
A Implementation, Further Experiments, & Derivations

A.1 Implementation

In this section, we provide the implementation details behind our experiments. We use PyTorch for
implementing the linear neural network, CVXPY for finding the minimum nuclear norm solution, the
R package ROptSpace for running the OptSpace algorithm, and the Python package fancyImpute
for running the SoftImpute algorithm. Additionally, for experiments on MovieLens100k, we use
the Spotlight repo 1 for different kinds of recommendation models in PyTorch and modify its
common building blocks for our purposes. Experiments were run on a NVIDIA Tesla V100 GPU.

Synthetic Data For synthetic data experiments, our implementation details mirror the experimental
design of [7], which we briefly detail. When referring to a random rank r matrix with size m⇥ n,
we mean a product UV

>, where the entries of U 2 Rm⇥r and V 2 Rn⇥r are drawn independently
from a standard normal distribution. The observed entries are uniformly sampled at random without
repetition. The goal is to recover the underlying matrix by observing a portion of it and trying
to recover the remaining entries as well as producing a solution matrix whose overall rank is low
or is close to the rank of the underlying ground truth matrix. During training, deep linear neural
networks are trained by gradient descent, or whichever other optimizer under consideration, under
the Frobenius loss (i.e. `2 loss).

Weights are initialized via independent samples from a Gaussian distribution with zero mean and
standard deviation 10�3 as in [7]. Learning rates are fixed through training; in line with previous
work [7] and the assumptions of gradient flow, we set our initial learning rates (for gradient descent,
Adam, and our other optimizers) ↵ = 10�3 for the results shown in this paper, but we also conducted
the same experiments with ↵ 2 {5 · 10�4

, 10�4} and saw no qualitative differences. During training,
stopping criteria consist of either reaching a total of 5 · 105 iterations or training loss reaching values
below 10�7. Results relating to the ratio penalty are robust across varying strengths of regularization
� 2 [10�4

, 10�1]. For Adam, aside from the initial learning rate, the default hyper-parameters under
PyTorch’s implementation were used, such as (�1,�2) = (0.9, 0.999), no amsgrad, etc. unless
otherwise stated. Similarly for experiments with other optimizers, aside from the initial learning
rate, we use the default hyper-parameters unless otherwise specified. Test error is measured via
mean-squared error, unless stated otherwise. To quantify the rank of solutions produced, we use
the effective rank measure [56] due to its favorable properties over numerical rank in simulation
settings and its usage in [7]. The test error with respect to a ground truth matrix W

? is given by the
mean-squared error (i.e., 1

N kW �W
?k2F ) but results continue to hold under similar measures of test

error. For rank 5 experiments where the sample size was fixed, sample size is set at 2000 (again,
following [7]) but results are similar for sample sizes at 2500, 3000, etc. The sample size for rank 10
experiments were set at 3000 and 3500.

MovieLens100k For our experiments on MovieLens100k, we use the base explicit factorization
model available in Spotlight in conjunction with Adam and our ratio penalty. The explicit fac-
torization model resembles a shallow factorization but includes several notable differences: an
user-embedding layer, an item-embedding layer, an user-specific bias, and an item-specific bias. With
our penalty applied to either the user-embedding layer or the item-embedding layer, we evaluate
values of � 2 [10�6

, 10�1], embedding dimensions in {2, 4, 8, 16, 32, 64, 128}, and batch-sizes of
{128, 256, 512, 1024} for initial learning rates ↵ 2 [5 · 10�3

, 10�5]. Each model configuration is
trained for 100 epochs and evaluated on the full test set at the end. The best model is check-pointed
and training is terminated if training error begins increasing for three epochs. The best perform-
ing model with the reported test error was with learning rate ↵ = 10�3, batch size 256, effective
dimension 64, �user = 0.01 while another was ↵ = 10�3, batch size 128, effective dimension 64,
�user = 10�4 and �item = 10�1. For the depth 1 LNN, we take an approach near-identical to our
synthetic experiments but include a bias term that is added to our single weight matrix. We explore
values for regularization strengths � 2 [2 · 101, 10�6] and initial learning rate ↵ 2 [5 · 10�3

, 10�5].
The best performing model with the reported test error was with learning rate ↵ = 5 · 10�4 and
� = 1.5 though many similar configurations came close to the same performance. A more rigorous
sweep of configurations is necessary to exhaustively find similar, or the best, configurations; due to
space considerations, we leave more in-depth evaluations for future work.

