
S3GC: Scalable Self-Supervised Graph Clustering

Fnu Devvrit∗
Department of Computer Science

University of Texas at Austin
devvrit.03@gmail.com

Aditya Sinha†
Google Research

Bengaluru, India, 560016
sinhaaditya@google.com

Inderjit Dhillon
Google & Department of Computer Science

University of Texas at Austin
isd@google.com

Prateek Jain
Google Research

Bengaluru, India, 560016
prajain@google.com

Abstract

We study the problem of clustering graphs with additional side-information of node
features. The problem is extensively studied, and several existing methods exploit
Graph Neural Networks to learn node representations [29]. However, most of the
existing methods focus on generic representations instead of their cluster-ability or
do not scale to large scale graph datasets. In this work, we propose S3GC which
uses contrastive learning along with Graph Neural Networks and node features
to learn clusterable features. We empirically demonstrate that S3GC is able to
learn the correct cluster structure even when graph information or node features
are individually not informative enough to learn correct clusters. Finally, using
extensive evaluation on a variety of benchmarks, we demonstrate that S3GC is able
to significantly outperform state-of-the-art methods in terms of clustering accuracy
– with as much as 5% gain in NMI – while being scalable to graphs of size 100M.

1 Introduction

Graphs are commonplace data structures to store information about entities/users, and have been
investigated for decades [5, 15, 54, 31, 8, 57]. In modern ML systems, the entities/nodes are often
equipped with vector embeddings from different sources. For example, authors are nodes in a citation
graph and can be equipped with embeddings of the title/content of the authored papers [16, 41] as
relevant side information. Owing to the utlility of graphs in large-scale systems, tremendous progress
has been made in the domain of supervised learning from graphs and node features, with Graph
Neural Networks (GNNs) headlining the state-of-the-art methods [28, 19, 52]. However, typical real-
world ML workflows start with unsupervised data analysis to better understand the data and design
supervised methods accordingly. In fact, many times clustering is a key tool to ensure scalability to
web-scale data [26]. Furthermore, even independent of supervised learning, clustering the graph data
with node features is critical for a variety of real-world applications like recommendation, routing,
triaging [6, 2, 32] etc.

Effective graph clustering methods should be scalable, especially with respect to the number of
nodes, which can be in millions even for a moderate-scale system[57]. Furthermore, in the presence
of side-information, the system should be able to use both the views – node features and graph
information – of the data “effectively". For example, the method should be more accurate than
single-view methods that either consider only the graph information [27] or only the node feature

∗work done while the author was an intern at Google Research
†Now at University of Illinois, Urbana-Champaign

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

(a) Node2vec

30 20 10 0 10 20 30

30

20

10

0

10

20

30

(b) DGI

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

(c) S3GC (Ours)
Figure 1: tSNE visualization of embeddings when applied to the data model given in Section 3.5.
SBM parameters p,q are such p = q+ .18, while σc = σ− .1, i.e., both graph information and feature
information are separately insufficient for clustering (see Table 1). S3GC is able to well-separate all
the clusters while Node2vec [18] and DGI [53] have a significant amount of cluster overlap.

information [33, 43, 7]. This problem of graph clustering with side information has been extensively
studied in the literature [61]; see Section 2 for a review of the existing and recent methods. Most
methods map the problem to that of learning vector embeddings and then apply standard k-means
[33] style clustering techniques. However, such methods – like Node2vec [18] – don’t explicitly
optimize for clusterability, therefore the resulting embeddings might not be suitable for effective
clustering. Furthermore, several existing methods tend to be highly reliant on the graph information
and thus tend to perform poorly when graph information is noisy/incomplete. Finally, several existing
methods such as GraphCL [58] propose expensive augmentation and training modules, and thus do
not scale to realistic web-scale datasets.

We propose S3GC which uses a one-layer GNN encoder to combine both the graph and node-feature
information, along with graph only and node feature only encodings. S3GC applies contrastive
learning to ensure that the embedding of a node is close to “near-by" nodes – obtained by random
walk – while being far away from all other nodes. That is, S3GC explicitly addresses the above three
mentioned challenges: a) S3GC is based on contrastive learning which is known to promote linear
separability and hence clustering [20], b) S3GC carefully combines information from both the graph
view and the feature view, thus performs well when one of the views is highly noisy/incomplete, c)
S3GC use a light-weight encoder and simple random walk based sampler/augmentation, and can be
scaled to hundreds of millions of nodes on a single virtual machine (VM).

For example, consider a dataset where the adjacency matrix of the graph is sampled from a stochastic
block model with 10 clusters; let probability of an edge between nodes from same cluster is p and
from different clusters is q. Furthermore, features of each node are also sampled from a mixture of 10
Gaussians where σc is the distance between any two cluster centers while σ is the standard deviation
of each Gaussian. Now, consider a setting where p > q but p, q are close, hence information from the
graph structure is weak. Similarly, σc < σ but they are close. Figure 1 plots two-dimensional tSNE
projection [51] of embeddings learned by the state-of-the-art Node2vec[18] and DGI[53] methods,
along with S3GC. Note that while Node2vec’s objective function is optimized well, the embeddings
do not appear to be separable. DGI’s embeddings are better separated, still there is a significant
overlap. In contrast, S3GC is able to produce well-separated embeddings due to the contrastive
learning objective along with explicit utilization of both data views.

We conduct extensive empirical evaluation of S3GC and compare it to a variety of baselines and
standard state-of-the-art benchmarks, particularly: Spectral Clustering[43], k-means[33], METIS[27],
Node2vec[18], DGI[53], GRACE[62], MVGRL[21] and BGRL[48]. Overall, we observe that our
method consistently outperforms Node2vec, DGI – SOTA scalable methods – on all seven datasets,
achieving as much as 5% higher NMI than both the methods. For two small scale datasets, our
method is competitive with MVGRL method, but MVGRL does not scale to even moderate sized
datasets with about 2.5M nodes and 61M edges, while our method scales to datasets with 111M
nodes and 1.6B edges.

2 Related Work

Below, we discuss works related to various aspects of graph clustering and self-supervised learning,
and place our contribution in the context of these related works.

2

Graph OR features-only clustering: Graph clustering is a well-studied problem, and several
techniques address the problem including Spectral Clustering (SC) [43], Graclus [12], METIS [27],
Node2vec [18], and DeepWalk [40]. In particular, Node2Vec [18] is a probabilistic framework
that is an extension to DeepWalk, and maps nodes to low-dimensional feature spaces such that the
likelihood of preserving the local and global neighborhood of the nodes is maximized. In the setting
of node-features only data, k-means clustering is one of the classical methods, in addition to several
others like agglomerative clustering [44], density based clustering [59], and deep clustering [7].

As demonstrated in Figure 1 and Table 1, S3GC attempts to exploit both the views, and if both views
are meaningful then it can be significantly more accurate than single-view methods.

Self Supervised Learning: Self-supervised learning methods have demonstrated that they can
learn linearly separable features/representations in the absence of any labeled information. Typical
approach is to define instance-wise “augmentations" and then pose the problem as that of learning
contrastive representations that map instance augmentations close to the instance embedding, while
pushing it far apart from all other instance embeddings. Popular examples include MoCo [22], MoCo
v2 [11], SimCLR [9], and BYOL [17]. Such methods require augmentations, and as such do not
apply directly to the graph+node-features clustering problem. S3GC uses simple random walk based
augmentations to enable contrastive learning based techniques.

Graph Clustering with Node Features: To exploit both the graph and feature information, several
existing works use the approach of autoencoder. That is, they encode nodes using Graph Neural
Networks (GNN) [28], with the goal that inner-product of encodings can reconstruct the graph
structure; GAE and VGAE [29] use this technique. GALA [38], ARGA and ARVGA [37] extend the
idea by using Laplacian Sharpening and generative adversarial learning. Structural Deep Clustering
Network (SDCN) [4] jointly learns an Auto-Encoder (AE) along with a Graph Auto-Encoder (GAE)
for better node representations, while Deep Fusion Clustering Network (DFCN) [50] merges the
representations learned by AE and GAE for consensus representation learning. Since AE type
approaches attempt to solve a much harder problem, their accuracy in practice lags significantly to
the state-of-the-art; for example, see Table 3 in [21] which shows that such techniques can be 5-8%
less accurate. MinCutPool [42] and DMoN [49] extend spectral clustering with graph encoders, but
the resulting problem is somewhat unstable and leads to relatively poor partitions; see Table 3.

Graph Contrastive Learning: Recently several papers have explored contrastive Graph Representa-
tion Learning based approaches and have demonstrated state-of-the-art performance. Deep Graph
Infomax (DGI) [53] is based on MINE [24] method, and is one of the most scalable method with
nearly SOTA performance. It uses edge permutations to learn augmentations and embeddings. Info-
graph [47] extends the DGI idea to learn unsupervised representations for graphs as well. GraphCL
[58] design a framework with four types of graph augmentations for learning unsupervised represen-
tations of graph data using a contrastive objective. MVGRL [21] extends these ideas by performing
node diffusion and contrasting node representations with augmented graph representations while
GRACE [62] maximizes agreement of node embeddings across two corrupted views of the graph.
Bootstrapped Graph Latents (BGRL) [48] adapts the BYOL [17] methodology to the graph domain,
and eliminates the need for negative sampling by minimizing an invariance based loss for augmented
graphs within a batch. While these methods are able to obtain more powerful embeddings, the
augmentations and objective function setup become expensive, and hence they are hard to scale
to large datasets beyond ∼ 1M nodes. In contrast, S3GC is able to provide competitive or better
clustering accuracy, while still being scalable to graphs of size 100M nodes.

