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Abstract

We propose and analyze a reinforcement learning principle that approximates the
Bellman equations by enforcing their validity only along an user-defined space of
test functions. Focusing on applications to model-free offline RL with function
approximation, we exploit this principle to derive confidence intervals for off-policy
evaluation, as well as to optimize over policies within a prescribed policy class.
We prove an oracle inequality on our policy optimization procedure in terms of
a trade-off between the value and uncertainty of an arbitrary comparator policy.
Different choices of test function spaces allow us to tackle different problems
within a common framework. We characterize the loss of efficiency in moving
from on-policy to off-policy data using our procedures, and establish connections
to concentrability coefficients studied in past work. We examine in depth the
implementation of our methods with linear function approximation, and provide
theoretical guarantees with polynomial-time implementations even when Bellman
closure does not hold.

1 Introduction

Markov decision processes (MDP) provide a general framework for optimal decision-making in
sequential settings (e.g., [Put94, Ber95a, Ber95b]). Reinforcement learning refers to a general
class of procedures for estimating near-optimal policies based on data from an unknown MDP
(e.g., [BT96, SB18]). Different classes of problems can be distinguished depending on our access
to the data-generating mechanism. Many modern applications of RL involve learning based on a
pre-collected or offline dataset. Moreover, the state-action spaces are often sufficiently complex that
it becomes necessary to implement function approximation. In this paper, we focus on model-free
offline reinforcement learning (RL) with function approximation, where prior knowledge about the
MDP is encoded via the value function. In this setting, we focus on two fundamental problems: (1)
offline policy evaluation—namely, the task of accurately predicting the value of a target policy; and
(2) offline policy optimization, which is the task of finding a high-performance policy.
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There are various broad classes of approaches to off-policy evaluation, including importance sam-
pling [Pre00, TB16, JL16, LLTZ18], as well as regression-based methods [LP03, MS08, CJ19].
Many methods for offline policy optimization build on these techniques, with a line of recent pa-
pers including the addition of pessimism [JYW21, XCJ+21, ZWB21]. We provide a more detailed
summary of the literature in Appendix A.3.

In contrast, this work investigates a different model-free principle—different from importance
sampling or regression-based methods—to learn from an offline dataset. It belongs to the class
of weight learning algorithms, which leverage an auxiliary function class to either encode the
marginalized importance weights of the target policy [LLTZ18, XJ20b], or estimates of the Bellman
errors [ASM08, CJ19, XJ20b]. Some work has considered kernel classes [FRTL20] or other weight
classes to construct off-policy estimators [UHJ20] as well as confidence intervals at the population
level [JH20]. However, these works do not examine in depth the statistical aspects of the problem, nor
elaborate upon the design of the weight function classes.1 The last two considerations are essential to
obtaining data-dependent procedures accompanied by rigorous guarantees, and to provide guidance
on the choice of weight class, which are key contributions of this paper.

For space reasons, we motivate our approach in the idealized case where the Bellman operator is
known in Appendix A.1, and compare with the weight learning literature at the population level
in Appendix A.2. Let us summarize our main contributions in the following three paragraphs.
Conceptual contributions: Our paper makes two novel contributions of conceptual nature:

1. We propose a method, based on approximate empirical orthogonalization of the Bellman residual
along test functions, to construct confidence intervals and to perform policy optimization.

2. We propose a sample-based approximation of such principle, based on self-normalization and
regularization, and obtain general guarantees for parametric as well as non-parametric problems.

The construction of the estimator, its statistical analysis, and the concrete consequences (described
in the next paragraph) are the major distinctions with respect to past work on weight learning
methods [UHJ20, JH20]. Our analysis highlights the statistical trade-offs in the choice of the test
functions. (See Appendix A.2 for comparison with past work at the population level.)
Domain-specific results: In order to illustrate the broad effectiveness and applicability of our general
method and analysis, we consider several domains of interest. We show how to recover various results
from past work—and to obtain novel ones—by making appropriate choices of the test functions and
invoking our main result. Among these consequences, we discuss the following:

1. When marginalized importance weights are available, they can be used as test class. In this case
we recover a similar results as the paper [XJ20b]; however, here we only require concentrability
with respect to a comparator policy instead of over all policies in the class.

2. When some knowledge of the Bellman error class is available, it can be used as test class. Similar
results have appeared previously either with stronger concentrability [CJ19] or in the special case
of Bellman closure [XCJ+21].