1(https://github.com/maciejkula/spotlight)
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A.2 Rank 10 Matrix Completion

The following details the same set of experiments as those in Section 3 but for rank 10 matrices as an
example to illustrate that our results generalize beyond rank 5.

Figure 5: Comparative performance in generalization error and rank minimization for rank 10 matrix completion
(of size 100⇥ 100). x-axis stands for the number of observed entries (uniformly sampled) and shaded regions
indicate standard error bands. Adam:1+R refers to Adam at depth 1 with the penalty, CP is the minimum nuc.
norm solution, GD:3 is gradient descent with depth 3 (deep matrix factorization), OPT is OptSpace [38], and
SI is SoftImpute [47]. To reduce clutter, we omit results with similar performance to GD:3 (e.g. GD:4/5 etc.).

Overall, comparative performance results very much resemble those in Fig. 4 for rank 5 completion.
As seen in Fig. 5, our penalty’s comparative performance relative to other techniques remains
unchanged from rank 5. Like before, Adam with penalty, at depth 1, outperforms all other approaches
across all data regimes by at least two orders of magnitude, with reconstruction error decreasing even
further as sample size is increased. A similar result is seen in terms of its performance on rank: it
reduces rank to the point of exact rank recovery independently of sample size.

Figure 6: Dynamics of gradient descent and Adam over DLNN. Plots above show the performance of gradient
descent over networks of depths 2/3/4/5 for rank 10 matrices of size 100⇥ 100. The top row depicts gradient
descent and the bottom depicts Adam. The left column depicts generalization error as a function of depth and
training iterations. The middle column depicts the change in effective rank across depths and over training
iterations. The right column shows the 1st and 10th largest singular values for each depth across training
iterations. For singular values, within each depth level (colored lines), a solid line indicates the 1st largest
singular value while a dotted line indicates the 10th largest. We omit the other singular values for clarity due to
their small magnitude.

Extending our experiments to rank 10 matrix completion, we see extreme similarity with results
under rank 5 (Fig. 6). For singular values, we focus on the 1st and 10th largest values in accordance
with the changed rank setting (rank 5 to rank 10) to better illustrate the differential behavior of the
most prominent values. Our overall results remain the same as in Section 3.
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Figure 7: Dynamics of regularized gradient descent and regularized Adam with our penalty. Plots show the
performance over networks of depths 2/3/4/5 for rank 10 matrix completion. The penalty’s hyper-parameter is
set at � = 10�4 but results hold for a range of values � 2 [10�6, 10�1].

For regularized gradient descent and Adam (Fig. 7), results again resemble the rank 5 case. Under
gradient descent, the proposed penalty induces only slight effects on quickening and tightening the
convergence behavior of singular values and test error. In contrast, we see nearly identical effects of
our penalty under Adam when compared to the rank 5 case. We also see that, like in rank 5, depth 2
becomes effective in generalizing and reducing rank when compared to depth 2 under Adam alone; in
depth 2, our proposed penalty is able to push its singular value trajectories of the 1st and 10th largest
singular values towards the other respective singular values in higher depth levels as if getting depth
2 to behave similarly as higher depth levels in contrast to un-penalized Adam.

Figure 8: Performance comparison between choice of optimization and regularizer in a depth-1 linear network.
Top row corresponds to gradient descent and bottom corresponds to Adam. Note that � = 0 corresponds to the
un-regularized setting. The penalty’s hyper-parameter is set at � = 0.01 but results hold for a range of values
� 2 [10�4, 10�1]. For illustrative emphasis, the 11th largest singular value (dashed line) is also included here to
depict the trajectory difference under penalized gradient descent versus penalized Adam for depth 1.

