horizon into log(T ) epochs, such that each epoch Et is constituted of time steps
{2k−1, . . . , 2k−1}. For all t ∈ Ek, we then set xt = [0, 1]T if k ≡ 0 [2] and xt = [1, 0]T if k ≡ 1 [2].

The results of our experiments are displayed on Figure 1. We compare the cumulative regret obtained
by the two algorithms for T = 104 steps. As W grows, the parameter γ in the policy from [42]
becomes exponentially small. We observe that in this case, our policy achieves a significantly better
regret in all sets of experiments. This experimentally supports our claim that avoiding to explicitly
use κ in the descent step may lead to more practical algorithms.
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(a) W = 1, d = 2, gaussian con-
texts

(b) W = 5, d = 2, gaussian con-
texts

(c) W = 7, d = 2, gaussian con-
texts

(d) W = 1, d = 10, gaussian
contexts

(e) W = 5, d = 10, gaussian con-
texts

(f) W = 7, d = 10, gaussian con-
texts

(g) W = 1, d = 2, exponential
contexts

(h) W = 5, d = 2, exponential
contexts

(i) W = 7, d = 2, exponential
contexts

(j) W = 1, d = 2, adversarial
contexts

(k) W = 5, d = 2, adversarial
contexts

(l) W = 7, d = 2, adversarial
contexts

Figure 1: Cumulative regret of the ONSSC and the ONSP policies for different values of W,d and
different distributions of the contexts {xt}.
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