3. We provide a test class that projects the Bellman residual along the error space of the Q class. The
resulting procedure is as an extension of the LSTD algorithm [BB96] to non-linear spaces, which
makes it a natural approach if no domain-specific knowledge is available. A related result is the
lower bound by [FKSLX21], which proves that without Bellman closure learning is hard even
with small density ratios. In contrast, our work shows that learning is still possible even with large
density ratios.

4. Finally, our procedure inherits some form of “multiple robustness”. For example, the two test
classes corresponding to Bellman completeness and marginalized importance weights can be used
together, and guarantees will be obtained if either Bellman completeness holds or the importance
weights are correct. We examine this issue in Section 4.4.

Linear setting: We examine in depth an application to the linear setting, where we propose the first
computationally tractable policy optimization procedure without assuming Bellman completeness.

1For instance, the paper [FRTL20] only shows validity of ther intervals, not a performance bound; on the
other hand, the paper [JH20] gives analyses at the population level, and so does not address the alignment of
weight functions with respect to the dataset in the construction of the empirical estimator, which we do via
self-normalization and regularization. This precludes obtaining the same type of guarantees that we present here.
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The closest result here is given in the paper [ZWB21], which holds under Bellman closure. Our
procedure can be thought of making use of LSTD-type estimates so as to establish confidence intervals
for the projected Bellman equations, and then using an iterative scheme for policy improvement.

2 Background and set-up
We begin with some notation used throughout the paper. For a given probability distribution ⇢

over a space X , we define the L
2(⇢)-inner product and semi-norm as hf1, f2i⇢ = E⇢[f1f2], and

kf1k⇢ =
p
hf1, f1i⇢. The identity function that returns one for every input is denoted by 1. We

frequently use notation such as c, c0, c̃, c1, c2 etc. to denote constants that can take on different values
in different sections of the paper.

2.1 Markov decision processes and Bellman errors
We focus on infinite-horizon discounted Markov decision processes [Put94, BT96, SB18] with
discount factor � 2 [0, 1), state space S , and an action set A. For each state-action pair (s, a), there
is a reward distribution R(s, a) supported in [0, 1] with mean r(s, a), and a transition P(· | s, a).
A (stationary) stochastic policy ⇡ maps states to actions. For a given policy, its Q-function is the
discounted sum of future rewards based on starting from the pair (s, a), and then following the
policy ⇡ in all future time steps Q⇡(s, a) = r(s, a) +

P1
h=0 �

hE[rh(Sh, Ah) | (S0, A0) = (s, a)],
where the expectation is taken over trajectories with Ah ⇠ ⇡(· | Sh), and Sh+1 ⇠ P(· |
Sh, Ah) for h = 1, 2, . . .. We also use Q

⇡(s,⇡) = EA⇠⇡(·|s)Q
⇡(s,A) and define the Bellman

evaluation operator as (T ⇡
Q)(s, a) = r(s, a) + ES+⇠P(·|s,a)Q(S+

,⇡). The value function satisfies
V

⇡(s) = Q
⇡(s,⇡). In our analysis, we assume that policies have action-value functions that satisfy

the uniform bound sup(s,a)|Q⇡(s, a)|  1. We are also interested in approximating optimal poli-
cies, whose value and action-value functions are defined as V

?(s) = V
⇡?

(s) = sup⇡ V
⇡(s) and

Q
?(s, a) = Q

⇡?

(s, a) = sup⇡ Q
⇡(s, a).

We assume that the starting state S0 is drawn according to ⌫start and study V
⇡ = ES0⇠⌫start [V

⇡(S0)].
The discounted occupancy measure associated with a policy ⇡ is defined as d⇡(s, a) = (1 �
�)
P1

h=0 �
hPh[(Sh, Ah) = (s, a)]. We adopt the shorthand notation E⇡ for expectations over

d⇡. For any functions f, g : S ⇥ A ! R, we make frequent use of the shorthands E⇡[f ]
def
=

E(S,A)⇠d⇡
[f(S,A)], and hf, gi⇡

def
= E(S,A)⇠d⇡

⇥
f(S,A) g(S,A)

⇤
. Note moreover that we have

h1, fi⇡ = E⇡[f ] where 1 denotes the identity function.

For a given Q-function and policy ⇡, let us define the temporal difference error (or TD error)
associated with the sample z = (s, a, r, s+) and the Bellman error at (s, a)

(�⇡Q)(z)
def
= Q(s, a)� r � �Q(s+,⇡), (B⇡

Q)(s, a)
def
= Q(s, a)� r(s, a)� �Es+⇠P(s,a)Q(s+,⇡).

The TD error is a random variable function of z, while the Bellman error is its conditional expectation
with respect to the immediate reward and successor state at (s, a). Many of our bounds involve the
quantity E⇡B⇡

Q = E(S,A)⇠d⇡

⇥
B⇡

Q(S,A)
⇤
.

