
A Relation to Other Notions of Error

A.1 Connections to Cross-Entropy Loss

We establish that in the classification setting, our notion of error is equivalent to cross-entropy loss
up to translations.

Example 1. (cross-entropy loss) Suppose the set Y of responses is finite. Then,

dKL(P
∗∥P ) =

∑
y∈Y

P ∗(y) ln
P ∗(y)

P (y)
=
∑
y∈Y

P ∗(y) lnP ∗(y)−
∑
y∈Y

P ∗(y) lnP (y).

The first term does not depend on P , so minimizing KL-divergence is equivalent to minimizing the
final term,

−
∑
y∈Y

P ∗(y) lnP (y) = −E[ln(P (Yt+1))|E , P,X],

which is exactly the expected cross-entropy loss of P , as is commonly used to assess classifiers.

A.2 Connections to Mean-Squared Error

In the regression setting we first establish a direct link between KL-divergence and mean-squared
error for the case in which P ∗

t and Pt are Gaussian.

Example 2. (Gaussian mean-squared error) Fix µ ∈ ℜ and σ2 ∈ ℜ++. Let P(Yt+1 ∈ ·|E , Xt) ∼
N (µ, σ2). Consider a point prediction µ̂t that is determined by Ht and a distributional prediction
Pt ∼ N (µ̂t, σ

2). Then,

dKL(P
∗
t ∥Pt) =

E[(µ− µ̂t)
2|E , Ht]

2σ2
=

E[(Yt+1 − µ̂t)
2|E , Ht]− E[(Yt+1 − µt)

2|E , Ht]

2σ2
.

Hence, KL-divergence grows monotonically the squared error E[(Yt+1 − µ̂t)
2|E , Ht]. However,

while the minimal squared error E[(Yt+1−µ)2|E , Ht] = σ2 that is attainable with full knowledge of
the environment remains positive, the minimal KL-divergence, which is delivered by Pt ∼ N (µ, σ2),
is zero.

Now consider a distributional prediction Pt ∼ N (µ̂t, σ̂
2
t ), based on a variance estimate σ̂2

t ̸= σ2.
Then,

dKL(P
∗
t ∥Pt) =

E[(µ− µ̂t)
2|E , Ht]

2σ̂2
t

+
1

2

(
σ2

σ̂2
t

− 1− ln
σ2

σ̂2
t

)
.

Consider optimizing the choice of σ̂2
t given Ht:

min
σ̂2
t

E[dKL(P
∗
t ∥Pt)|Ht].

The minimum is attained by

σ̂2
t = σ2︸︷︷︸

aleatoric

+E[(µ− E[µ|Ht])
2|Ht]︸ ︷︷ ︸

epistemic

+E[(E[µ|Ht]− µ̂t)
2|Ht]︸ ︷︷ ︸

bias

,

which differs from σ2. While σ2 characterizes aleatoric uncertainty, the incremental variance σ̂2
t −

σ2 accounts for epistemic uncertainty and bias.

Now, for P ∗
t and Pt that are not Gaussian, we have the following upper bound:

Lemma 13. For all t ∈ Z+, if µ̂t =
∫
y∈Y y dPt(y), then

E [dKL(P
∗
t ∥Pt)] ≤

1

2
ln

1 +
E
[
(Yt+1 − µ̂t)

2
]

σ2

 .
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Therefore, decreasing the mean squared error will always decrease the expected KL-divergence. A
corresponding lower bound holds for data generating processes for which Yt+1 satisfies a certain
subgaussian condition:

Lemma 14. For all t ∈ Z+, let µ̂t =
∫
y∈Y y dPt(y). If Pt(Yt+1 ∈ ·) is δ2t -subgaussian conditioned

on Ht w.p 1, then

E [dKL(P
∗
t ∥Pt)] ≥

E
[
(Yt+1 − µ̂t)

2
]

δ2t

Therefore, for data generating processes that obey this subgaussian condition, we have both upper
and lower bounds for expected KL divergence in terms of mean-squared error.

B Proof of Information and Error Results

Here, we provide a proof of Theorem 3.

Theorem 3. (optimal prediction) For all t ≥ 0,

E[dKL(P
∗
t ∥P̂t) | Ht] = inf

π
E[dKL(P

∗
t ∥Pt) | Ht],

where Pt = π(Ht, Zt).