A.3 Comparing Different Optimizers & Penalties

In this section, we expand upon our experiments evaluating different combinations of optimizers and
explicit penalties beyond those in Table 1. In Table 3 and Table 4, we include other optimizers and
evaluate them against several explicit penalties. For all optimizer choices, hyper-parameters, aside
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Table 3: Additional results for rank 5 matrix completion across various optimizer/penalty/depth combinations in
terms of test error (Err) and effective rank (Rk, rounded to nearest integer) of resulting solutions at convergence.
Ratio denotes our ratio penalty (|| · ||⇤/|| · ||F ), Sch p:q denotes the ratio of two Schatten (quasi)norms
(|| · ||Sp/|| · ||Sq ) as penalty, Nuc denotes nuclear norm penalty, and None denotes no penalty.

Optimizer Depth
Ratio Sch

1
2 :

2
3 Sch

1
3 :

2
3 Sch

1
3 :

1
2 Nuc None

Err Rk Err Rk Err Rk Err Rk Err Rk Err Rk

Adam [39] (w. amsgrad) 1 0.83 29 0.99 53 1.00 61 1.00 60 0.34 6 1.00 79
3 9e-3 5 0.05 6 0.04 6 0.10 6 0.32 6 0.06 6

Adadelta [69] 1 0.98 59 1.00 63 0.98 37 1.00 53 0.77 21 1.01 74
3 3e-3 5 2e-4 5 3e-3 5 2e-3 5 0.29 5 5e-3 5

GD (w. momentum) 1 0.80 70 0.79 64 0.77 47 0.80 63 0.78 54 0.81 69
3 3e-3 5 1e-4 5 0.43 4 0.07 5 0.02 5 0.07 4

AdamW [45] 1 1e-3 5 0.98 45 1.00 49 1.00 64 0.34 6 1.00 79
3 1e-3 5 2e-4 5 0.01 5 3e-2 5 0.31 6 0.02 5

NAdam [24] 1 1e-3 5 0.97 43 0.99 54 0.99 61 0.32 6 1.01 79
3 2e-3 5 1e-4 5 0.05 5 0.01 5 0.30 5 0.02 5

RAdam [44] 1 1e-3 5 0.95 46 0.99 51 1.00 62 0.25 6 1.00 80
3 7e-4 5 5e-4 5 0.01 5 0.01 5 0.18 5 0.05 6

from the initial learning rate which is set to 10�3, are set to their default values in PyTorch unless
otherwise specified (e.g. default momentum values for GD). For all experiments evaluating optimizer-
penalty combinations, we try � 2 [10�6

, 10�1] which all delivered similar results, especially in terms
of observed depth invariance (or lack thereof) and generalization/rank reduction performance. The
results shown in Table 1 in Appendix A.3 as well as in Table 3 and Table 4 here have � = 0.05.
Results shown are trained on a sample size of 2000 entries (out of a 100⇥ 100 matrix); results show
no meaningful difference on other sample sizes (2500, 3000).

Table 4: Additional results for rank 5 matrix completion across various optimizer/penalty/depth combinations in
terms of test error (Err) and effective rank (Rk, rounded to nearest integer) of resulting solutions at convergence.
Sch p denotes the Schatten (quasi)norm (|| · ||Sp ) as penalty.