Finally, we introduce the data generation mechanism. A more general sampling model is described in
Appendix B.
Assumption 1 (I.i.d. dataset). An i.i.d. dataset is a collection D = {(si, ai, ri, s+i , oi)}ni=1 such that
for each i = 1, . . . , n we have (si, ai, oi) ⇠ µ and conditioned on (si, ai, oi), we observe a noisy
reward ri = r(si, ai) + ⌘i with E[⌘i | Fi] = 0, |ri|  1 and the next state s

+
i ⇠ P(si, ai).

2.2 Function Spaces and Weak Representation
Our methods involve three different types of function spaces, corresponding to policies, action-
value functions, and test functions. A test function f is a mapping (s, a, o) 7! f(s, a, o) such
that sup(s,a,o)|f(s, a, o)|  1, where o is an optional identifier containing side information. Our
methodology involves the following three function classes:

• a policy class ⇧ that contains all policies ⇡ of interest (for evaluation or optimization);

• for each ⇡, the predictor class Q⇡ of action-value functions Q that we permit; and

• for each ⇡, the test function class F⇡ that we use to enforce the Bellman residual constraints.
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We use the shorthands Q = [⇡2⇧Q⇡ and F = [⇡2⇧F
⇡ . We assume weak realizability:

Assumption 2 (Weak Realizability). For a given policy ⇡, the predictor class Q⇡ is weakly realizable
with respect to the test space F⇡ and the measure µ if there exists a predictor Q⇡

? 2 Q⇡ such that

hf,B⇡
Q

⇡
? iµ = 0 for all f 2 F⇡ and h1,B⇡

Q
⇡
? i⇡ = 0. (1)

The first condition requires the predictor to satisfy the Bellman equations on average. The second
condition amounts to requiring that the predictor returns the value of ⇡ at the start distribution: using
Lemma 9 stated in the sequel, we have

ES⇠⌫startQ
⇡
? (S,⇡)� V

⇡ = ES⇠⌫start [Q
⇡
? �Q

⇡](S,⇡) =
1

1� �
E⇡B⇡

Q
⇡
? =

1

1� �
h1,B⇡

Q
⇡
? i⇡ = 0.

This weak notion should be contrasted with strong realizability, which requires a function Q
⇡ 2 Q⇡

that satisfies the Bellman equation in all state-action pairs.

A stronger assumption that we sometime use is Bellman closure, which requires that T ⇡(Q) 2
Q⇡ for all Q 2 Q⇡ . The corresponding ‘weak’ version is given in Appendix A.4.

3 Policy Estimates via the Weak Bellman Equations
In this section, we introduce our high-level approach, first at the population level and then in terms of
regularized/normalized sample-based approximations.

3.1 Weak Bellman equations, empirical approximations and confidence intervals
We begin by noting that the predictor Q⇡ satisfies the Bellman equations everywhere in the state-
action space, i.e., B⇡

Q
⇡ = 0. However, if our dataset is “small” relative to the complexity of

(functions) on the state-action space, then it is unrealistic to enforce such a stringent condition.
Instead, the idea is to control the Bellman error in a weighted-average sense, where the weights are
given by a set of test functions. At the idealized population level (corresponding to an infinite sample
size), we consider predictors that satisfy the conditions

hf,B⇡
Qiµ = 0, for all f 2 F⇡

. (2)

where F⇡ is a user-defined set of test functions. The two main challenges here are how to use data to
enforce an approximate version of such constraints (along with rigorous data-dependent guarantees),
and how to design the test function space. We begin with the former challenge.

Construction of the empirical set: Given a dataset D = {(si, ai, ri, s+i , oi)}ni=1, we can approxi-
mate the Bellman errors by a linear combination of the temporal difference errors:

Z
f(s, a) [Q(s, a)� (T ⇡

Q)(s, a)]| {z }
=B⇡Q(s,a)

dµ ⇡ 1

n

nX

i=1

f(si, ai) [Q(si, ai)� ri � �Q(s+i ,⇡)]| {z }
=�⇡Q(si,ai,ri,s

+
i ,oi)

. (3)

Note that the approximation (3) corresponds to a weighted linear combination of temporal differences.
Written more compactly in inner product notation, equation (3) reads hf,B⇡

Qiµ ⇡ hf, �⇡Qin, where
hf, gin = 1

n

P
(s,a,r,s+,o)2D(fg)(s, a, r, s

+
, o).