Proof. Let P̂t = P(Yt+1 ∈ ·|Ht). By Gibbs’ inequality,

inf
Pt

dKL(P̂t∥Pt) = dKL(P̂t∥P̂t) = 0.

Let P ∗
t = P(Yt+1 ∈ ·|E , Xt). Then, for all Pt,

dKL(P
∗
t ∥Pt) =E

[
ln

dP ∗
t

dPt
(Yt+1)

∣∣∣E , Ht

]
=E [ln dP ∗

t (Yt+1)|E , Ht]− E [ln dPt(Yt+1)|E , Ht]

=E [ln dP ∗
t (Yt+1)|E , Ht]− E

[
ln dP̂t(Yt+1)|E , Ht

]
+ E

[
ln dP̂t(Yt+1)|E , Ht

]
− E [ln dPt(Yt+1)|E , Ht]

=E
[
ln

dP ∗
t

dP̂t

(Yt+1)
∣∣∣E , Ht

]
+ E

[
ln

dP̂t

dPt
(Yt+1)

∣∣∣E , Ht

]

=dKL(P
∗
t ∥P̂t) + E

[
ln

dP̂t

dPt
(Yt+1)

∣∣∣E , Ht

]
.

It follows that

inf
π

E[dKL(P
∗
t ∥Pt)|Ht] = inf

π
E

[
dKL(P

∗
t ∥P̂t) + E

[
ln

dP̂t

dPt
(Yt+1)

∣∣∣E , Ht

] ∣∣∣Ht

]
=E[dKL(P

∗
t ∥P̂t)|Ht] + inf

π
E[dKL(P̂t∥Pt)|Ht]

=E[dKL(P
∗
t ∥P̂t)|Ht] + E[dKL(P̂t∥P̂t)|Ht]

=E[dKL(P
∗
t ∥P̂t)|Ht].

A direct corollary of this result is the following shortfall quantification for a misspecified/suboptimal
prediction.

Corollary 15. (misspecified/suboptimal prediction) For all t ≥ 0 and Pt = π(Ht, Zt),

E[dKL(P
∗
t ∥Pt) | Ht] = E[dKL(P

∗
t ∥P̂t) | Ht] + E[dKL(P̂t∥Pt) | Ht].
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An interpretation of the above result is that the error of a suboptimal agent with prediction Pt is the
sum of the error of an optimal agent P̂t and the expected KL divergence between P̂t and Pt. Since
all the results in this paper bound the first term, in order to understand the behavior of a suboptimal
agent, techniques to bound the second term would be required.

Next, we provide a proof for Lemma 4.

Lemma 4. (expected prediction error equals information gain) For all t ∈ Z+,

E[dKL(P
∗
t ∥P̂t)] = I(E ;Yt+1|Ht),

and R(t) = I(E ;Ht).

Proof. It is well known that the mutual information I(A;B) between random variables A and B can
be expressed in terms of the expected KL-divergence I(A;B) = E[dKL(P(A ∈ ·|B)∥P(A ∈ ·))]. It
follows that

I(Yt+1; E|Ht) = E[dKL(P(Yt+1 ∈ ·|E , Ht) ∥ P(Yt+1 ∈ ·|Ht))]

(a)
= E[dKL(P(Yt+1 ∈ ·|E , Xt) ∥ P(Yt+1 ∈ ·|Ht))]

= E[dKL(P
∗
t ∥P̂t)],

where (a) follows from the fact that Yt+1 ⊥ Ht|(E , Xt). We then have

R(T ) = E

[
T−1∑
t=0

dKL(P
∗
t ∥P̂t)

]
=

T−1∑
t=0

I(Yt+1; E|Ht)
a
= I(E ;HT ),

where (a) follows from the chain rule of mutual information.

Lastly, we provide a proof for Lemma 5.

Lemma 5. (expected prediction error is monotonically nonincreasing) For all t ∈ Z+,

E[dKL(P
∗
t ∥P̂t)] ≥ E[dKL(P

∗
t+1∥P̂t+1)].