3 S3GC: Scalable Self-Supervised Graph Contrastive Clustering
In this section, we first formally introduce the problem of graph clustering and notations. Then we
discuss challenges faced by the current methods and outline the framework of our method S3GC.
Finally, we detail each component of our method and highlight the overall training methodology.

3.1 Problem Statement and Notations
Consider a graph G = (V,E) with the vertex set V = {v1, · · · , vn} and the edge set E ⊆ V × V ,
where |E| = m. Let A ∈ Rn×n be the adjacency matrix of G, where Aij = 1 if (vi, vj) ∈ E, else
Aij = 0. Let X ∈ Rn×d be the node attributes or feature matrix, where the i-th row Xi denotes the
d-dimensional feature vector of node i. Given the graph G and attributes X , the aim is to partition the
graph G into k partitions {G1, G2, G3, ..., Gk} such that nodes in the same cluster are similar/close
to each other in terms of the graph structure as well as in terms of attributes.

3

Now, in general, one can define several loss functions to evaluate quality of clustering but that might
not reflect the underlying ground truth. So, to evaluate the quality of clustering, we use standard
benchmarks which have ground truth labels apriori. Furthermore, Normalized Mutual Information
(NMI) between the ground truth labels and the estimated cluster labels is used as the key metric. NMI
between two labellings Y1 and Y2 is defined as:

NMI(Y1, Y2) =
2 · I(Y1, Y2)

H(Y1) +H(Y2)
(1)

where I(Y1, Y2) is the Mutual Information between labellings Y1 and Y2, and H(·) is the entropy.
Normalized Adjacency Matrix is denoted by Ã = D− 1

2AD− 1
2 ∈ Rn×n where D = diag (A1N)

is the degree matrix. We also compute a k−hop Diffusion Matrix, denoted by Sk =
∑k

i=0 αiÃ
i ∈

Rn×n, where αi ∈ [0, 1] ∀i ∈ [k], and
∑

i αi ≤ 1. Intuitively, k−hop diffusion matrix captures
a weighted average of k-hop neighbourhood around every node. For specific αi and for k = ∞,
diffusion matrix can be computed in closed form [30, 36]. However, in this work we focus on finite k.

3.2 Challenges in Graph Clustering
Clustering in general is a challenging problem as the underlying function to evaluate quality of
the clustering solution is unknown apriori. However, graph partitioning/clustering with attributes
poses several more challenges. In particular, scaling the methods is challenging as graphs are sparse
data structures, while neural network based approaches produce dense artifacts. Furthermore, it
is challenging to effectively combine information from the two data views: graph and the feature
attributes. Node2vec [18] uses only graph structure information, DGI [53] and related methods
[21, 39] are highly dependent upon attribute quality. Motivated by the above mentioned challenges,
we propose S3GC which uses a self-supervised variant of GNNs.

3.3 S3GC: Scalable Self Supervised Graph Clustering – Methodology

At a high level, S3GC uses a Graph Convolution Network (GCN) based encoder and optimizes it
using a contrastive loss where the nodes are sampled via a random walk. Below we describe the three
components of S3GC and then provide the resulting training algorithm.

Graph Convolutional Encoder: We use a 1-layer Graph Convolutional Network [28] to encode the
graph and feature information for each node:

X =
(
PReLU(ÃXΘ) + PReLU(SkXΘ′) + I

)
(2)

where X ∈ Rn×d stores the learned d-dimensional representation of each node. Recall that Ã is the
normalized adjacency matrix and Sk is the k-hop diffusion matrix. I ∈ Rn×d is a learnable matrix.
{Θ,Θ′} are the weights of the GCN layer, and PReLU is the parameteric ReLU activation function
[23]:

f(zi) = zi if zi ≥ 0, f(zi) = a · zi otherwise, (3)
where a is a learnable parameter. Our choice of encoder makes the method scalable as a 1-layer GCN
requires storing only the learnable parameters in the GPU/memory, which is small (O(d2), where d
is the dimensionality of the node attributes). The parameter I scales only linearly with the number of
nodes n. More importantly, we use mini-batches that reduce the memory requirement of forward and
backward pass to order O(rsd+ d2) where r is the batch size in consideration and s is the average
degree of nodes, therefore making our method scalable to graphs of very large sizes as well. We
provide further discussion on memory requirement of our method in Section 3.4.

Random Walk Sampler: Next, inspired by [40, 18], we utilise biased second order Random Walks
with restarts to generate points similar to a given node and thus capture the local neighborhood of
each node. Formally following [18], we start with a source node u, and simulate a random walk of
length l. We use ci to denote the i-th node in the random walk starting from c0 = u. Every other
node in walk ci is generated from the distribution:

P (ci = x | ci−1 = v) =
πvx

Z
, if (v, x) ∈ E, P (ci = x | ci−1 = v) = 0 otherwise (4)

where πvx is the unnormalized transition probability between nodes v and x and Z is the normalization
constant. To bias the random walks and compute the next edge x we follow a methodology similar

4

to [18], and from node v after traveling (t, v), the transition probability πvx is set to αpq(t, x) · wvx

where wvx is the weight on the edge between v and x, and the bias parameter α is defined by:

αpq(t, x) =
1

p
, if dtx = 0, αpq(t, x) = 1 ,if dtx = 1, alphapq(t, x) =

1

q
,if dtx = 2, (5)

where p is the return parameter, controlling the likelihood of immediately revisiting a node, q is the
in-out parameter [18], allowing the search to differentiate between “inward" and “outward" nodes,
and dtx denotes the shortest path distance between nodes t and x. We note that dtx from node t to x
can only take values ∈ {0, 1, 2}. Setting p to a high value (> max(q, 1)) ensures a lesser likelihood
of revisiting a node and setting it to a low value (< min(q, 1)) would make the walk more “local".
Similarly, setting q > 1 would bias the random walk to nodes near t and obtain a local view of the
graph encouraging BFS-like behaviour, whereas a q < 1 would bias the walk towards nodes further
away from t and encourage DFS-like behaviour.

Contrastive Loss Formulation: Now to learn the encoder parameters, we use SimCLR style loss
function where nodes generated from the random walk are considered to be positives while rest of the
samples are considered to be negative. That is, we use graph neighborhood information to produce
augmentations of a node. Formally, let C(u)+ = {c0, c1, ..., cl} be the nodes generated by a random
walk starting at c0 = u. Then, C(u) is the set of positive samples p+u , while the set of negatives p−u is
generated by sampling l nodes from the remaining set of nodes [n]\p+u . Given p+u and p−u , we can
now define the loss for each u as:

LSimCLR(u) = −
∑

v∈p+
u
exp(sim(Xu,Xv))∑

v∈p+
u
exp(sim(Xu,Xv)) +

∑
v′∈p−

u
exp(sim(Xu,Xv′))

(6)

where sim is some similarity function, for example inner product: sim(u, v) = uT v
∥u∥∥v∥ .

Note that SimCLR style loss functions have been shown to lead to "linearly separable" representations
[20] and hence aligns well with the clustering objective [55, 10]. In contrast, loss functions like
those used in Node2vec [18] might not necessarily lead to "clusterable" representations which is also
indicated by their performance on synthetic as well as real-world datasets.

3.4 Algorithm
Now that we have discussed the individual components of our method, we describe the overall
training methodology in Algorithm 1. We begin with the initialization of the learnable parameters in
line 1. In line 4,5 we generate the positive and negative samples for each node in the current batch.
Since we operate with embeddings of only the nodes in batch and their positive/negative samples, we
take a union of these to create a “node set” in line 6. This helps in reducing the memory requirements
of our algorithm, since we do not do forward/backward pass on the entire AX , but only on the nodes
needed for the current batch. Once we have the node set, we compute representations for the nodes in
the current batch using a forward pass in line 8, compute the loss for nodes in this set in line 9, and
perform back-propagation to generate the gradient updates for the learnable parameters in line 10.
Finally, we update the learnable parameters in line 11 and repeat the process for the next batch.

Space Complexity: The space complexity for the forward and backward pass of our algorithm
is O(rsd + d2), where r is the batch size, s is the average degree of nodes, and d is the attribute
dimension. The process of random walk generation is fast and can be done in memory, which is
abundantly available and highly parallelizable. Therefore, storing the graph structure in memory for
sampling of positives doesn’t create a memory bottleneck and takes O(m) space. For all the datasets
other than ogbn-papers100M, we store the AX,SX , and I in the GPU memory as well, requiring
additional O(nd) space. However, for very large-scale datasets, one can conveniently store these in
the memory itself and interface with the GPU when required, thereby restricting the GPU memory
requirement to O(rsd+ d2).

Time Complexity: The forward and backward computation for a given batch takes O(rsd2) time.
Hence, for n nodes, batch size of r, and K epochs, time complexity is O(Knsd2).

