
ALGORITHM 2: RANDOMDICTATORk,q

1: Pick i 2 N uniformly at random
2: Let X  topq(i, N ; d) // Ensure that i 2 X
3: Pick S 2 Sk�q(N \X) uniformly at random
4: return X [ S

A Proof of Theorem 3

Proof. Assume that n > 2 ·max{
p
kq/✏, k+1}, and let m = bk/qc�1. Consider the real line, and

suppose there are sets of q individuals at each position in {1, 2, . . . ,m}, denoted by X1, . . . , Xm,
respectively, and the set of remaining n�mq individuals, denoted by Xm+1, is at position m+ 1.
The optimal panel P ⇤ would have at least q people from each position, i.e., |P ⇤ \Xi| � q for all
i 2 [m + 1]. The q-cost of each person for P ⇤ is 0 as at least q people are selected from her own
position. Hence, SCq(P ⇤) = 0.

Turning to the analysis of Ak,q , we claim that

EP⇠Ak,q [|Xm+1 \ P |] � q + (k mod q) + ✏. (2)

To prove this, note that since each individual is included with a marginal probability of at least
q+(k mod q)

n + ✏, we have

EP⇠Ak,q [|Xm+1 \ P |] �
✓
q + (k mod q)

n
+ ✏

◆
(n�mq)

= q + (k mod q)� mq · (q + (k mod q))

n
+ (n�mq) · ✏

We will show that the right hand side is at least q+(k mod q)+✏. Because mq < k, q+k mod q < 2q,
and n�mq > n� k � n/2 + 1, the right hand side is at least

q + (k mod q)� qk

n/2
+ n✏/2 + ✏ � q + (k mod q) + ✏,

where the inquality follows from our choice of n > 2
p
kq/✏. This establishes Equation (2).

Now, as the panel size is k, it holds that
P

i2[m+1] EP⇠Ak,q [|Xi \ P |] = k. By Equation (2),
X

i2[m]

EP⇠Ak,q [|Xi \ P |] < k � (q + (k mod q))� ✏ = mq � ✏.

Therefore, there exists i 2 [m] such that EP⇠Ak,q [|Xi \ P |]  q � ✏/q. Using Markov’s inequality,

PrP⇠Ak,q (|Xi \ P | � q)  q�✏/q
q  1� ✏.

Thus, with probability at least ✏, less than q people are selected from position i, in which case the q-cost
of each person in Xi will be at least 1. Hence, EP⇠Ak,q [SCq(Ak,q)] � q✏ while SCq(P ⇤) = 0.

B Tradeoffs between Representation and Fairness

We start with the case of q > k/2 and show that a simple algorithm, which is a variant of the natural
random dictatorship rule, provides constant representation by sacrificing some quantity of perfect
fairness. Specifically, the algorithm RANDOMDICTATORk,q, presented as Algorithm 2, works as
follows: Given an instance d, it chooses an individual i from the underlying population uniformly
at random, and returns the panel P = topq(i, N ; d) [ S, where topq(i, N ; d) is the set of q people
closest to i (we break ties in a way to ensure that this contains i herself), and S is a panel of size
k � q chosen uniformly at random from the remaining people.
Theorem 6. For any q > k/2, it holds that

reprq(RANDOMDICTATORk,q) �
1

3
and fairness(RANDOMDICTATORk,q) �

k � q + 1

k
.
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Proof. We start by proving the fairness guarantee of the algorithm. Note that each individual i is
included in the panel P returned by RANDOMDICTATORk,q either if i is selected at the first step,
which happens with probability 1/n, or if i is not selected in the first step, it is selected in the second
step with probability at least (k � q)/(n� q). Hence, the probability of i being selected is at least
(1/n)+ (1� 1/n) · (k� q)/(n� q) � (k� q+1)/n, yielding fairness(RANDOMDICTATORk,q) �
(k � q + 1)/k.

For q > k/2, Caragiannis et al. [13] (Corollary 2) show that random dictatorship, i.e. returning a
panel minimizing q-cost to a randomly selected individual i, achieves a representation of at least 1/3.
The panel returned by RANDOMDICTATORk,q consists of q closest neighbors of i which obtains the
minimum q-cost with respect to i, and fills the other k � q members of this panel randomly which
does not affect the q-cost of the returned panel to i. Hence, RANDOMDICTATORk,q can be seen as a
variant of the random dictatorship rule which randomly breaks ties between top panel choices of a
randomly selected individual.