Proof. We have

E[dKL(P
∗
t+1∥P̂t+1)]

(a)
= I(E ;Yt+2|Ht+1)

=h(Yt+2|Ht+1)− h(Yt+2|E , Ht+1)

(b)
=h(Yt+2|Ht+1)− h(Yt+2|E , Ht−1, Yt, Xt+1)

(c)

≤h(Yt+2|Ht−1, Yt, Xt+1)− h(Yt+2|E , Ht−1, Yt, Xt+1)

=I(E ;Yt+2|Ht−1, Yt, Xt+1)

(d)
= I(E ;Yt+1|Ht−1, Yt, Xt)

=I(E ;Yt+1|Ht)

(e)
=E[dKL(P

∗
t ∥P̂t)],

where (a) follows from Lemma 4, (b) follows from the the fact that Yt+2 ⊥ (Xt, Yt+1)|(E , Xt+1),
(c) follows from the fact that conditioning reduces differential entropy, (d) follows from the fact that
(Xt, Yt+1) and (Xt+1, Yt+2) are independent and identically distributed conditioned on (Ht−1, Yt),
and (e) follows from the equivalence between mutual information and expected KL-divergence.

C Proofs of Regret and Sample Complexity Results

In this section, we prove results pertaining to bounding optimal regret and sample complexity in
terms of rate-distortion.

16



Lemma 6. (proxy error equals information gain) For all Ẽ ∈ Θ̃,

E[dKL(P
∗∥P̃ )] = I(E ;Y |Ẽ , X).

Proof. It is well known that the mutual information I(A;B) between random variables A and B can
be expressed in terms of the expected KL-divergence I(A;B) = E[dKL(P(A ∈ ·|B)∥P(A ∈ ·))].
We therefore have

I(E ;Y |Ẽ , X) =E[dKL(P(Y ∈ ·|E , Ẽ , X) ∥ P(Y ∈ ·|Ẽ , X))]

=E[dKL(P(Y ∈ ·|E , X) ∥ P(Y ∈ ·|Ẽ , X))]

=E[dKL(P
∗∥P̃ )],

where the second equation follows from the fact that (X,Y ) ⊥ Ẽ|E .

Theorem 8. (rate-distortion regret bounds) For all T ,

sup
ϵ≥0

min{Hϵ(E), ϵT} ≤ R(T ) ≤ inf
ϵ≥0

(Hϵ(E) + ϵT ).

Proof. We begin by establishing the upper bound.

R(T ) =

T−1∑
t=0

E
[
dKL(P

∗
T ∥P̂t)

]
(a)
=

T−1∑
t=0

I(Yt+1; E|Ht)

=

T−1∑
t=0

I(Yt+1; E , Ẽ |Ht)

(b)
=

T−1∑
t=0

I(Yt+1; Ẽ |Ht) + I(Yt+1; E|Ẽ , Ht)

(c)

≤
T−1∑
t=0

I(Yt+1; Ẽ |Ht) + I(Yt+1; E|Ẽ , Ht)

(d)
= I(HT ; Ẽ) +

T−1∑
t=0

I(Yt+1; E|Ẽ , Ht)

(e)

≤ I(HT ; Ẽ) +
T−1∑
t=0

I(Yt+1; E|Ẽ , Xt)

(f)

≤ I(HT ; Ẽ) + ϵT

(g)

≤ I(E ; Ẽ) + ϵT

where (a) follows from Lemma 4, (b) follows from the chain rule of mutual information, (c) fol-
lows from the chain rule of mutual information, (d) follows from the facts that h(Yt+1|Ẽ , Ht) ≤
h(Yt+1|Ẽ , Xt) and h(Yt+1|E , Ht) = h(Yt+1|E , Xt), (e) holds for any Ẽ ∈ Θ̃ϵ, and (f) follows
from the data processing inequality. Since the above inequality holds for all ϵ ≥ 0 and Ẽ ∈ Θ̃ϵ, the
result follows.

Next, we establish the lower bound. Fix T ∈ Z+. Let Ẽ = (H̃T−2, ỸT−1) be independent from but
distributed identically with (HT−2, YT−1), conditioned on E . In other words, Ẽ ⊥ (HT−2, YT−1)|E
and P(Ẽ ∈ ·|E) = P((HT−2, YT−1) ∈ ·|E). This implies that P((E , H̃T−2, ỸT−1, XT−1, YT ) ∈
·) = P((E , HT−2, YT−1, XT−1, YT ) ∈ ·), and therefore, I(E ;YT |HT−1) = I(E ;YT |Ẽ , XT−1).
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Fix ϵ ≥ 0. If R(T ) < Hϵ(E) then,

R(T )
(a)
= I(E ;HT )

(b)
=

T−1∑
t=0

I(E ;Yt+1|Ht)