Embedding property: Detecting communities ideally requires nodes to be clustered based on their
position, rather than structural similarities. We show in Appendix C that S3GC produces positional
embeddings [46].
Code: Implementation code of S3GC is available at: https://github.com/devvrit/S3GC

5

https://github.com/devvrit/S3GC

Algorithm 1 S3GC: Training and Backpropagation

Input: Graph G, Matrices ÃX ∈ Rn×d and SkX ∈ Rn×d, number of epochs K, Batched inputs of
nodes B, Self-supervised Loss formulation LSimCLR, Encoder definition ENC, Learning Rate η

1: Initialize model parameters: Θ, Θ′, I
2: for epoch = 1, 2, . . .K do
3: for each batch: b ∈ B do
4: Generate Positive Samples p+v using biased random walks Section 3.3 ∀ v ∈ b
5: Generate Negative Samples p−v using random sampling ∀ v ∈ b
6: Compute the node set Nb : UNION(p

+
v , p

−
v) ∀ v

7: Select subset rows (ÃX)Nb
and (SkX)Nb

corresponding to the node set Nb

8: Forward Pass to compute the representations: X← ENC((ÃX)Nb
, (SkX)Nb

,Θ,Θ′, I)
9: Compute loss using the self-supervised formulation: L(X)

10: Compute Gradients for learnable parameters at time t: ut(Θ,Θ′, I)← ∇Θ,Θ′,IL(X)
11: Refresh the parameters: (Θ,Θ′, I)t+1 ← (Θ,Θ′, I)t − η

|b|ut(Θ,Θ′, I)
Output: X;Θ,Θ′, I

Table 1: Results on experiments using dataset generated from Stochastic Block Models. SC
represents Spectral Clustering [43] on the graph, k-means utilises only the attributes, Node2vec[18]
uses the graph structure and DGI [53] utilizes both. We experiment with two variants of our method
S3GC-I using only I as the learnable embeddings without using the attributes and S3GC using both
graph and attributes, and evaluate the quality of clustering using mean NMI, reported over 3 runs.

SBM Parameters Baselines: NMI Our Method: NMI

p q σc σ SC k-means Node2Vec DGI S3GC−I S3GC

0.65 0.40 0.5 1.5 0.96 0.25 0.96 0.85 0.99 1.00
0.63 0.45 0.5 1.5 0.45 0.25 0.47 0.55 0.64 0.71
0.63 0.45 1.0 1.5 0.45 0.90 0.47 0.86 0.64 0.91

3.5 Synthetic Dataset – Stochastic Blockmodel with Gaussian Features

To better understand the working of our method in scenarios with varied quality of the graph
structure and node attributes, we propose a study on a synthetic dataset using Stochastic Block
Models (SBM)[1] with Gaussian features. For a given parameter k, the SBM [45] constructs a
graph G = (V,E) with k partitions of nodes V . The probability of an intra-cluster edge is p and
an inter-cluster edge is q, where p > q.3 Similar studies have been proposed for benchmarking of
GNNs [13] and Graph clustering methods[14, 49] using SBM. In this work, we create an attributed
SBM model, where each node has an s-dimensional attribute associated with it. Following the
setup in [49], for k clusters (partitions) we generate k cluster centers using s-multivariate normal
distributions N (0s, σ

2
c · Is), where σ2

c is a hyperparameter we define. Then attributes of nodes of a
given cluster are sampled from an s-multivariate gaussian distribution with the corresponding cluster
center and σ2I variance. The ratio σ2

c/σ
2 controls the expected value of the classical between vs

within sum-of-squares of the clusters.

We compare our method with: k-means on the attributes, Spectral Clustering [43], DGI [53], and
Node2vec [18]. This choice of baseline methods focuses on different facets of graph data and
clustering across which we want to assess the performance of our method. k-means on attributes
utilizes only the nodes attribute information. Spectral Clustering is a non-trainable classical algorithm
commonly used for solving SBMs, but uses only the graph-structure information. Similarly, Node2vec
is a common graph-embedding trainable algorithm that utilizes only the structural information. DGI
is a scalable SOTA self-supervised graph representation learning algorithm that uses both structure as
well as node attributes.
To demonstrate the effectiveness of our choice of loss formulation, we also run our method without
using any attribute information and using only the learnable embedding I ∈ Rn×d, i.e. X = I.

3Note that these are parameters for the SBM dataset generation, unrelated to the random walk sampling
parameters in the S3GC model.

6

Table 2: Datasets and Setup.

Scale Dataset # nodes # edges feat dim # classes

Small Scale
Cora 2,708 5,278 1,433 7

Citeseer 3,327 4,614 3,703 6
Pubmed 19,717 44,325 500 3

Moderate/Large Scale
ogbn-arxiv 169,343 1,166,243 128 40

Reddit 232,965 23,213,838 602 41
ogbn-products 2,449,029 61,859,140 100 47

Extra-Large Scale ogbn-papers100M 111,059,956 1,615,685,872 128 172

Setup and Observations: We set the number of nodes n = 1000 and number of clusters k = 10,
where each cluster contains n/k = 100 nodes, and vary p and q to generate graphs of different
structural qualities. Varying σ2

c/σ
2 controls the quality of the attributes. The first row in table 1

represents a graph with high structural as well as attribute quality. The second row represents low
structural as well as low attribute quality. While the last row represents low structural but high
attribute quality. We make several observations: 1) Even without using any attribute information,
our method performs significantly better as compared to other structure-only based methods like
Spectral Clustering and Node2Vec, which demonstrates the effectiveness of our loss formulation
and training methodology that promotes clusterability, which is also in line with recent observations
[10, 55]. 2) We observe that DGI depends highly on the quality of the attributes and is not able to
utilize the high-quality graph structure as well, when the attributes are noisy. In contrast, our method
uses both sources of information effectively and performs reasonably well even when even only one
of the structure or attribute quality is high (first and the last row in the table).

Visualization of the Embeddings: We further observe the quality of the generated embeddings using
t-SNE[51] projected in 2-dimensions. Figure 1 corresponds to the second setting with weak graph and
weak attributes, where we observe that S3GC generates representations which are more cluster-like
as compared to the other methods. Additionally, we note that S3GC shows similar behaviour in the
other two settings as well, the plots for which are provided in the Appendix.

4 Empirical Evaluation
We conduct extensive experiments on several node classification benchmark datasets to evaluate the
performance of S3GC as compared to key state-of-the-art (SOTA) baselines across multiple facets
associated with Graph Clustering.

4.1 Datasets and Setup
Datasets: We use 3 small scale, 3 moderate/large scale, and 1 extra large scale dataset from GCN
[28], GraphSAGE [19] and the OGB-suite [25] to demonstrate the efficacy of our method. The details
of the datasets are given in Table 2 and additional details of the sources are mentioned in Appendix.

Baselines: We compare our method with k-means on features and 8 recent state-of-the-art baseline
algorithms, including MinCutPool [3], METIS [27], Node2vec [18], DGI [53], DMoN [49], GRACE
[62], BGRL [48] and MVGRL [21]. We choose baseline methods from a broad spectrum of method-
ologies, namely methods that utilize only the graph structure, methods that utilize only the features
and specific methods that utilize a combination of the graph structure and attribute information to
provide an exhaustive comparison across important facets of graph learning and clustering. METIS
[27] is a well-known and scalable classical method for graph partitioning using only the structural
information. Similarly, Node2vec[18] is another scalable graph embedding technique that utilizes
random walks on the graph structure. MinCutPool[3] and DMoN [49] are graph clustering techniques
motivated by the normalized MinCut objective [42] and Modularity [35] respectively. DGI is a SOTA
self-supervised method utilizing both graph structure and features, that motivated a line of work
[21, 39] based on entropy maximization between local and global views of a graph. GRACE[62], in
contrast to DGI’s methdology, contrasts embeddings at the node level itself, by forming two views
of the graph and maximizing the embedding of the same nodes in the two views. BGRL[48] and
MVGRL [21] are recent SOTA methods for performing self-supervised graph representation learning.

Metrics: We measure 5 metrics which are relevant for evaluating the quality of the cluster asssign-
ments following the evaluation setup of [56, 21]: Accuracy, Normalized Mutual Information (NMI),
Completeness Score (CS), Macro-F1 Score (F1), and Adjusted Rand Index (ARI). For all these
aforementioned metrics, a higher value indicates better clustering performance. We generate the

7

representations using each representation-learning method and then perform k-means clustering on
the embeddings to generate the cluster assignments used for evalution of these metrics.

Detailed Setup. We consider the unsupervised learning setting for all the seven datasets where the
graph and features corresponding to all the datasets are available. We use the labels only for evaluating
the quality of the cluster assignments generated by each method. For the baselines, we use the official
implementations provided by the authors without any modifications. All experiments are repeated 3
times and the mean values are reported in the Table 3. We highlight the highest value as well as any
other values within 1 standard deviation of the mean of the best performing method, and report the
results with standard deviations in the Appendix, due to space constraints. We utilize a single Nvidia
A100 GPU with 40GB memory for training each method for a maximum duration of 1 hour for each
experiment in Table 3. For ogbn-papers100M we allow upto ∼ 24 hours of training and upto 300GB
main memory in addition. We provide a mini-batched and highly scalable implementation of our
method S3GC in PyTorch such that experiments on all datasets other than ogbn-papers100M easily
fit in the aforementioned GPU. For the ogbn-papers100M dataset, the forward and backward pass in
S3GC are performed in the GPU, with an interfacing with the CPU memory to store the graph, AX ,
and SX , and to maintain and update I, with minimal overheads. We also provide a comparison of
the time and space complexity for each method in the Appendix.