In general, the action value function Q
⇡ does not satisfy hf, �⇡Q⇡in = 0 because the empirical

approximation (3) involves sampling error. For these reasons, in order to (approximately) identify
Q

⇡, we impose only inequalities. Given a class of test functions F⇡, a radius parameter ⇢ � 0 and
regularization parameter � � 0, we define the set

bC⇡
n(⇢,�;F

⇡)
def
=

(
Q 2 Q⇡ such that

|hf, �⇡Qin|p
kfk2n + �


r

⇢

n
for all f 2 F⇡

)
. (4)

When the choices of (⇢,�) are clear from the context, we adopt the shorthand bC⇡
n(F

⇡), or bC⇡
n when

the function class F⇡ is also clear. If F⇡ and Q⇡ have finite cardinality, ⇢ ⇡ ln |F⇡||Q⇡|+ ln 1/�,
where � is a prescribed failure probability.

Our definition of the empirical constraint set (4) has two key components: first, the division byp
kfk2n + � corresponds to a form of self-normalization, whereas the addition of � corresponds to a
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form of regularization. Self-normalization is needed so that the constraints remain suitably scale-
invariant. More importantly—in conjunction with the regularization—it ensures that test functions
that have poor coverage under the dataset do not have major effects on the solution. In particular,
the empirical norm kfk2n in the self-normalization measures how well the given test function is
covered by the dataset. Any test function with poor coverage (i.e., kfk2n ⇡ 0) will not yield useful
information, and the regularization counteracts its influence. In our guarantees, the choices of � and
⇢ are critical; as shown in our theory, we typically have � = ⇢/n, where ⇢ scales with the metric
entropy of the predictor, test and policy spaces. Disregarding ⇢, the right-hand side of the constraint
decays as 1/

p
n, so that the constraints are enforced more tightly as the sample size increases.

Confidence bounds and policy optimization: First, for any fixed policy ⇡, we can use the feasi-
bility set (4) to compute the lower and upper estimates

bV ⇡
min

def
= min

Q2bC⇡
n(⇢,�;F

⇡)
ES⇠⌫start

⇥
Q(S,⇡)

⇤
, and bV ⇡

max
def
= max

Q2bC⇡
n(⇢,�;F

⇡)
ES⇠⌫start

⇥
Q(S,⇡)

⇤
, (5)

corresponding to estimates of the minimum and maximum value that the policy ⇡ can take at the
initial distribution. The family of lower estimates can be used to perform policy optimization over the
class ⇧, in particular by solving the max-min problem

max
⇡2⇧

h
min
Q2bC⇡

n

ES⇠⌫startQ(S,⇡)
i
, or equivalently max

⇡2⇧
bV ⇡

min. (6)

Form of guarantees Let us now specify and discuss the types of guarantees that we establish for
our estimators (5) and (6). All of our theoretical guarantees involve a µ-based counterpart C⇡

n of the
data-dependent set bC⇡

n. More precisely, we define the population set

C⇡
n(4⇢,�;F

⇡)
def
=

⇢
Q 2 Q⇡ such that |hf,B⇡Qiµ|p

kfk2
µ+�


q

4⇢
n for all f 2 F

�
, (7)

where hf, giµ
def
=

R
f(s, a)g(s, a)dµ is the inner product induced by a distribution2

µ over (s, a).
As before, we use the shorthand notation C⇡

n when the underlying arguments are clear from context.
Moreover, in the sequel, we generally ignore the constant 4 in the definition (7) by assuming that ⇢ is
rescaled appropriately—e.g., that we use a factor of 1

4 in defining the empirical set.

It should be noted that in contrast to the set bC⇡
n, the set C⇡

n is non-random and it is defined in terms of
the distribution µ and the input space (⇧,F,Q). It relaxes the orthogonality constraints in the weak
Bellman formulation (2). Our guarantees for off-policy confidence intervals take the following form:

Coverage guarantee:
⇥bV ⇡

min,
bV ⇡

max
⇤
3 V

⇡
. (8a)

Width bound: max
n
|bV ⇡

min � V
⇡|, |bV ⇡

max � V
⇡|
o
 1

1� �
max

Q2C⇡
n(F

⇡)
|E⇡B⇡

Q|. (8b)

Turning to policy optimization, let e⇡ be a solution to the max-min criterion (6). Then we prove a
result of the following type:

Oracle inequality: V
e⇡ � max

⇡2⇧

n
V

⇡

|{z}
Value

� 1
1�� max

Q2C⇡
n(F)

|E⇡B⇡
Q|

| {z }
Evaluation uncertainty

o
. (9)

Note that this result guarantees that the estimator competes against an oracle that can search over all
policies, and select one based on the optimal trade-off between its value and evaluation uncertainty.