(c)

≥I(E ;YT |HT−1)T

=I(E ;YT |Ẽ , XT−1)T

(d)
=E[dKL(P

∗
T−1∥P̃T−1)]T

(e)
>ϵT,

where (a) follows from Lemma 4, (b) follows from the chain rule of mutual information, (c) follows
from Lemma 5, (d) follows from Lemma 6, and (e) follows from the fact that Ẽ /∈ Θ̃ϵ because
R(T ) = I(E ;HT ) = I(E ; Ẽ) < Hϵ(E). Therefore,

R(T ) ≥ min{Hϵ(E), ϵT}.
Since this holds for any ϵ ≥ 0, the result follows.

Theorem 9. (rate-distortion sample complexity bounds) For all ϵ ≥ 0,

Hϵ(E)
ϵ

≤ Tϵ ≤ inf
δ∈[0,ϵ]

⌈
Hϵ−δ(E)

δ

⌉
≤
⌈
2Hϵ/2(E)

ϵ

⌉
.

Proof. We begin by showing the upper bound. Fix ϵ ≥ 0 and δ ∈ [0, ϵ]. Let

T =

⌈
Hϵ−δ(E)

δ

⌉
,

so that Hϵ−δ(E) ≤ δT . We have that:

R(T )
(a)

≤ Hϵ−δ(E) + (ϵ− δ)T

(b)

≤ δT + (ϵ− δ)T

= ϵT,

where (a) follows from the upper bound of Theorem 8 and (b) follows from our choice of T . Since
Tϵ = min{T : R(T ) ≤ ϵR(1)T}, it follows that T ≥ Tϵ. Since the above holds for arbitrary
δ ∈ [0, ϵ], the result follows.

We now show the lower bound. Fix ϵ ≥ 0. By the definition of Tϵ, we have

R(Tϵ) ≤ ϵTϵ.

In the proof of the lower bound in Theorem 8, we show that for all ϵ ≥ 0, R(T ) < Hϵ(E) =⇒
R(T ) > ϵT . Therefore, using the contrapositive and the above definition of Tϵ, we have that
Hϵ(E) ≤ R(Tϵ) and therefore

Hϵ(E) ≤ R(Tϵ) ≤ ϵTϵ.

The result follows.

D Proofs of Single-Layer Rate-Distortion Bounds

We have established in Theorem 10 that the rate-distortion function for a multilayer environment is
a sum of the rate-distortion functions for each single-layer environment under tolerance ϵ

K . In this
section, we show the following rate-distortion bounds for a single layer of the deep ReLU network
and the deep nonparametric network.

We begin by stating a well known result from information theory:
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Lemma 16. (maximum differential entropy) For all random vectors X : Ω 7→ ℜd with covariance
K,

h(X) ≤ 1

2
ln
(
(2πe)d|K|

)
,

with equality iff Pr(X ∈ ·) ∼ N (µ,K) for some µ ∈ ℜd.

Proof. Follows from Theorems 8.6.3 and 8.6.5 of Cover and Thomas [2006].

Theorem 17. (single-layer relu neural network rate-distortion bound) For all N, k ∈ Z++ and
σ2, ϵ ≥ 0, if Ek is identified by (A, b) where A : Ω 7→ ℜN×N , b : Ω 7→ ℜN both consist of
independent elements each with variance 1

N , X : Ω 7→ ℜN is a random vector with covariance IN ,
and Y ∼ N (ReLU(AX + b), σ2IN ), then

Hϵ(Ek) = O
(
N2 ln

(
N

2σ2ϵ

))
.

Proof. We use Ai, bi to denote the ith rows of A, b respectively. Let Ẽk = (Ã, b̃) where Ã = A+ V
where V ⊥ A and V ∼ N (0, δ2Id) and likewise b̃ = b + Z where Z ⊥ b and Z ∼ N (0, δ2).