Hyperparameter Tuning: S3GC requires selection of minimal hyperparameters: we use k = 2 for
the k-hop Diffusion Matrix Sk which offers the following advantages: 1) S2X = α0X + α1ÃX +
α2Ã

2X is a finite computation which can be pre-computed and only requires 2 sparse-dense matrix
multiplications. 2) We chose α0 > α1 > α2, giving a higher weight to 0-hop neighbourhood
attributes X which allows S3GC to exploit the rich information from good quality attributes even
when the structural information is not very informative. 3) Two-hop neighbourhood intuitively
captures all the features of nodes with similar attributes while maintaining scalability. This is
motivated by the 2-hop and 3-hop choice of neighborhoods in [19] and [25] for these datasets. We
additionally tune the learning rate, batch size and random walk parameters, namely the walk length
l while using the default values of p = 1 and q = 1 for the bias parameters in the walk. We
perform model selection based on the NMI on the validation set and evaluate all the metrics for this
model. Additional details regarding the hyperparameters are mentioned in the Appendix due to space
restrictions.

4.2 Results
Table 3 compares clustering performance of S3GC to a number of baseline methods on datasets of
three different scales. For the small scale datasets, namely Cora, Citeseer and Pubmed, we observe
that MVGRL outperforms all methods. We also note that MVGRL’s performance in our experiments,
using the author’s official implementation with extensive hyperparameter tuning is slightly lower than
the reported values, as has been reported by other works as well [60]. Nonetheless, we use these values
for comparison and observe that S3GC also performs either competitively or is slightly inferior to MV-
GRL’s accuracy. For example, on the Cora dataset, S3GC is within ∼ 2% of MVGRL’s performance
and outperforms all the other baseline methods, while on the Pubmed dataset, S3GC is within∼ 1.5%
of MVGRL’s performance. Next, we observe the performance on moderate/large scale datasets and
note that S3GC significantly outperforms baselines such as k-means, MinCutPool, METIS, Node2vec,
DGI and DMoN. Notably, S3GC is ∼ 5% better on ogbn-arxiv, ∼ 1.5% better on Reddit and ∼ 4%
better on ogbn-products in terms of clustering NMI as compared to the next best method. The official
implementations of GRACE, BGRL, and MVGRL do not scale to datasets with >200k nodes, running
into Out of Memory (OOM) errors due to the non-scalable implementations, sub-optimal memory
utilization, or the non-scalable methodology. For example, MVGRL proposes diffusion matrix as
the alternate view of graph structure, which is a dense n× n matrix - hence, not scalable.

We also note that S3GC performs reasonably well in settings where the node attributes are not
very informative while the graph structure is useful, as evident from the performance on the Reddit
dataset. k-means on the node attributes gives an NMI of only ∼ 10% while methods like METIS and
Node2vec perform well using the graph structure. Methods like DGI which depend heavily on the
quality of the attributes, thus suffer a degradation in performance having a clustering NMI of only
∼ 30%, while S3GC which uses both the attributes and graph information effectively outperforms all
the other methods and generates clustering with an NMI of ∼ 80%.

ogbn-papers100M: Finally, we compare the performance of S3GC on the extra-large scale dataset
with 111M nodes and 1.6B edges in Table 4, and note that only k-means, Node2vec and DGI scale

8

Table 3: Comparison of clustering obtained by our method S3GC to several state-of-the-art
methods.. Metrics for evaluation across different datasets and experiments are Accuracy, NMI, CS,
F1 and ARI as described in Section 4. We use the official implementations provided by the authors
for all the methods and provide additional details in the Appendix. * denotes that the method ran Out
of Memory (OOM) while trying to run the experiments on the hardware as specified in Section 4. ||
indicates that the method did not converge.

Dataset Metric Baseline Ours

k-means MinCutPool METIS Node2vec DGI DMoN GRACE BGRL MVGRL S3GC

Cora

Accuracy 0.350 0.490 0.540 0.612 0.726 0.517 0.739 0.742 0.763 0.742
NMI 0.173 0.410 0.396 0.444 0.571 0.473 0.570 0.584 0.608 0.588
CS 0.171 0.407 0.384 0.449 0.568 0.406 0.562 0.595 0.617 0.586
F1 0.360 0.471 0.518 0.621 0.692 0.574 0.725 0.691 0.716 0.721

ARI 0.127 0.317 0.308 0.329 0.511 0.301 0.527 0.534 0.566 0.544

Citeseer

Accuracy 0.421 0.537 0.413 0.421 0.686 0.385 0.631 0.675 0.703 0.688
NMI 0.199 0.295 0.17 0.240 0.435 0.303 0.399 0.422 0.459 0.441
CS 0.205 0.296 0.167 0.264 0.436 0.251 0.398 0.423 0.460 0.441
F1 0.394 0.516 0.400 0.401 0.643 0.437 0.603 0.631 0.654 0.643

ARI 0.142 0.262 0.150 0.116 0.445 0.200 0.377 0.428 0.471 0.448

Pubmed

Accuracy 0.601 0.521 0.693 0.641 0.657 0.351 0.637 0.654 0.675 0.713
NMI 0.314 0.214 0.297 0.288 0.322 0.257 0.308 0.315 0.345 0.333
CS 0.344 0.247 0.291 0.288 0.332 0.179 0.321 0.325 0.355 0.337
F1 0.592 0.445 0.682 0.634 0.654 0.343 0.628 0.649 0.672 0.703

ARI 0.281 0.175 0.323 0.258 0.292 0.108 0.276 0.285 0.310 0.345

ogbn-arxiv

Accuracy 0.176 0.242 0.209 0.290 0.314 0.250 * 0.227 * 0.350
NMI 0.216 0.380 0.345 0.406 0.412 0.356 * 0.321 * 0.463
CS 0.198 0.344 0.312 0.370 0.379 0.326 * 0.293 * 0.420
F1 0.121 0.198 0.167 0.220 0.230 0.190 * 0.166 * 0.230

ARI 0.074 0.139 0.126 0.190 0.223 0.127 * 0.130 * 0.270

Reddit

Accuracy 0.089 || 0.524 0.709 0.224 0.529 * * * 0.736
NMI 0.114 || 0.727 0.792 0.306 0.628 * * * 0.807
CS 0.112 || 0.697 0.795 0.300 0.678 * * * 0.821
F1 0.068 || 0.495 0.551 0.183 0.260 * * * 0.560

ARI 0.029 || 0.470 0.640 0.170 0.502 * * * 0.745

ogbn-products

Accuracy 0.200 0.257 0.294 0.357 0.320 0.304 * * * 0.402
NMI 0.273 0.430 0.468 0.489 0.467 0.428 * * * 0.536
CS 0.236 0.360 0.401 0.425 0.405 0.367 * * * 0.463
F1 0.124 0.180 0.220 0.247 0.192 0.210 * * * 0.250

ARI 0.082 0.130 0.145 0.170 0.174 0.139 * * * 0.230

Table 4: Results of comparison of the embeddings generated by our method S3GC as compared
to different scalable methods on ogbn-papers100M with 111M nodes and 1.6B edges.

Method ogbn-papers100M

Accuracy NMI CS F1 ARI

k-means 0.144 0.368 0.342 0.101 0.074
Node2vec 0.175 0.380 0.352 0.099 0.112

DGI 0.151 0.416 0.386 0.111 0.096
S3GC (Ours) 0.173 0.453 0.430 0.118 0.110

to this dataset size and run in a reasonable time of ∼ 24 hours. We observe that S3GC seamlessly
scales to this dataset and significantly outperforms methods utilizing only the features (k-means) by
∼ 8.5%, only graph structure (Node2vec) by ∼ 7% and both (DGI) by ∼ 4% in terms of clustering
NMI on the ogbn-papers100M dataset.

Ablation Study on Hyperparameters: We perform detailed ablation studies to investigate the
stability of S3GC’s clustering and provide the same, in the Appendix. We find that S3GC is robust to its
few hyperparameters such as walk-length and batch size, enabling a near-optimal choice. We note that
smaller walk lengths∼ 5 are an optimal choice across datasets, since they are able to include the “right”
positive examples in the batch, while using larger walk lengths may degrade the performance due
to the inclusion of nodes belonging to other classes in the positive samples. This helps in scalability
as well, as we need to sample only a few positives per node. While small batches take more time
per-epoch but converge faster, larger batch sizes are better in per-epoch training time, but require more
epochs to converge. Both, however, enjoy similar performance in terms of the quality of the clustering.