3.2 High-probability guarantees
In this section, we present some high-probability guarantees. So as to facilitate understanding under
space constraints, we state here results under simplifying assumptions: (a) the dataset originates
from a fixed distribution, and (b) the classes ⇧,F and Q have finite cardinality. We emphasize
that Appendix B provides a far more general version of this result, with an extremely flexible
sampling model, and involving metric entropies of parametric or non-parametric function classes.

2See Section B.2.1 for a precise definition of the relevant µ for a fairly general sampling model.
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Theorem 1 (Guarantees for finite classes). Consider a triple (⇧,F,Q) that is weakly Bellman
realizable (Assumption 2); an i.i.d. dataset (Assumption 1); and the choices ⇢ = c

�
log(|F||⇧||Q|) +

log(1/�)
 

and � = c
0
⇢/n for some constants c, c0. Then w.p. at least 1� �:

• Policy evaluation: For any ⇡ 2 ⇧, the estimates (bV ⇡
min,

bV ⇡
max) specify a confidence interval

satisfying the coverage (8a) and width bounds (8b)

• Policy optimization: Any max-min policy (6) e⇡ satisfies the oracle inequality (9).

4 Concentrability Coefficients and Test Spaces
In this section, we develop some connections to concentrability coefficients that have been used in
past work, and discuss various choices of the test class. Like the predictor class Q⇡, the test class
F⇡ encodes domain knowledge, and thus its choice is delicate. Different from the predictor class,
the test class does not require a ‘realizability’ condition. As a general principle, the test functions
should be chosen as orthogonal as possible with respect to the Bellman residual, so as to enable
rapid progress towards the solution; at the same time, they should be sufficiently “aligned” with the
dataset, meaning that kfkµ or its empirical counterpart kfkn should be large. Given a test class, each
additional test function posits a new constraint which helps identify the correct predictor; at the same
time, it increases the metric entropy (parameter ⇢), which makes each individual constraints more
loose. In summary, there are trade-offs to be made in the selection of the test class F , much like Q.

In order to assess the statistical cost that we pay for off-policy data, it is natural to define the off-policy
cost coefficient (OPC) as

K
⇡(C⇡

n, ⇢,�)
def
= max

Q2C⇡
n

|E⇡B⇡
Q|2

(1 + �) ⇢n
= max

Q2C⇡
n

h1,B⇡
Qi2⇡

(1 + �) ⇢n
, (10)

With this notation, our off-policy width bound (8b) can be re-expressed as

|bV ⇡
min � bV ⇡

max|  2
p
1+�
1��

q
K⇡ ⇢

n , (11a)

while the oracle inequality (9) for policy optimization can be re-expressed in the form

V
e⇡ � max

⇡2⇧

n
V

⇡ �
p
1+�
1��

q
K⇡ ⇢

n

o
, (11b)

Since � ⇠ ⇢/n, the factor
p
1 + � can be bounded by a constant in the typical case n � ⇢. We now

offer concrete examples of the OPC , while deferring further examples to Appendix A.5.

4.1 Likelihood ratios
Our broader goal is to obtain small Bellman error along the distribution induced by ⇡. Assume that
one constructs a test function class F⇡ of possible likelihood ratios.

Proposition 1 (Likelihood ratio bounds). Assume that for some constant b⇡ , the test function defined
as f⇤(s, a) = 1

b⇡

d⇡(s,a)
µ(s,a) belongs to F⇡ and satisfies kf⇤k1  1. Then the OPC coefficient satisfies

K
⇡

(i)


E⇡

h
d⇡(S,A)
µ(S,A)

i
+b2⇡�

1+�

(ii)
 b⇡

�
1+b⇡�

�

1+� . (12)

Here b⇡ is a scaling parameter that ensures kf⇤k1  1. Concretely one can take b⇡ =

sup(s,a)
d⇡(s,a)
µ(s,a) . The proof is in Appendix D.1. Since � = �n ! 0 as n increases, the OPC

coefficient is bounded by a multiple of the expected ratio E⇡

h
d⇡(S,A)
µ(S,A)

i
. Up to an additive offset,

this expectation is equivalent to the �
2-distribution between the policy-induced occupation measure

d⇡ and data-generating distribution µ. The concentrability coefficient can be plugged back into
Eqs. (11a) and (11b) to obtain a concrete policy optimization bound. In this case, we recover a result
similar to [XJ20b], but with a much milder concentrability coefficient that involves only the chosen
comparator policy.
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4.2 The error test space
We now turn to the discussion of a choice for the test space that extends the LSTD algorithm to
non-linear spaces. A simplification to the linear setting is presented later in Section 5.