δ2 =
σ2

(
e
2ϵ
N −1

)
N+1 . We have that

I(Ek; Ẽk) = I(Ek; Ẽk)
= I(A; Ã) + I(b; b̃)
≤ h(Ã)− h(Ã|A) + I(b; b̃)

=
N2

2
ln

(
2πe

(
δ2 +

1

N

))
− h(V ) + I(b; b̃)

=
N2

2
ln

(
1 +

1

Nδ2

)
+

N

2
ln

(
1 +

1

Nδ2

)
≤ N(N + 1)

2
ln

(
1 +

1

Nδ2

)
= O

(
N2 ln

(
1 +

1

Nδ2

))

= O

N2 ln

1 +
1

σ2
(
e

2ϵ
N − 1

)


= O
(
N2 ln

(
N

2σ2ϵ

))
.
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We now verify that our choice of Ẽk satisfies the distortion constraint:

I(Y ; Ek|Ẽk, X) = I(Y ;A, b|Ã, b̃, S,X)

= h(Y |Ã, b̃, S,X)− h(Y |A, b, S,X)

= N
(
h(Yi|Ã, b̃, S,X)− h(Yi|A, b, S,X)

)
(a)
= N

(
h(Yi|Ãi, b̃i, Si, X)− h(Wi)

)
= N

(
h(Yi − ReLU(Ã⊤

i X + b̃i)|θ̃i, b̃i, Si, X)− h(Wi)
)

(b)

≤ N
(
h(Yi − ReLU(Ã⊤

i X + b̃i)|X)− h(Wi)
)

(c)

≤ E
[
N

(
1

2
ln
(
2πe

(
σ2 + V[ReLU(A⊤

i X + bi)− ReLU(Ã⊤
i X + b̃i)|X]

))
− h(Wi)

)]
(d)

≤ N

2
ln

(
1 +

V[ReLU(A⊤
i X + bi)− ReLU(Ã⊤

i X + b̃i)]

σ2

)
(e)

≤ N

2
ln

(
1 +

V[A⊤
i X + bi − Ã⊤

i X − b̃i]

σ2

)

=
N

2
ln

(
1 +

(N + 1)δ2

σ2

)
= ϵ

where in (a), Wi ∼ N (0, σ2), (b) follows from the fact that conditioning reduces entropy, (c)
follows from Lemma 16, (d) follows from Jensen’s Inequality, and (e) follows from the fact that for
all x, y ∈ ℜ, (ReLU(x)− ReLU(y))2 ≤ (x− y)2.

Theorem 18. (single-layer nonparametric rate-distortion bound) For all N,M, c ∈ Z++ and
σ2, ϵ ≥ 0, if E is identified by α where α ∼ Dir

(
N,
[

c
N , . . . , c

N

])
and

f(X) =
√
c ·

N∑
n=1

αngn(X)

for deterministic basis functions (g1, . . . , gN ) mapping ℜM 7→ ℜM that satisfy E[gn(X)⊤gn(X)] ≤
1 for random vector X : Ω 7→ ℜN , and Y ∼ N (f(X), σ2IM ), then

Hϵ(E) ≤
c ln(2N)

2σ2ϵ
.

Proof. Let Ẽ =
√
c
r

∑r
i=1 hi for r = c

2σ2ϵ and where for all i ∈ {1, . . . , r},

hi
iid∼
{
δn · gn w.p αn .
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The distortion of Ẽ is

I(f(X) +W ; E|Ẽ , X) = h(f(X) +W |Ẽ , X)− h(f(X) +W |E , X)

= h

(
f(X)−

√
c

r

r∑
i=1

hi(X) +W
∣∣∣Ẽ , X)− h(W )

(a)

≤ h

(
f(X)−

√
c

r

r∑
i=1

hi(X) +W

)
− h (W )

(b)

≤ M

2
ln

2πe

σ2 + E


∥∥∥f(X)−

√
c
r

∑r
i=1 hi(X)

∥∥∥2
M



− h(W )

=
M

2
ln

1 +

E
[∥∥∥f(X)−

√
c
r

∑r
i=1 hi(X)

∥∥∥2]
σ2M


(c)

≤
E
[∥∥∥f(X)−

√
c
r

∑r
i=1 hi(X)

∥∥∥2]
σ2

=

E
[(√

c
r

∑r
i=1 hi(X)

)⊤ (√
c
r

∑r
i=1 hi(X)

)
− f(X)⊤f(X)

]
2σ2

=
E
[

c
r2

∑r
i=1 hi(X)⊤hi(X) + c

r2

∑
i̸=j hi(X)⊤hj(X)− f(X)⊤f(X)

]
2σ2

=
E
[
c
r

∑N
n=1 αign(X)⊤gn(X) + c(r−1)

r f(X)⊤f(X)− f(X)⊤f(X)
]

2σ2

≤
E
[
c− f(X)⊤f(X)

]
2rσ2

≤ c

2rσ2

= ϵ,

where (a) follows from conditioning reducing differential entropy, (b) follows from Lemma 16, and
(c) follows from the fact that for all m,x ∈ ℜ++,m ln

(
1 + x

m

)
≤ x.