Optimizer Depth
Sch

1
3 Sch

1
2 Sch

2
3

Err Rk Err Rk Err Rk

Adam [39]
w. amsgrad 1 0.99 69 0.97 11 0.55 7

3 1.00 5 1.00 1 0.80 2
w.o. amsgrad 1 1.00 50 0.94 5 0.10 5

3 0.88 1 0.84 1 0.17 4

Adagrad [25] 1 1.00 12 0.97 2 0.70 15
3 0.81 1 0.85 1 0.08 5

Adamax [39] 1 1.00 54 0.87 1 1.00 41
3 1.00 23 0.85 1 1.00 4

RMSProp 1 1.04 53 1.00 40 0.10 7
3 1.00 8 0.74 1 0.08 5

GD
w. momentum 1 266.7 43 2.14 29 0.65 16

3 1.00 25 1.00 17 0.41 3
w.o. momentum 1 67.6 45 0.94 3 0.77 19

3 1.10 34 0.99 1 0.58 2

Adadelta [69] 1 0.99 60 1.05 48 1.00 60
3 0.99 56 0.94 1 0.99 56

AdamW [45] 1 1.00 48 0.97 9 0.67 6
3 1.00 10 0.99 1 0.82 2

NAdam [24] 1 1.00 47 0.98 8 0.80 7
3 1.00 3 0.92 1 0.71 3

RAdam [44] 1 1.00 46 1.01 25 0.57 7
3 0.99 7 0.91 1 0.68 3

We note that Adam-like variants such as AdamW, NAdam, and RAdam also, unsurprisingly, exhibit
varying degrees of depth invariance with respect to both generalization error and rank reduction with
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our ratio penalty though their solutions fail to generalize as well as Adam and Adamax under the
penalty—this makes sense as Adam and Adamax are much more closely related, and both proposed
in the same paper with only slight differences in their update rules, than subsequent variants that have
significantly different iterative updates (see [24, 39, 44, 45] for further details).

A.4 Supplemental Derivations

Here, we outline and detail the derivations behind some of our work describing the trajectory of the
end-product matrix W and its singular values �i under gradient flow, largely building off of [6, 7]. We
highlight the main derivations as they relate to the theorems in this paper and defer to the appendices
of [6, 7] for additional details and a fuller treatment of gradient flow derivations. We also provide
additional commentary and discussion here due to space constraints in the main body of the paper.

A.4.1 Theorem 2 (Gradient flow, with penalty)

Setup & preliminaries. We omit the details of deriving the �̇ and Ẇ under un-regularized gradient
flow; instead, we defer to the appendix of [6] for a detailed treatment and build upon their results for
our derivations.

Evolution of W and � under gradient flow without penalty. To begin, we recall the dynamics of
the end-product matrix W and its singular values � under un-regularized gradient flow (for details on
a full derivation, see the appendices of [6, 7] for a detailed treatment):

�̇i = �N(�2
r)

N�1
N u>

r rWL(W )vr (10)

vec(Ẇ ) = �PWvec (rWL(W )) (11)

Since the explicit regularization simply adds a regularization term to the original loss function,
we can re-calculate the gradient of the new, regularized loss and substitute the gradients back into
the dynamics above in order to re-characterize the above dynamics under the penalty. In more
formal terms, if we let the new modified loss function be represented by L̃(W ) := L(W ) + �R(W )
where R(W ) = ||W ||⇤/||W ||F denotes the explicit penalty, then we can calculate rW L̃(W ) =
rWL(W ) + �rWR(W ) to plug back into the un-regularized dynamics in order to characterize the
trajectories under the effect of the penalty.

Evolution of W and � under gradient flow with penalty. To characterize the dynamics of gradient
flow in presence of the penalty, we first derive the gradient of the penalty (i.e. rWR(W )) ignoring
the regularization strength (hyper)parameter �. Via the chain rule and the sub-gradient of the nuclear
norm, we can express the gradient of the penalty as:

rWR(W ) =
1

||W ||2F

✓
UV

> � ||W ||⇤
||W ||F

U⌃V >
◆

(12)

where U , V , ⌃ are the singular matrices of the singular value decomposition of W (i.e. W = U⌃V >).

To first characterize the dynamics of the end-product matrix W , we can use the gradient of the penalty
and substitute it back into Eq. (11) along with the loss gradient. Taking Eq. (12), plugging it back
into Eq. (11) along with the original loss gradient rWL(W ), and re-arranging terms, we have

vec(Ẇ ) = �PWvec (rWL(W ) + �rWR(W ))

= �PW

0

@vec (rWL(W )) + �

vec(UV
> � ||W ||⇤

||W ||F U⌃V >)

||W ||2F

1

A

= �PW

 
vec (rWL(W )) + �

vec(UV
> � U ⌃̃V >)

||W ||2F

!

where ⌃̃ = ||W ||⇤
||W ||F ⌃, producing the expression in Eq. (8).