As is well known, the LSTD algorithm [BB96] can be seen as minimizing the Bellman error projected
onto the linear prediction space Q. Define the transition operator (P⇡

Q)(s, a) = Es+⇠P(s,a)Q(s+,⇡),
and the prediction error ✏ = Q � Q

⇡
? , where Q

⇡
? is a Q-function from the definition of weak

realizability. The Bellman error can be re-written as B⇡
Q = B⇡

Q� B⇡
Q

⇡
? = (I � �P⇡)✏. When

realizability holds, in the linear setting and at the population level, the LSTD solution seeks to satisfy
the projected Bellman equations

hf,B⇡
Qiµ = 0, for all f 2 E⇡

? . (13)

In the linear case, E⇡
? is the class of linear functions Q⇡ used as predictors; when Q⇡ is non-linear,

we can extend the LSTD method by using the (nonlinear) error test space F⇡ = E⇡
? = {Q�Q

⇡
?}.

Since E⇡
? is unknown (as it depends on the weak solution Q

⇡
? ), we choose instead the larger class

E⇡ = {Q�Q
0 | Q,Q

0 2 Q⇡},

which contains E⇡
? . The resulting approach can be seen as performing a projection of the Bellman

operator B⇡
Q into the error space E⇡

? , much like LSTD does in the linear setting. However, different
from LSTD, our procedure returns confidence intervals as opposed to a point estimator. This choice
of the test space is related to the Bubnov-Galerkin method [Rep17] for linear spaces; it selects the
test space F⇡ to be identical to the trial space E⇡

? that contains all possible solution errors.
Lemma 1 (OPC coefficient from prediction error). For any test function class F⇡ ◆ E⇡ , we have

K
⇡  max

Q2Q⇡

� k✏k2
µ+�

k 1 k2
⇡+�

h1,B⇡Qi2⇡
h✏,B⇡Qi2µ

 
= max

✏2E⇡
?

� k✏k2
µ+�

k 1 k2
⇡+�

h1,(I��P⇡)✏i2⇡
h✏,(I��P⇡)✏i2µ

 
. (14)

The above coefficient measures the ratio between the Bellman error along the distribution of the
target policy ⇡ and that projected onto the error space E⇡

? defined by Q⇡. It is a concentrability
coefficient that always applies, as the choice of the test space does not require domain knowledge.
See Appendix D.2 for the proof, and Appendix A.6 for further comments and insights, as well as a
simplification in the special case of Bellman closure.

4.3 The Bellman test space
In the prior section we controlled the projected Bellman error. Another longstanding approach in
reinforcement learning is to control the Bellman error itself, for example by minimizing the squared
Bellman residual. In general, this cannot be done if only an offline dataset is available due to the well
known double sampling issue. However, in some cases we can use an helper class to try to capture
the Bellman error. Such class needs to be a superset of the class of Bellman test functions given by

FB
⇡

def
= {B⇡

Q | Q 2 Q⇡}. (15)

Any test class that contains the above allows us to control the Bellman residual, as we show next.
Lemma 2 (Bellman Test Functions). For any test function class F⇡ that contains FB

⇡ , we have

kB⇡
Qkµ  c1

q
⇢
n for any Q 2 C⇡

n(F
⇡). (16a)

Moreover, the off-policy cost coefficient is upper bounded as

K
⇡

(i)
 c1 sup

Q2Q⇡

h1,B⇡Qi2⇡
kB⇡Qk2

µ

(ii)
 c1 sup

Q2Q⇡

kB⇡Qk2
⇡

kB⇡Qk2
µ

(iii)
 c1 sup

(s,a)

d⇡(s,a)
µ(s,a) . (16b)

See Appendix D.4 for the proof of this claim.

Consequently, whenever the test class includes the Bellman test functions, the off-policy cost
coefficient is at most the ratio between the squared Bellman residuals along the data generating
distribution and the target distribution. If Bellman closure holds, then the prediction error space
E⇡ introduced in Section 4.2 contains the Bellman test functions: for Q 2 Q⇡, we can write
B⇡

Q = Q� T ⇡
Q 2 E⇡ . This fact allows us to recover a result in the recent paper [XCJ+21] in the

special case of Bellman closure, although the approach presented here is more general.
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4.4 Combining test spaces
Often, it is natural to construct a test space that is a union of several simpler classes. A simple but
valuable observation is that the resulting procedure inherits the best of the OPC coefficients. Suppose
that we are given a collection {F⇡

m}Mm=1 of M different test function classes, and define the union
F⇡ =

SM
m=1 F

⇡
m. For each m = 1, . . . ,M , let K⇡

m be the OPC coefficient defined by the function
class F⇡

m and radius ⇢, and let K⇡(F) be the OPC coefficient associated with the full class. Then we
have the following guarantee:
Lemma 3 (Multiple test classes). K

⇡(F)  minm=1,...,M K
⇡
m.