4.3 Novelty of S3GC’s Design Choices
Our design choices have unique roles to play which make S3GC both scalable and accurate, by
effectively utilizing structure as well as node attribute information for learning clusterable representa-

9

Table 5: Comparison between encoder choices. S3GC GCN refers to S3GC where we use encoder
X̄ = PreLU(ÃXΘ) + PreLU(S̃kXΘ′). While S3GC I refers to encoder X̄ = I. We compare
with a structure-only method Node2Vec and an attribute-dependent method DGI.

Dataset Node2Vec DGI S3GC GCN S3GC I S3GC

ogbn-arxiv 0.406 0.412 0.460 0.444 0.463

reddit 0.792 0.306 0.777 0.808 0.807

ogbn-products 0.489 0.467 0.528 0.535 0.536

tions. We describe their importance and contrast with other possible design choices in this section,
highlighting how these choices put together work the most effectively empirically, contributing to
S3GC’s novelty.

Encoder: Using a multilayered GCN[28] to capture local graph structure along with attribute
information increases the space required to O(nnz(A)), making any method non-scalable for very
large graphs. This issue is also faced by existing methods like MVGRL [21] which compute the
entire diffusion matrix, and hence run into OOM errors on larger datasets as discussed earlier. Hence,
we use a 1-layered GCN and precompute AX , requiring only O(nd) space. Intuitively, we see that it
is important to utilize both the attribute information as well as structural information in the encoder.
With this motivation, we design S3GC to capture attribute information using a 1-layer GCN and
capture structural information using a learnable parameter I (eq. (2)). We empirically verify this
intuition with experiments using either just the attribute information (for example on the Reddit
dataset) or only the structural information (on the ogbn-arxiv dataset) and summarize our findings in
Table 5. We find that the design choice of S3GC’s Encoder is optimal for effectively capturing both
sources of information and removing any one source, leads to considerably suboptimal performance.

Positive and Negative nodes sampler: Using a random walk sampler offers several advantages - it
can be computed in a scalable fashion and it samples nodes from a k-hop neighbourhood. We consider
several intuitive sampling approaches and discuss the most intuitive and simple sampling approach
here: for a given node, we consider all its k−hop neighbourhood nodes as positives, and r randomly
sampled nodes as negative. This becomes non-scalable, since calculating a k-hop neighbourhood for
all the nodes in the graph has a significant computation cost (it is equivalent to computing non-zero
elements in Ak). Hence, for simplicity, we experiment with k = 1 and note that on the ogbn-arxiv
dataset, using this sampling scheme and a learnable embedding as the encoder X̄ = I gives only
0.252 NMI. This is significantly lesser than using a random walk generator for sampling and the
same encoding scheme X̄ = I, which gives an NMI of 0.444.

Loss function As we already observe in Section 3.5, using the same encoder X̄ = I but a different
loss function gives rise to more clusterable embeddings when using the SimCLR loss as compared to
using the Node2Vec loss. The experiments on real-world datasets also reinforce these observations,
as we see in Table 5 that S3GC I performs better than Node2Vec on ogbn-arxiv and ogbn-products
datasets - where both of the methods use the same encoder and random sampler but different loss
functions.

5 Discussion and Future Work
We introduced S3GC, a new method for scalable graph clustering with node feature side-information.
S3GC is a simple method based on contrastive learning along with a careful encoding of graph and
node features, but it is an effective approach across all scales of data. In particular, we showed that
S3GC is able to scale to graphs with 100M nodes while still ensuring SOTA clustering performance.

Limitations and Future Work: S3GC demonstrates empirically that on Stochastic Block Models
along with mixture-of-Gaussian features, it is able to identify the clusters accurately. Further
theoretical investigation into this standard setting and establishing error bounds for S3GC is of
interest. S3GC can be applied to graphs with heterogeneous nodes, but it cannot explicitly exploit the
information. Extension of S3GC to cluster graphs while directly exploiting heterogeneity of nodes is
another open problem. Finally, S3GC like all deep learning methods is susceptible to being unfairly
biased by a few “important" nodes. Ensuring stable clustering techniques with minimal bias for a
small number of nodes is another interesting direction.

10

References
[1] Carolyn J Anderson, Stanley Wasserman, and Katherine Faust. Building stochastic blockmodels.

Social networks, 14(1-2):137–161, 1992.

[2] Muhammed Ali Aydin, Baybars Karabekir, and Abdül Halim Zaim. Energy efficient clustering-
based mobile routing algorithm on wsns. IEEE Access, 9:89593–89601, 2021.

[3] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling, 2019.

[4] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep
clustering network. In Proceedings of The Web Conference 2020, pages 1400–1410, 2020.

[5] Béla Bollobás, TI Fenner, and AM Frieze. Long cycles in sparse random graphs. Graph theory
and combinatorics (Cambridge, 1983), Academic Press, London, pages 59–64, 1984.

[6] Amar Budhiraja, Gaurush Hiranandani, Darshak Chhatbar, Aditya Sinha, Navya Yarrabelly,
Ayush Choure, Oluwasanmi Koyejo, and Prateek Jain. Rich-Item Recommendations for Rich-
Users: Exploiting Dynamic and Static Side Information, 2020.

[7] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference on
computer vision (ECCV), pages 132–149, 2018.

[8] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms.
ACM computing surveys (CSUR), 38(1):2–es, 2006.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[10] Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. Advances in
Neural Information Processing Systems, 34, 2021.

[11] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[12] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors
a multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(11):1944–1957, 2007.

[13] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks, 2020.

[14] Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics
Reports, 659:1–44, 2016. Community detection in networks: A user guide.

[15] Alan Frieze and Colin McDiarmid. Algorithmic theory of random graphs. Random Structures
& Algorithms, 10(1-2):5–42, 1997.

[16] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33:21271–21284, 2020.

[18] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864, 2016.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

11

[20] Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-
supervised deep learning with spectral contrastive loss. Advances in Neural Information
Processing Systems, 34, 2021.

[21] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In International Conference on Machine Learning, pages 4116–4126. PMLR, 2020.

[22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification, 2015.

[24] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. arXiv preprint arXiv:1808.06670, 2018.

[25] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[26] Jyun-Yu Jiang, Patrick H Chen, Cho-Jui Hsieh, and Wei Wang. Clustering and constructing
user coresets to accelerate large-scale top-k recommender systems. In Proceedings of The Web
Conference 2020, pages 2177–2187, 2020.

[27] George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

[28] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[29] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[30] Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs and other discrete structures.
In In Proceedings of the ICML, pages 315–322, 2002.

[31] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
631–636, 2006.

[32] Weibo Liu, Zidong Wang, Xiaohui Liu, Wenbin Yue, and David Bell. A clustering approach to
triage categorization in a&e departments. In 2017 23rd International Conference on Automation
and Computing (ICAC), pages 1–6. IEEE, 2017.

[33] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[35] M. E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, 2006.

[36] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order
to the web. In Proceedings of the 7th International World Wide Web Conference, pages 161–172,
Brisbane, Australia, 1998.

[37] Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, and Chengqi Zhang. Learn-
ing graph embedding with adversarial training methods. IEEE transactions on cybernetics,
50(6):2475–2487, 2019.

12

[38] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi. Symmetric
graph convolutional autoencoder for unsupervised graph representation learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 6519–6528, 2019.

[39] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization, 2020.

[40] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[41] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[42] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[43] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[44] Peter Henry Andrews Sneath and Robert R. Sokal. Numerical Taxonomy: The Principles and
Practice of Numerical Classification. W. H. Freeman and Co., 1973.

[45] Tom A. B. Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic blockmod-
els for graphs with latent block structure. Journal of Classification, 14:75–100, 1997.

[46] Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
embeddings and structural graph representations. 2019.

[47] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. arXiv
preprint arXiv:1908.01000, 2019.

[48] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,
Remi Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs
via bootstrapping. In International Conference on Learning Representations, 2021.

[49] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with
graph neural networks. arXiv preprint arXiv:2006.16904, 2020.

[50] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, Jieren Cheng, et al. Deep
fusion clustering network. arXiv preprint arXiv:2012.09600, 2020.

[51] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[52] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[53] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019.

[54] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epidemic spreading
in real networks: An eigenvalue viewpoint. In 22nd International Symposium on Reliable
Distributed Systems, 2003. Proceedings., pages 25–34. IEEE, 2003.

[55] Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data, 2020.

[56] Rongkai Xia, Yan Pan, Lei Du, and Jian Yin. Robust multi-view spectral clustering via low-rank
and sparse decomposition. Proceedings of the AAAI Conference on Artificial Intelligence, 28(1),
Jun. 2014.

13

[57] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974–983, 2018.

[58] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in Neural Information Processing
Systems, 33:5812–5823, 2020.

[59] Tian Zhang and Usama Fayyad. Birch: a new data clustering algorithm and its applications.
Data Min. Knowl. Disc, pages 141–182, 1997.

[60] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, and Cheng Deng. Graph debiased contrastive
learning with joint representation clustering. In Proc. IJCAI, pages 3434–3440, 2021.

[61] Yuchen Zhao and Philip S Yu. On graph stream clustering with side information. In Proceedings
of the 2013 SIAM International Conference on Data Mining, pages 139–150. SIAM, 2013.

[62] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We have
provided the github repo where code will be updated.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] see Section 4

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] see Appendix

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] we use standard benchmarks available publicly
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

Appendix

This appendix is segmented into three key parts.