Turning now to the singular values, for analytical ease in characterizing the dynamics of the singular
values �i under gradient flow with the penalty (i.e., �̇reg

r ), we can equivalently express Eq. (12) in
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terms of its diagonal elements; for instance, if we focus on the r-th diagonal element, this produces

u>
r vr

||W ||2F

✓
1� ||W ||⇤

||W ||F
�r

◆

where {ur,vr} are the i-th left and right singular vectors of W and �r is the r-th diagonal el-
ement of ⌃. Substituting this term along with the original loss gradient back into Eq. (10) and
re-writing/grouping terms, we obtain our desired result in the form of Eq. (7) for the r-th singular
value, i.e.,

�̇
reg
r = �̇

GF
r � �N

||W ||2F

✓
1� ||W ||⇤

||W ||F

◆
�

3N�2
2

r

where �̇
GF
r is defined in Eq. (10) (i.e. the trajectory of singular values under un-regularized gradient

flow).

A.4.2 Theorem 1 (Adam, no penalty)

Setup & preliminaries. We omit the details of deriving PW from the beginning and defer to the
appendix of [6] for a more comprehensive review. Operations like divisions, squaring, and square-
roots on vectors and matrices are to assumed to be performed element-wise unless otherwise stated.
In this case, since parameters are matrices, loss gradients will generally be matrices; in this case,
when referring to the variance of said objects, the variance is taken to mean the variance of the
vectorized matrix (i.e. condensed into a vector) drawn from some distribution.

Per-layer weight updates under Adam in discrete time take the form, assuming no weight-decay:

W
(t+1)
j = W

(t)
j � ↵

m̂tp
v̂t + "

where m̂t =
mt

1��t
1

, mt = (1��1)mt�1+�1gt�1, v̂t = vt
1��t

2
, vt = (1��2)vt�1+�2g

2
t�1 for each

layer j 2 {1, . . . , N} in a depth N network. ↵ is the initial learning rate, m̂t is the bias-corrected
first moment, v̂t is the bias-corrected second moment, and " is a division-by-zero adjustment which
we assume to be zero to simplify our later analysis. In turn, mt is the moving average of stochastic
gradients gt and vt is the moving average of their element-wise square g2t , where gt = rWjL(W (t)),
the gradient of the loss with respect to the j-th layer weight, g2t is the element-wise squaring of gt,
and �1,�2 2 (0, 1) are discount factors for mt and vt respectively. Moving forward, for notational
simplicity, we suppress the dependence of the W and Wj on t unless otherwise stated and set
�1 = �2 = � = 1� ✏ for sufficiently small epsilon (e.g. ✏ = 0.001).

Given the loss in Eq. (1), the gradient of the loss with respect to the j-th layer weight matrix is
(suppressing notation on time t):

g := rWjL(W ) =
NY

i=j+1

W
>
i (rWL(W ))

j�1Y

i=1

W
>
i (13)

where rWL(W ) is the gradient of the loss with respect to the end-product matrix W . While
gradient flow uses this loss directly in its iterative updates for each j-th weight matrix, Adam makes
adjustments to this loss gradient in its calculation of m̂ and v̂.

Assumptions. As noted earlier in Section 3, to approximately characterize the trajectory under
Adam in closed form, albeit imperfectly, we make a few additional assumptions. More formally, in
the same spirit as [5], we assume that the underlying distribution of stochastic gradients is stationary
and approximately constant over the time horizon of the moving average of gradients so that m̂t and
v̂t approximate estimate their respective moments of gt. Namely:

m̂t ! E(m̂t) ⇡ rWjL(W (t)), v̂t ! E(v̂t) ⇡ (rWjL(W (t)))2 + s
2
t,j (14)

where s2t,j is the (element-wise) variance of rWjL(W (t)) with the assumption that each Wj is drawn
i.i.d. from a common stationary distribution. Naturally, this assumption can only hold approximately,
at best, and is clearly inaccurate for gradients far in the past—to that end, we assume some sufficient
degree of “burn-in” or progression so that past some time t, gradients near initialization or extremely
distant past gradients do not contribute meaningfully to the moving average. As noted in [5], this
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assumed approximation is more realistic and more likely to hold in certain cases (e.g. high noise or
small step size, the latter of which aligns with the spirit of gradient flow).