This guarantee is a straightforward consequence of our construction of the feasibility sets: in particular,
we have C⇡

n(F) = \M
m=1C

⇡
n(Fm), and consequently, by the variational definition of the off-policy

cost coefficient K⇡(F) as optimization over C⇡
n(F), the bound (3) follows. In words, when multiple

test spaces are combined, then our algorithms inherit the best (smallest) OPC coefficient over all
individual test spaces. While this behavior is attractive, one must note that there is a statistical cost to
using a union of test spaces: the choice of ⇢ scales as a function of F via its metric entropy. This
increase in ⇢ must be balanced with the benefits of using multiple test spaces.3

5 Linear Setting
In this section, we turn to a detailed analysis of our estimators using function classes that are linear
in a feature map. Let � : S ⇥ A ! Rd be a given feature map, and consider linear expansions
gw(s, a)

def
= hw, �(s, a)i =

Pd
j=1 wj�j(s, a). The class of linear functions takes the form

L def
= {(s, a) 7! gw(s, a) | w 2 Rd

, kwk2  1}. (17)

Throughout our analysis, we assume that k�(s, a)k2  1 for all state-action pairs.

Following the approach in Section 4.2, which is based on the LSTD method, we should choose the
test function class F⇡ = L, as in the linear case the prediction error is linear.

In order to obtain a computationally efficient implementation, we need to use a test class that is a
“simpler” subset of L. In particular, for linear functions, it is not hard to show that the estimates
bV ⇡

min and bV ⇡
max from equation (5) can be computed by solving a quadratic program, with two linear

constraints for each test function. (See Appendix A.8 for the details.) Consequently, the computational
complexity scales linearly with the number of test functions. Thus, if we restrict ourselves to a finite
test class contained within L, we will obtain a computationally efficient approach.

5.1 A computationally friendly test class and OPC coefficients
Define the empirical covariance matrix b⌃ = 1

n

Pn
i=1 �i�

T
i where �i

def
= �(si, ai). Let {buj}dj=1 be

the eigenvectors of empirical covariance matrix b⌃, and suppose that they are normalized to have unit
`2-norm. We use these normalized eigenvectors to define the finite test class

eF⇡ def
= {fj , j = 1, . . . , d} where fj(s, a)

def
= hbuj , �(s, a)i (18)

A few observations are in order:

• This test class has only d functions, so that our QP implementation has 2d constraints, and can
be solved in polynomial time. (Again, see Appendix A.8 for details.)

• Since eF⇡ is a subset of L the choice of radius ⇢ = c( dn + log 1/�) is valid for some constant c.

Concentrability: When weak Bellman closure does not hold, then our analysis needs to take into
account how errors propagate via the dynamics. In particular, we define the next-state feature
extractor �

+⇡(s, a)
def
= Es+⇠P(s,a)�(s

+
,⇡), along with the population covariance matrix ⌃

def
=

Eµ

⇥
�(s, a)�>(s, a)

⇤
, and its �-regularized version ⌃�

def
= ⌃+ �I . We also define the matrices

⌃+⇡ def
= Eµ[�(�

+⇡)>], ⌃+⇡
�,Boot

def
= (⌃

1
2
� � �⌃

� 1
2

� ⌃+⇡)>(⌃
1
2
� � �⌃

� 1
2

� ⌃+⇡).

3For space reasons, we defer to Appendix A.7 an application in which we construct a test function space as a
union of subclasses, and thereby obtain a method that automatically leverages Bellman closure when it holds,
falls back to importance sampling if closure fails, and falls back to a worst-case bound in general.
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The matrix ⌃+⇡ is the cross-covariance between successive states, whereas the matrix ⌃+⇡
�,Boot is a

suitably renormalized and symmetrized version of the matrix ⌃
1
2 ��⌃� 1

2⌃+⇡ , which arises naturally
from the policy evaluation equation. We refer to quantities that contain evaluations at the next-state
(e.g., �+⇡) as bootstrapping terms, and now bound the OPC coefficient in the presence of such terms:
Proposition 2 (OPC bounds with bootstrapping). Under weak realizability, we have

K
⇡(eF⇡)  c dkE⇡[�� ��

+⇡]k2
(⌃+⇡

�,Boot)
�1 with probability at least 1� �. (19)

See Appendix E.1 for the proof. The bound (19) takes a familiar form, as it involves the same
matrices used to define the LSTD solution. This is expected, as our approach here is essentially
equivalent to the LSTD method; the difference is that LSTD only gives a point estimate as opposed to
the confidence intervals that we present here; however, they are both derived from the same principle,
namely from the Bellman equations projected along the predictor (error) space.