1. Section A discusses additional implementation details. In particular, an overview of the
S3GC method is provided, method-specific overheads are discussed in detail and detailed
hyper-parameter settings for our method and the main baselines reported in Table 3 are
provided.

2. Section B reports additional dataset details, provides additional visualizations, ablation
studies and main results with standard deviation values (not included in the main paper due
to lack of space).

3. Appendix C provides theoretical analysis of the embedding produced by our method.

A Additional Implementation Details

A.1 Overview of our method

Figure 2: Overview of the proposed method S3GC

We provide an overview of the architecture and training methodology of S3GC in Figure 2.

A.2 Time and Memory Overheads for Various Methods

Table 6: Time and Space Complexity of different methods
Method Time Complexity (per epoch) Space Complexity

MinCutPool O(nk +m) O(nk(n+ k))

METIS O(n+m+ klog(k)) O(n+m)

Node2vec O(rd) O(nd)
DGI O(md+ nd2) O(m+ nd+ d2)

DMoN O(mk + nk) O(m+ nk)

GRACE O(n2d+md+ d2) O(m+ nd)

BGRL O(md+ nd2) O(m+ nd+ d2)

MVGRL O(n2d+ nd2) O(n2 + nd+ d2)

S3GC O(nsd2) O(nd+ rsd+ d2)

In Table 6, we compare the time and space complexities of all the methods used in Table 3, and
observe that S3GC performs better in terms of both time and memory complexity as compared to the
other self-supervised learning methods that utilise both graph and feature information. Recall that n

16

is the number of nodes in the graph, m is the number of edges, d is the dimensionality of features, r
is the batch size, k is the number of classes, and s is the average degree per node.

For DGI, GRACE, and BGRL, the mentioned complexities are using full batch training. We use
batched training on large datasets for DGI using GraphSAGE[19] which reduces time complexity to
O(nfd2) and space complexity to O(rfd+ d2), which is competitive with our method. Here, f is
the number of sampled neighbours in GraphSAGE per node.

A.3 Hyperparameter Configurations for our method and the baselines

We use the k-means implementation from sklearn4, METIS 5.1.0 from the official source5 and
Node2vec and DGI implementations from PyTorch geometric6. The sources for all the relevant
baselines and their implementations are mentioned in Table 7

Table 7: URL’s and commit numbers to run baseline codes
Method URL Commit

MinCutPool github.com/FilippoMB/MinCutPool b27914
Node2vec github.com/pyg-team/pytorch_geometric/blob/master/examples/node2vec.py 66b1780

DGI github.com/pyg-team/pytorch_geometric/blob/master/examples/infomax_inductive.py 66b1780
DMoN github.com/google-research/google-research/tree/master/graph_embedding/dmon 16b0d9c

GRACE github.com/CRIPAC-DIG/GRACE 51b4496
BGRL github.com/nerdslab/bgrl dec99f8

MVGRL github.com/kavehhassani/mvgrl 628ed2b

We use the Adam optimizer for S3GC and fix the embedding dimension to be the same across methods
for a fair comparison, namely we set the embedding dimension d to be 256 for all the methods for all
datasets, except ogbn-papers100M where we use an embedding dimension d = 64 due to memory
and scalability constraints. For all the methods we set the number of clusters equal to the number of
classes. For trainable methods, a grid search was performed over hyperparameters specific to each
method which is summarized below, while the other parameters are set to the default values:

1. MinCutPool: Learning Rate - {0.005, 0.001, 0.0005, 0.0001}, Num of Clusters = # of
classes

2. Node2vec: Learning Rate - {0.01, 0.001}, Walk length - {10, 20, 40, 80 }, Context Size -
{5, 10, 20, 40}

3. DGI: Learning Rate - {0.005, 0.001, 0.0005, 0.0001}, 3-hop Neighborhood sampling size
(for large datasets) - {{15, 10, 5}, {25, 20, 10}}

4. DMoN: Learning Rate - {0.01, 0.005, 0.001, 0.0005, 0.0001}, Dropout - {0.0, 0.1, 0.2, 0.3,
0.4, 0.5}

5. GRACE: all hyperparameters as default provided by the authors for each dataset

6. BGRL: Learning Rate - {0.0005, 0.0001, 0.00005, 0.00001}, Dropout - {0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6}

7. MVGRL: Learning Rate - {0.005, 0.001, 0.0005, 0.0001}

8. S3GC: Learning Rate - {0.01, 0.001}, Batch Size - {256, 512, 2048, 4096, 10000, 20000},
Walk Length - {3, 5, 10, 20, 50}, Number of walks per node - {10, 15, 20}

B Dataset Statistics and Additional Experimental Results

B.1 Datasets

We use 7 datasets of three different scales of sizes, the statistics for which are provided in Table 2.
We provide more information regarding the source and nature of the datasets as follows:

4https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
5http://glaros.dtc.umn.edu/gkhome/metis/metis/download
6https://pytorch-geometric.readthedocs.io/

17

https://github.com/FilippoMB/Spectral-Clustering-with-Graph-Neural-Networks-for-Graph-Pooling
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/node2vec.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/infomax_inductive.py
https://github.com/google-research/google-research/tree/master/graph_embedding/dmon
https://github.com/CRIPAC-DIG/GRACE
https://github.com/nerdslab/bgrl
https://github.com/kavehhassani/mvgrl
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/download
https://pytorch-geometric.readthedocs.io/

1. Cora, Citeseer and Pubmed7: These are three citation network datasets consisting of
sparse bag-of-words feature vectors for each document. The edges denote citation links
between the documents and are treated as undirected edges following the setup in [28]. Each
node has a label class associated with the document.

2. ogbn-arxiv8: It is a citation dataset from the OGB node property prediction suite [25]
representing the network of Computer Science ARXIV papers as indexed by MAG, where
each node is a paper and each edge indicates a citation. Each node has an associated
label which is one of the subject area from the 40 subject areas in ARXIV Computer
Science papers. Feature vectors of the nodes are obtained from an average of word2vec [34]
embeddings of the title and abstract.

3. Reddit9: The dataset is constructed from Reddit posts made in month of September 2014,
with each node representing a post and node labels representing the community that the
post belonged to. Nodes are connected based on common users commenting on both the
posts, and node features are averaged 300-dimensional GloVe word vectors of the content
associated with the posts such as title, comments, score and number of comments. More
information regarding the setup can be found in [19].

4. ogbn-products10: It is an Amazon co-purchasing network dataset where nodes represent
Amazon products and edges indicate that the two products are purchased together. Each
node has an associated label which denotes the category of the product. Node features are
dimensionality reduced bag of words features of the product descriptions, following the
setup in OGB [25].

5. ogbn-papers100M11: It is a very large scale citation network dataset consisting of 111
million papers indexed by MAG. Node features and graph structure for this dataset is created
in the same way as done for the ogbn-arxiv dataset in OGB [25], while labels are one of the
172 subject areas of a subset of papers published on ARXIV.

B.2 Visualisation of embeddings for Synthetic Data Experiment

To understand the performance of S3GC as compared to the other methods in learning representations
on Synthetic datasets, we observe the quality of the generated embeddings using t-SNE[51] projected
in 2-dimensions for the setup discussed in Table 1 and Section 3.5. We note that the first row refers to
a high quality graph with strong attributes, the second row refers to a weak graph with weak attributes,
and the third row refers to a weak graph with strong attributes. We note that all methods perform
similarly in the first setting when both the graph and attributes are of good quality, however show
varied performance when either or both of them are varied in quality. Hence, Figure 3 visualizes the
performance of Node2vec, DGI and S3GC in the second and the third settings. We observe from
Fig. 3a that Node2vec doesn’t learn much distinguishable representations when the quality of the
graph is weak, which can be attributed to Node2vec being dependent only on the graph structure
for learning embeddings. Note that we also perform an experiment with S3GC using only the weak
graph information (without using any attributes), denoted by S3GC-I and visualized in Figure 3b.
We observe that S3GC-I learns more “cluster-like" representations as compared to Node2vec even
when utilizing only the weak quality graph information, indicating that the loss formulation in S3GC
promotes learning clusterable representations. Then, we compare the performance of DGI and S3GC
in the second and third settings, and visualize the learnt representations in Figures 3c to 3f. We
observe that S3GC learns representations that correspond to more well-defined clusters as compared
to DGI in each of the settings, indicating that S3GC is able to use both the graph and attribute
information more efficiently, even in settings with varied data quality.

B.3 Ablation on Batch Size

To understand the effect of varying the batch size in S3GC, we perform an ablation study on the
ogbn-arxiv dataset by keeping the other parameters such as learning rate and walk length constant,

7https://github.com/tkipf/gcn/tree/master/gcn/data
8https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
9http://snap.stanford.edu/graphsage/reddit.zip

10https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
11https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M

18

https://github.com/tkipf/gcn/tree/master/gcn/data
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
http://snap.stanford.edu/graphsage/reddit.zip
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

(a) Weak graph, Node2Vec

30 20 10 0 10 20 30

30

20

10

0

10

20

30

(b) Weak graph, S3GC-I (Ours)

30 20 10 0 10 20 30

30

20

10

0

10

20

30

(c) Weak graph, weak attributes -
DGI

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

(d) Weak graph, weak attributes -
S3GC (Ours)

30 20 10 0 10 20 30

30

20

10

0

10

20

30

40

(e) Weak graph, strong attributes -
DGI

30 20 10 0 10 20 30

30

20

10

0

10

20

30

40

(f) Weak graph, strong attributes -
S3GC (Ours)

Figure 3: Visualisation of embeddings.