We now upper bound the rate of Ẽ .

I(α; Ẽ) ≤ H(Ẽ)
≤ r ·H(hi)

≤ r ln(2N)

=
c ln(2N)

2σ2ϵ

The result follows.

E Proof of Multilayer Results

Lemma 19. (more is learned with the true input) Let ẼK:1 be a multilayer proxy. Then,

I(Y ; Ek|EK:k+1, Ẽk:1, X) ≤ I(Y ; Ek|EK:k+1, Ẽk, Uk−1).
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Proof.

I(Ek;Y |EK:k+1, Ẽk:1, X)

= I(Ek; Ẽk−1:1, X, Y |EK:k+1, Ẽk)− I(Ek; Ẽk−1:1, X|EK:k+1, Ẽk)
= I(Ek; Ẽj−1:1, X, Y |EK:k+1, Ẽk)
= I(Ek;Y |EK:k+1, Ẽk) + I(Ek; Ẽk−1:1, X|EK:k+1, Ẽk, Y )

(a)

≤ I(Ek;Y |EK:k+1, Ẽk) + I(Ek; Ek−1:1, X|EK:k+1, Ẽk, Y )

= I(Ek; Ek−1,1, X, Y |EK:k+1, Ẽk)
(b)
= I(Ek;Y |EK:k+1, Ẽk, Ek−1:1, X)

(c)
= I(Ek;Y |EK:k+1, Ẽk, Uk−1),

where (a) follows from the fact that Ek ⊥ Ẽk−1:1|(X,Y, Ek−1:1) and the data processing inequality,
(b) follows from the fact that I(Ek; Ek−1:1, X|EK:k+1, Ẽk) = 0, and (c) follows from the fact that
Y ⊥ (Ek−1:1, X)|Uk−1.

Lemma 19 states that we learn more information about Ek when we are given the true input Uk−1

than when we are given (X, Ẽk−1:1) and have to infer Uk−1. This is intuitive as we should be able
to recover more about Ek when we observe its input exactly.

To prove 2), that the immediate output Uk provides more information about Ek than does Y , each
prototypical environment will involve slightly different analysis techniques. In essence, we expect a
result like 2) to hold as a result of the data-processing inequality. No amount of post-processing of
Uk into (Y ) can increase the amount of available information conveyed about Ek.

Lemma 20. For all K ∈ Z++, (N0, N1, . . . , NK) ∈ ZK+1
++ , and σ2 ≥ 0, if NK = 1, and multilayer

environment EK:1 consists of single-layer environments Ek that each identify a random function f (k)

from ℜNk−1 7→ ℜNk for which

L(k) = sup
x,y∈ℜNk−1

E
[
∥f (k)(x)− f (k)(y)∥22

∥x− y∥22

∣∣∣x = x, y = y

]
≤ 1,

and

Uk =

{
X k = 0

f (k)(Uk−1) 1 ≤ k ≤ K

with Y ∼ N (UK , σ2), then for any proxy Ẽk,

I(Y ; Ek|Ẽk, EK:k+1, Uk−1) ≤
1

2
ln

1 +
E
[
∥Uk − E[Uk|Ẽk, Uk−1]∥22

]
σ2


22



Proof.

I(Y ; Ek|Ẽk, EK:k+1, Uk−1) = h(Y |Ẽk, EK:k+1, Uk−1)− h(Y |EK : k, Uk−1)

= h(Y |Ẽk, EK:k+1, Uk−1)− h(W )

= h
(
Y − (fK ◦ . . . ◦ fk+1)(E[Uk|Ẽ , Uk−1])|Ẽk, EK:k+1, Uk−1

)
− h(W )

≤ h
(
Y − (fK ◦ . . . ◦ fk+1)(E[Uk|Ẽ , Uk−1])

)
− h(W )

≤ 1

2
ln

1 +
V
[
UK − (fK ◦ . . . ◦ fk+1)(E[Uk|Ẽ , Uk−1])

]
σ2


≤ 1

2
ln

1 +
E
[
(UK − (fK ◦ . . . ◦ fk+1)(E[Uk|Ẽ , Uk−1]))

2
]

σ2



≤ 1

2
ln

1 +

E
[∏K

i=k+1 L
(i)
∥∥∥Uk − E[Uk|Ẽk, Uk−1]

∥∥∥2]
σ2



≤ 1

2
ln

1 +

E
[∥∥∥Uk − E[Uk|Ẽk, Uk−1]

∥∥∥2]
σ2



We now provide a proof of Theorem 10.