Evolution of W under Adam without penalty. Under the assumptions above and those in [7], to
approximately characterize the trajectory of the end-product matrix, we can rewrite Adam’s update
of each weight layer Wj using our assumptions above in continuous time (i.e. ↵ ! 0), in a fashion
similar to gradient flow, as (suppressing notational dependence on time t):

Ẇj = �
rWjL(W )

q
rWjL(W )2 + s

2
j

(15)

where, again, division, etc. here denote element-wise operations. As an aside, we note that the
expression in Eq. (15) can also be written as Ẇj = �(1 + ⌘

2
j )

�1/2 where ⌘
2
j := s

2
j/rWjL(W )2,

resembling a variance adaptation factor for each layer j that shortens the update in directions of high
(relative) variance as an adaptive means to account for varying reliability of the gradient throughout
the optimization process or an approximate signal-to-noise ratio of the gradient [5, 39]. Using the
definition of rWjL(W ) from Eq. (13), we can rewrite the right-hand side of Eq. (15) as:

�
NY

i=j+1

W
>
i (rWL(W ))

j�1Y

i=1

W
>
i � Sj (16)

where � denotes the Hadamard product and Sj is a matrix that contains the corresponding entry-wise
elements of (rWjL(W )2 + s

2
j )

�1 to make the element-wise operations more explicit. To derive
the evolution of the end-product matrix Ẇ from Ẇj , we follow the approach in [7] but with several
modifications due to presence of Sj . For the full details, we defer to the appendix of [7]. We left and
right multiply by a product of other weight layers and sum across the depth of the network:

Ẇ = �
NX

j=1

i=NY

j+1

Wi

0

@
NY

i=j+1

W
>
i ((rWL(W )))

j�1Y

i=1

W
>
i � Sj

1

A
i=j�1Y

1

Wi (17)

To simplify notation for the proceeding steps, we define the following:

A =
NY

i=j+1

W
>
i , B =

j�1Y

i=1

W
>
i , L = rWL(W )

↵ = A
>
, � = ALB � Sj , � = B

>

Re-writing the above expression with these new definitions, we have:

�
NX

j=1

A
>(ALB � Sj)B

> = �
NX

j=1

↵��

22



Ignoring the negative sign to focus on the summation and taking the (column-major order) vectoriza-
tion of the above expression, we then have:

vec

0

@
X

j

↵��

1

A =
X

j

vec(↵��)

=
X

j

(�> ⌦ ↵)vec(�)

=
X

j

(B ⌦A
>)vec(ALB � Sj)

=
X

j

(B ⌦A
>)(vec(ALB)� vec(Sj))

=
X

j

(B ⌦A
>)(B> ⌦A)(vec(L)� vec(Sj))

=
X

j

(BB
> ⌦A

>
A)(vec(L)� vec(Sj))

=
NX

j=1

((WW
>)

N�j
N ⌦ (W>

W )
j�1
N )(vec(L)� vec(Sj))

where the first two equalities is due to the additivity of the vectorization operator and the association
between vectorized products and the Kronecker product (vec(ABC) = (A>⌦C)vec(B)), the fourth
equality is due to the preservation of the Hadamard product over vectorization, the fifth equality is
the result of applying the same logic as the first equality to vec(ALB), the sixth equality is the result
of the mixed-product property of Kronecker products, and the simplification in the final equality
can be found in the appendix of [6]. Previous work [6] has shown that, in un-regularized gradient
flow, PW :=

PN
j=1((WW

>)
N�j
N ⌦ (W>

W )
j�1
N ) is a p.s.d. matrix that serves as an accelerative

pre-conditioning that acts on the loss gradient. However, now there is an additional component Sj so
we can further simplify the previous expression:

=
NX

j=1

((WW
>)

N�j
N ⌦ (W>

W )
j�1
N )(diag(vec(Sj))vec(L))

=
NX

j=1

((WW
>)

N�j
N ⌦ (W>

W )
j�1
N )(Gjvec(L))

where Gj = diag(vec(Sj) denotes taking the elements of vec(Sj)) and placing them along the
diagonal of a zero matrix. Finally, substituting the term back in for L, we have a approximate
characterization of the trajectory of the end-product matrix W under Adam:

vec(Ẇ ) = �PW,Gvec(rWL(W )) (18)

where PW,G :=
PN

j=1((WW
>)

N�j
N ⌦ (W>

W )
j�1
N )Gj .