0 10 20 30 40 50
Epoch

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

NM
I

S3GC: Normalized Mutual Information (NMI) vs Epoch

Batch Size
256
512
1024
2048

Figure 4: Ablation study on the effect of using different batch sizes in S3GC on the ogbn-arxiv
dataset.

while varying the batch size. We train S3GC for different batch sizes from {256, 512, 1024, 2048}
and report the clustering NMI vs Epoch performance corresponding to each configuration in Figure 4.
We observe that smaller batch sizes show faster convergence, and hence require lesser epochs to reach
a reasonably good clustering performance in terms of NMI after which the performance saturates.
Larger batches require more epochs however also require lesser per-epoch time as compared to
smaller batches. We do note that the final performance corresponding to the different batch sizes are
very similar.

B.4 Ablation on Walk length

To understand the effect of varying the length of random walks in S3GC for the sampling of positives,
we perform an ablation study on the ogbn-arxiv dataset by keeping the other parameters such as
learning rate and batch size constant, while varying the walk length. We train S3GC for different
walk lengths from {3, 5, 10, 20, 50, 100} and report the clustering NMI vs Epoch performance
corresponding to each configuration in Figure 5. We observe that smaller walk lengths upto ∼ 5
show best performance in terms of the clustering NMI, after which the performance starts to degrade

19

0 10 20 30 40 50
Epoch

0.36

0.38

0.40

0.42

0.44

0.46

0.48

NM
I

S3GC: Normalized Mutual Information (NMI) vs Epoch

Walk Length
3
5
10
20
50
100

Figure 5: Ablation study on the effect of using different walk lengths in S3GC on the ogbn-arxiv
dataset.

with larger walk lengths. This can be attributed to the inclusion of unrelated or “farther-away" nodes
belonging to different classes as positives in the batch. We also observe that the walk length parameter
∼ 5 is optimal across datasets and hence does not require significant hyperparameter tuning.

B.5 Main table results with mean and standard deviation values

We provide detailed results for all the methods with mean and standard deviation values in the
evaluation of all the metrics across datasets, in Table 8 and Table 10 respectively. We observe similar
results as discussed in the main paper.

Table 8: Results of comparison of the embeddings generated by our method S3GC as compared
to different scalable methods on ogbn-papers100M with 111M nodes and 1.6B edges, with mean
and std values.

Method ogbn-papers100M

Accuracy NMI CS F1 ARI

k-means 0.144±0.004 0.368±0.004 0.342±0.003 0.101±0.004 0.074±0.007
Node2vec 0.175±0.005 0.380±0.004 0.352±0.004 0.099±0.009 0.112±0.009

DGI 0.151±0.005 0.416±0.005 0.386±0.003 0.111±0.010 0.096±0.008
S3GC (Ours) 0.173±0.004 0.453±0.005 0.430±0.003 0.118±0.004 0.110±0.007

B.6 Ablation on the encoder components

We provide ablation on different components of the encoder used in S3GC and their affect. The
encoder has three parts: a) σ(AXθ), b) σ(SXθ′), and c) I, where σ = PReLU activation. We
study each combination’s affect on Cora, Citeseet, Pubmed, ogbn-arxiv, Reddit, and ogbn-products
in Table 9. We see that having only attribute information can cause suboptimal performance where
attributes aren’t strong enough, for example in Reddit dataset. While using only attribute information
will not take benefit of attributes at all, like in Cora, Citeseer, ogbn-arxiv, and ogbn-products. The
use of diffusion matrix S seem to be more helpful in smaller datasets like Cora and Pubmed, but
does provide marginal benefits in larger datasets like ogbn-arxiv and ogbn-products. In order to save
memory, one can remove σ(SXθ′) and still have reasonable good performance.

C Theoretical analysis of embedding properties

A recent work [46] formalizes the concept of Positional and Structural embeddings, their properties,
and their relation to each other. In this section, we follow the conceptual description from this
work and prove that S3GC produces positional embeddings rather than structural embeddings. The
problem of community detection utilizes the close-knit behavior of nodes in one community, and

20

Table 9: Results of different combinations of S3GC encoder. The reported numbers are NMI on
clustering k=#clusters of the respective dataset. σ is PReLU activation

Encoder Cora Citeseer Pubmed ogbn-arxiv reddit ogbn-products

I 0.350 0.005 0.174 0.444 0.808 0.535
σ(AXθ) 0.561 0.430 0.331 0.457 0.775 0.533
σ(SXθ′) 0.568 0.428 0.352 0.440 0.707 0.500

σ(AXθ) + σ(SXθ′) 0.572 0.423 0.330 0.460 0.777 0.528
σ(AXθ) + I 0.575 0.426 0.327 0.459 0.810 0.531
σ(SXθ) + I 0.580 0.431 0.330 0.460 0.806 0.540

σ(AXθ) + σ(SXθ) + I 0.588 0.441 0.333 0.463 0.807 0.536

Table 10: Comparison of clustering obtained by our method S3GC to several state-of-the-art
methods, with mean and std values. Metrics for evaluation across different datasets and experiments
are Accuracy, NMI, CS, F1 and ARI as described in Section 4. We use the official implementations
provided by the authors for all the methods and as mentioned in the Appendix Section A.3. * denotes
that the method ran Out of Memory (OOM) while trying to run the experiments on the hardware as
specified in Section 4. || indicates that the method did not converge.

Dataset Metric Baseline Ours

k-means MinCutPool METIS Node2vec DGI DMoN GRACE BGRL MVGRL S3GC

Cora

Accuracy 0.350±0.017 0.490±0.025 0.540±0.015 0.612±0.011 0.726±0.017 0.517±0.029 0.739±0.010 0.742±0.015 0.763±0.013 0.742 ± 0.008
NMI 0.173±0.015 0.410±0.021 0.396±0.014 0.444±0.007 0.571±0.013 0.473±0.010 0.570±0.012 0.584±0.011 0.608±0.010 0.588± 0.009
CS 0.171±0.015 0.407±0.021 0.384±0.016 0.449±0.005 0.568±0.013 0.406±0.006 0.562±0.012 0.595± 0.015 0.617±0.014 0.586± 0.013
F1 0.360±0.014 0.471±0.030 0.518±0.015 0.621±0.009 0.692±0.02 0.574±0.041 0.725±0.008 0.691± 0.010 0.716±0.014 0.721± 0.015

ARI 0.127±0.010 0.317±0.031 0.308±0.013 0.329±0.024 0.511±0.04 0.301±0.012 0.527±0.012 0.534±0.015 0.566±0.014 0.544 ± 0.012

Citeseer

Accuracy 0.421±0.009 0.537±0.034 0.413±0.010 0.421±0.011 0.686±0.010 0.385±0.017 0.631±0.003 0.675± 0.009 0.703± 0.014 0.688± 0.010
NMI 0.199±0.010 0.295±0.040 0.170±0.015 0.240±0.007 0.435±0.009 0.303±0.027 0.399±0.003 0.422± 0.013 0.459± 0.010 0.441 ± 0.011
CS 0.205±0.009 0.296±0.041 0.167±0.011 0.264±0.011 0.436±0.008 0.251±0.022 0.398±0.004 0.423± 0.010 0.460± 0.013 0.441 ± 0.010
F1 0.394±0.011 0.516±0.055 0.400±0.010 0.401±0.016 0.643±0.009 0.437±0.024 0.603±0.002 0.631± 0.011 0.654± 0.010 0.643 ± 0.009

ARI 0.142±0.012 0.262±0.023 0.150±0.013 0.116±0.014 0.445±0.016 0.200±0.028 0.377±0.003 0.428± 0.012 0.471± 0.013 0.448 ± 0.009

Pubmed

Accuracy 0.601±0.005 0.521±0.042 0.693±0.008 0.641±0.003 0.657±0.010 0.351±0.018 0.637±0.004 0.654± 0.010 0.675± 0.011 0.713±0.009
NMI 0.314±0.007 0.214±0.025 0.297±0.009 0.288±0.008 0.322±0.008 0.257±0.019 0.308±0.003 0.315± 0.009 0.345± 0.010 0.333±0.010
CS 0.344±0.007 0.247±0.027 0.291±0.009 0.288±0.008 0.332±0.007 0.179±0.013 0.321±0.002 0.325± 0.008 0.355± 0.009 0.337±0.008
F1 0.592±0.006 0.445±0.035 0.682±0.007 0.634±0.005 0.654±0.009 0.343±0.021 0.628±0.008 0.649± 0.011 0.672± 0.010 0.703±0.009