The bound quantifies how the feature extractor � together with the bootstrapping term �
+⇡ , averaged

along the target policy ⇡, interact with the covariance matrix with bootstrapping ⌃+⇡
�,Boot. It is an

approximation to the OPC coefficient bound derived in Lemma 1. The bootstrapping terms capture
the temporal difference correlations that can arise in reinforcement learning when strong assumptions
like Bellman closure do not hold. As a consequence, such an OPC coefficient being small is a
sufficient condition for reliable off-policy prediction. This bound on the OPC coefficient always
applies, and it reduces to the simpler one (20) when weak Bellman closure holds, with no need to
inform the algorithm of the simplified setting; see Appendix E.3 for the proof.
Proposition 3 (OPC bounds under weak Bellman Closure). Under Bellman closure, we have

K
⇡(eF⇡)  c dkE⇡�k2⌃�1

�
with probability at least 1� �. (20)

5.2 Actor-critic scheme for policy optimization
Having described a practical procedure to compute bV ⇡

min, we now turn to the computation of the
max-min estimator for policy optimization. We define the soft-max policy class

⇧lin
def
=

n
(s, a) 7! eh�(s,a),✓i

P
a+2A eh�(s,a+),✓i | k✓k2  T, ✓ 2 Rd

o
. (21)

In order to compute the max-min solution (6) over this policy class, we implement an actor-critic
method, in which the actor performs a variant of mirror descent.4

• At each iteration t = 1, . . . , T , the policy ⇡t 2 ⇧lin can be identified with a parameter ✓t 2 Rd.
The sequence is initialized with ✓1 = 0.

• Using the finite test function class (18) based on normalized eigenvectors, the pessimistic
value estimate bV ⇡t

min is computed by solving a quadratic program, as previously described. This
computation returns the weight vector wt of the associated optimal action-value function.

• Using the action-value vector wt, we update the actor’s parameter as

✓t+1 = ✓t + ⌘wt where ⌘ =
q

log|A|
2T is a stepsize parameter. (22)

We now state a guarantee on the behavior of this procedure, based on two OPC coefficients:

K
e⇡
(1) = dkEe⇡�k2⌃�1

�
, and K

e⇡
(2) = d sup

⇡2⇧

n
kEe⇡[�� ��

+⇡]k2
(⌃+⇡

�,Boot)
�1

o
. (23)

Moreover, in making the following assertion, we assume that every weak solution Q
⇡
? can be evaluated

against the distribution of a comparator policy e⇡ 2 ⇧, i.e., h1,B⇡
Q

⇡
? ie⇡ = 0 for all ⇡ 2 ⇧. (This

assumption is still weaker than strong realizability).
Theorem 2 (Approximate Guarantees for Linear Soft-Max Optimization). Under the above con-
ditions, running the procedure for T rounds returns a policy sequence {⇡t}Tt=1 such that, for any
comparator policy e⇡ 2 ⇧,

1
T

TX

t=1

�
V

e⇡ � V
⇡t
 
 c1

1��

⇢ q
log|A|

T
| {z }

Optimization error

+

r

Ke⇡
(·)

d log(nT )+log
�
n
�

�

n| {z }
Statistical error

�
, (24)

4Strictly speaking, it is mirror ascent, but we use the conventional terminology.
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with probability at least 1� �. This bound always holds with K
e⇡
(·) = K

e⇡
(2), and moreover, it holds

with K
e⇡
(·) = K

e⇡
(1) when weak Bellman closure is in force.

See Appendix F for the proof. Whenever Bellman closure holds, the result automatically inherits the
more favorable concentrability coefficient Ke⇡

(2), as originally derived in Proposition 3. The resulting
bound is only

p
d worse than the lower bound recently established in the paper [ZWB21]. However,

the method proposed here is robust, in that it provides guarantees even when Bellman closure does not
hold. In this case, we have a guarantee in terms of the OPC coefficient Ke⇡

(1). Note that it is a uniform
version of the one derived previously in Proposition 2, in that there is an additional supremum over
the policy class. This supremum arises due to the use of gradient-based method, which implicitly
searches over policies in bootstrapping terms; see Appendix A.9 for a more detailed discussion of
this issue.
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