Now, we turn our attention to the case that q  k/2. In Section 4, we introduced RANDOMREPLACEq

with fairness q/k and representation ↵/(q + 1) if given an ↵-representative panel. In fact, if we
replace q with any r 2 [q], we can show that the algorithm provides representation of at least ↵/(r+1)
with fairness r/k. Essentially, RANDOMREPLACEr chooses a subset S of the underlying population
with size r instead of q uniformly at random in Line 1 of Algorithm 1.
Proposition 1. For any q 2 [k], r 2 [q], and panel P with reprq(P ) = ↵ it holds that

reprq(RANDOMREPLACEr(P )) � ↵

r + 1
and fairness(RANDOMREPLACEr) �

r

k
.

We omit the proof of this proposition as it is essentially identical to the proof of Theorem 4 with q
replaced by r in the appropriate places.

C Average Cost Function

Let cavg(i, P ) = 1
k

P
j2P d(i, j) denote the average cost of panel P of size k to an individual i.

Similarly, define SCavg(P ) =
P

i2N cavg(i, P ), and let repravg(Ak) denote the representation of a
selection algorithm Ak with respect to the average cost function. It turns out that uniform selection
(or any algorithm with perfect fairness) performs very well with the repravg objective and achieves a
representation of 1/2.
Proposition 2. For all k � 1, uniform selection satisfies repravg(Uk) > 1/2.

Proof. Sort the population as N = (i1, i2, . . . , in) in a non-decreasing order of SC(i`) =P
i2N d(i, i`), so that SC(i1)  SC(i2)  . . .  SC(in). Note that for any panel P , SCavg(P ) =

1
k

P
i2P SC(i), so the optimal panel is P ⇤ = {i1, . . . , ik}. Then,

SCavg(P
⇤) =

1

k

X

i`2P⇤

SC(i`) � min
i`2P⇤

SC(i`) = SC(i1).

Note that {i1} = minP 02Sk=1(N) SCq=1(P 0) is the optimal panel for the case where q = k = 1. As
q > k/2 in this scenario, by Lemma 1, we have

SCavg(P
⇤) � SC(i1) = SC1({i1}) �

1

2(n� 1)

X

i2N

X

j2N\{i}

d(i, j).

The average social cost of uniform selection is

E[SCavg(Uk(N))] =
1

k

X

i2N

X

j2N

d(i, j) · PrP⇠Uk [j 2 P ]

=
1

k

X

i2N

X

j2N\{i}

d(i, j) · k
n
,

where in the last transition we used the fact that d(i, i) = 0 and the marginal inclusion probabilities
are equal to k/n. Putting all together, we have that repravg(Uk) � n

2(n�1) >
1
2 .

15



D Experimental Results

D.1 Experiment Plots

(a) Adult with k = 20. (b) ESS UK with k = 40.

Figure 4: Comparison of different algorithm for fixed k, where RANDOMREPLACEr is applied to
the panel selected by OPTPROXY. As r ranges from 0 to k, the q-social cost of RANDOMREPLACEr

interpolates between that of OPTPROXY and UNIFORMSELECTION.

D.2 Computation Time of OPTPROXY

The most computationally expensive task in our experiment is computing OPTPROXY, which is used
as a subroutine in the RANDOMREPLACE method. We report the running time of our implementation,
as described in Section 5, for low to very high values of k. We used the ESS UK dataset with
n = 2204 and a standard laptop (quad-core, 1.7GHz CPU, 16GB RAM). The computation took less
than 15 seconds for k = 100, which includes computing the pair-wise distance matrix (5 seconds)
and running OPTPROXY (7 seconds). OPTPROXY itself scales well for practical values of k as shown
in Table 1.

Table 1: Runtime of OPTPROXY on ESS UK with different values of k. The reported time is the
maximum over all q 2 [k].

Panel size k Runtime

20 < 4s
100 < 7s
200 < 10s
500 < 20s
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