ARI 0.281±0.008 0.175±0.030 0.323±0.010 0.258±0.009 0.292±0.020 0.108±0.012 0.276±0.005 0.285± 0.010 0.310± 0.011 0.345±0.009

ogbn-arxiv

Accuracy 0.176±0.004 0.242±0.010 0.209±0.009 0.290±0.012 0.314±0.019 0.250±0.007 * 0.227±0.010 * 0.350±0.012
NMI 0.216±0.004 0.380±0.008 0.345±0.007 0.406±0.003 0.412±0.008 0.356±0.008 * 0.321±0.005 * 0.463±0.003
CS 0.198±0.004 0.344±0.007 0.312±0.007 0.370±0.002 0.379±0.005 0.326±0.009 * 0.293±0.006 * 0.420±0.004
F1 0.121±0.005 0.198±0.009 0.167±0.008 0.220±0.005 0.230±0.009 0.190±0.005 * 0.166±0.007 * 0.230±0.009

ARI 0.074±0.005 0.139±0.005 0.126±0.009 0.190±0.014 0.223±0.027 0.127±0.003 * 0.130±0.012 * 0.270±0.016

Reddit

Accuracy 0.089±0.004 || 0.524±0.013 0.709±0.051 0.224±0.009 0.529±0.025 * * * 0.736±0.022
NMI 0.114±0.003 || 0.727±0.014 0.792±0.021 0.306±0.012 0.628±0.035 * * * 0.807±0.011
CS 0.112±0.003 || 0.697±0.015 0.795±0.018 0.300±0.012 0.678±0.032 * * * 0.821±0.011
F1 0.068±0.005 || 0.495±0.020 0.551±0.020 0.183±0.010 0.260±0.030 * * * 0.560±0.013

ARI 0.029±0.003 || 0.470±0.019 0.640±0.073 0.170±0.023 0.502±0.040 * * * 0.745±0.023

ogbn-products

Accuracy 0.200±0.004 0.257±0.017 0.294±0.006 0.357±0.011 0.320±0.012 0.304±0.007 * * * 0.402±0.012
NMI 0.273±0.004 0.430±0.020 0.468±0.005 0.489±0.006 0.467±0.006 0.428±0.008 * * * 0.536±0.003
CS 0.236±0.003 0.360±0.020 0.401±0.005 0.425±0.006 0.405±0.006 0.367±0.005 * * * 0.463±0.003
F1 0.124±0.004 0.180±0.010 0.220±0.006 0.247±0.007 0.192±0.010 0.210±0.008 * * * 0.250±0.009

ARI 0.082±0.005 0.130±0.015 0.145±0.007 0.170±0.009 0.174±0.011 0.139±0.004 * * * 0.230±0.015

hence positional embeddings encourage such nodes to be clustered together owing to their positional
proximity in the original graph.

Before we prove our result, we introduce some basic notations, borrowing from [46]. Readers are
encouraged to refer to [46] for a more detailed description of the definitions and the background.

We consider a graph G = (V,X,E), where V is the set of nodes and |V | = n, E ∈ Rn×n is the
set of edges in V × V , and X ∈ Rn×d are node attributes. Let A ∈ Rn×n be the corresponding
adjacency matrix.
Definition 1 (Definition 2, [46] - Permutation Action π). A permutation action π is a function that
acts on any vector, matrix, or tensor defined over the nodes V , e.g., (Zi)i∈V , and outputs an
equivalent vector, matrix, or tensor with the order of the nodes permuted. We define Πn as the set of
all n! such permutation actions.
Definition 2 (Definition 3, [46] - Orbits). An orbit is the result of a group action Πn acting on
elements of a group corresponding to bijective transformations of the space that preserve some
structure of the space. The orbit of an element is the set of equivalent elements under action Πn, i.e.,
Πn(x) = {π(x)|π ∈ Πn}.
Definition 3 (Definition 4, [46] - G-equivariant and G-invariant functions). Let Σn be the set of all
possible attributed graphs G of size n ≥ 1. More formally, Σn is the set of all tuples (A,X) with
adjacency tensors A and corresponding node attributes X for n nodes. A function g : Σn → Rn×· is
G-equivariant w.r.t. valid permutations of the nodes V , whenever any permutation action π ∈ Πn in
the Σn space associates with the same permutation action of the nodes in the Rn×· space. A function
g : Σn → Rn×· is G-invariant whenever it is invariant to any permutation action π ∈ Πn in Σn.

21

Definition 4 (Definition 5, [46] - Graph orbits and Graph isomorphism). Let G = (A,X) be a graph
with n nodes, and let Πn(G) = {(A′, X ′) : (A′, X ′) = (π(A), π(X)),∀π ∈ Πn} be the set of all
equivalent (isomorphic) graphs under the permutation action π. Two graphs G1 = (A1, X1) and
G2 = (A2, X2) are said isomorphic iff Πn(G1) = Πn(G2).

Definition 5 (Definition 6, [46] - Node orbits & Node isomorphism). The equivalence classes of the
vertices of a graph G under the action of automorphisms are called vertex orbits. If two nodes are in
the same node orbit, we say that they are isomorphic.

Intuitively, Definition 5 says that two nodes are isomorphic if the “view" of the graph with respect to
these nodes are the same. In other words, if the nodes’ identities’ are hidden, one can’t distinguish
between two isomorphic nodes as the graph structure would look exactly the same with respect to
their positions.
Definition 6 (Definition 8, [46] - Structural node representations). The structural representation
of node v ∈ V in a graph G = (A,X) is the G-invariant representation Γ(v,A,X), where Γ :
V × Σn → Rd, d ≥ 1 such that ∀u ∈ V , Γ((u,A,X)) = Γ(π(u), π(A), π(X)) for all permutation
actions ∀π ∈ Πn. Moreover, for any two isomorphic nodes u, v ∈ V,Γ(u,A,X) = Γ(v,A,X).

Intuitively, Definition 6 implies that all isomorphic nodes (nodes which are structurally same) have
the same embedding, and this embedding is independent of the permutation of nodes and node
features input to the embedding function Γ. We now define positional embedding.
Definition 7 (Definition 12 [46], (Positional) Node embedding). The (positional) node embed-
dings of a graph G = (A,X) are defined as joint samples of random variables (Zi)i∈V |A,X ∼
p(·|A,X), Zi ∈ Rd, d ≥ 1, where p(·|A,X) is a G-equivariant probability distribution on A and X,
that is, π(p(·|A,X)) = p(·|π(A), π(X)) for any permutation π ∈ Πn

Definition 7 says that for a given node, the distribution of its embedding remains the same under
permutation.

We now prove that S3GC gives positional embeddings and not structural embeddings. For simplicity,
let us asssume that given a fixed initialization of Θ,Θ′, I (eq. (2)), the algorithm is deterministic.
The assumption doesn’t affect the final result, as the randomness over a random sampler would
simply result in an additional expectation while giving the same final result.

First, notice that our model is permutation equivariant. Given (A,X) or (π(A), π(X)) and
a fixed initialization, our training will result in the embeddings being learnt as X̄ and π(X̄)
respectively. This is because with permutations, the structure of the graph doesn’t change. Hence,
positive and negative node sampler will receive the same neighbourhood for any node, and would
sample nodes in the same fashion. Also, the embedding output of encoder simply gets permuted:

Encoder =PreLU(π(A)π(X)Θ) + PreLU(π(S)π(X)Θ′)) + π(I)
=π(PreLU(AXΘ)) + π(PreLU(SXΘ′)) + π(I)
=π(PreLU(AXΘ) + (PreLU(SXΘ′) + I)
=π(X̄)

Now, given the initialization Θ ∼ N (0, I),Θ′ ∼ N (0, I), I ∼ N (0, I), a deterministic permutation
equivariant function will result in permutation equivariant output distributions. Thus, we can say
that π(p(·|(A,X))) = p(·|π(A), π(X)). Having randomness over a random sampler hence keeps
the above property intact, owing to the permutation equivariant way of training.

We now show that our method doesn’t produce structural embedding. We can take a toy example
to demonstrate this. Let us consider a graph G consisting of two disconnected cliques of equal
size. Let’s also say that X = 0. Therefore, our method will boil down to a contrastive learning
framework similar to Node2Vec, where we initialize I ∼ N (0, I). But because any two nodes in
the two different cliques are always negative samples of each other, the contrastive loss forces them
to be dissimilar. Thus, structurally symmetric nodes in two different cliques do not learn the same
embedding and hence our method does not produce structural embeddings.

22

	Introduction
	Related Work
	S3GC: Scalable Self-Supervised Graph Contrastive Clustering
	Problem Statement and Notations
	Challenges in Graph Clustering
	S3GC: Scalable Self Supervised Graph Clustering – Methodology
	Algorithm
	Synthetic Dataset – Stochastic Blockmodel with Gaussian Features

	Empirical Evaluation
	Datasets and Setup
	Results
	Novelty of S3GC's Design Choices

	Discussion and Future Work
	Additional Implementation Details
	Overview of our method
	Time and Memory Overheads for Various Methods
	Hyperparameter Configurations for our method and the baselines

	Dataset Statistics and Additional Experimental Results
	Datasets
	Visualisation of embeddings for Synthetic Data Experiment
	Ablation on Batch Size
	Ablation on Walk length
	Main table results with mean and standard deviation values
	Ablation on the encoder components

	Theoretical analysis of embedding properties