Theorem 10. multilayer rate-distortion bound For all K ∈ Z++, σ2, ϵ ≥ 0, if EK:1 is a multi-
layer environment such that for all k ∈ {1, . . . ,K} and δ ≥ 0, there exist Ẽk s.t.

I(Y ; Ek|EK:k+1, Ẽk:1, X) ≤ I(Uk +W ; Ek|Ẽk, Uk−1) ≤ δ,

where W ∼ N (0, σ2I), then

Hϵ(EK:1) ≤
K∑

k=1

H ϵ
K
(Ek).

Proof. Let

Θ̃K:1
ϵ = {Ẽ ∈ Θ̃ϵ : Ẽ = (Ẽ1, . . . , ẼK); Ẽi ⊥ Ẽj ∧ Ẽi ⊥ Ej for i ̸= j},
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We have that

inf
Ẽ∈Θ̃ϵ

I(E ; Ẽ) = inf
Ẽ∈Θ̃ϵ

K∑
k=1

I(Ek; Ẽ |EK:k+1)

(a)

≤ inf
Ẽ∈Θ̃K:1

ϵ

K∑
k=1

I(Ek; Ẽ |EK:k+1)

(b)
= inf

Ẽ∈Θ̃K:1
ϵ

K∑
k=1

I(Ek; Ẽk)

(c)

≤
K∑

k=1

inf
Ẽk∈Θ̃

(k)
ϵ
K

I(Ek, Ẽk)

=

K∑
k=1

H ϵ
K
(Ek)

where (a) follows from the fact that Θ̃K:1
ϵ ⊂ Θ̃ϵ, (b) follows from the fact that Ẽi ⊥ Ej for i ̸= j,

and (c) follows from the fact that for Θ̃(k)
ϵ/K := {Ẽk ∈ Θ̃ : I(Uk +W ; Ek|Ẽk, Uk−1) ≤ ϵ

K }, Θ̃(1)
ϵ/K ×

. . . × Θ̃
(K)
ϵ/K ⊂ Θ̃K:1

ϵ since we assumed that I(Y ; Ek|EK:k+1, Ẽk:1, X) ≤ I(Uk + W ; Ek|Ẽk, Uk−1)

for all k.

F Proof of Main Results

Theorem 11. (relu neural network rate-distortion and sample complexity bound) For all
d,N,K ∈ Z++ and σ2, ϵ ≥ 0, if multilayer environment EK:1 is the deep ReLU network with
input X : Ω 7→ ℜd s.t. V[X] = Id and output Y ∼ N (UK , σ2), then

Hϵ(EK:1) = Õ
(
KN2 + dN

)
, Tϵ = Õ

(
KN2 + dN

ϵ

)
.

Proof. If we have a distortion function d(Ek, Ẽk) for which

I(Y ; Ek|EK:k+1, Ẽk:1, X) ≤ d(Ek, Ẽk),

then by the same proof as in Theorem 10,

Hϵ(EK:1) ≤
K∑

k=1

H ϵ
K
(Ek, d),

where H ϵ
K
(Ek, d) denotes the rate-distortion function for random variable Ek under distor-

tion function d(Ek, Ẽk). By Lemma 20, we have the above condition for d(Ek, Ẽk) =
1
2 ln

(
1 +

E[∥Uk−E[Uk|Ẽk,Uk−1]∥2
2]

σ2

)
. Furthermore, distortion used in the proof of Theorem 17 is ex-

actly d(Ek; Ẽk). As a result,

Hϵ(EK:1) ≤
K∑

k=1

H ϵ
K
(Ek, d)

(a)
= O

(
(K − 2)N2 ln

(
NK

2σ2ϵ

)
+ dN ln

(
dK

2σ2ϵ

)
+N ln

(
NK

2σ2ϵ

))
= Õ(KN2 + dN).

where (a) follows from Theorem 17. The sample complexity result follows from applying Theorem
9.

24