Positive semi-definiteness of PW,G. Under gradient flow, [6] has shown that PW =
PN

j=1 Pj

where Pj = (W>
W )

N�j
N ⌦ (WW

>)
j�1
N and Pj is symmetric; to show that Pj is p.s.d., note that,

suppressing notation for time dependence t, we can equivalently write for some j,

Pj = A((DD
>)

j�1
N ⌦ (D>

D)
N�j
N )A> (19)

where A = U ⌦ V , the Kronecker product of the matrices containing the left and right singular
vectors of W respectively, and D is the diagonal matrix containing the singular values of W . Since
the term in the middle is the Kronecker product of two diagonal matrices (with non-negative singular
values along the diagonal), it’s also a diagonal matrix. Therefore, for non-zero x and some fixed j,

x
>
A((DD

>)
j�1
N ⌦ (D>

D)
N�j
N )A>

x � ||A>
x||2c � 0
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where c = �
2 j�1

N
1 · �2N�j

N
1 and �1 is the smallest singular value of W or, equivalently, the smallest

value of the diagonal matrix D which is by definition non-negative. Gj is also symmetric, since
it is diagonal, and p.s.d. since its diagonal entries (and therefore eigenvalues) are by definition
non-negative. Since PjGj is the product of a real symmetric p.s.d. matrix Pj and a real positive
diagonal matrix Gj , the product is also p.s.d. [51]. Therefore, PW,G =

PN
j=1 PjGj is also p.s.d.

as a sum of p.s.d. matrices. Similar to PW under un-regularized gradient flow, PW,G acts as a
pre-conditioning on the loss gradient which now also includes the variance of the loss gradient with
respect to each layer j.

Implications of PW,G. As noted in [6], PW in the original case of un-regularized gradient flow
serves as an accelerative pre-conditioning on the loss gradient (Eq. (4)) that intensifies with depth and
can only exist with sufficient depth (N � 2). More specifically, [6] show that the eigenvalues of PW

are
PN

j=1 �
2N�j

N
r �

2 j�1
N

r0 , corresponding to its eigenvectors vec(urv>
r0) where ur and v>

r0 are the left
and right singular vectors of the end-product matrix W 2 Rm⇥n. With non-trivial depth (N � 2),
increasing �r or �r0 results in an increase in the eigenvalue corresponding to the eigen-direction (i.e.
rank one matrix) urv>

r0 , which can be interpreted as the pre-conditioning favoring or accelerating
in directions that correspond to singular vectors whose presence in the end-product matrix W is
stronger. In the case of degenerate depth (N = 1), however, the pre-conditioning PW collapses
into the identity, causing all of its non-zero eigenvalues to reduce down to unity—resulting in no
accelerative favoring of any eigen-direction(s) during optimization.

In the case of Adam’s pre-conditioning at degenerate depth, PW,G’s non-zero eigenvalues, unlike
PW , are no longer just unity and static which produce no accelerative favoring in any direction;
instead, its eigenvalues become [(1 + ⌘

2)�1/2]r,r0 where now ⌘
2 = s

2
/rWL(W )2, allowing for

continued variation and accelerative effects even at depth 1. For non-degenerate depths (N � 2), each
individual Pj within PW,G is now normalized by Gj so that each layer’s individual contribution to
the overall pre-conditioning is normalized by a function of that layer’s squared gradient and gradient
variance, unlike before.

Evolution of � under Adam without penalty. For the trajectories of the singular values {�i},
we largely build atop the approach in [7], whose key steps we highlight here. We start by defining
the analytic singular value decomposition of the end-product matrix as W (t) = U(t)D(t)V (t)>.
Differentiating W (t) with respect to time t:

Ẇ (t) = U̇(t)D(t)V (t)> + U(t)Ḋ(t)V (t)> + U(t)D(t)V̇ (t)

If we then left-multiply the above expression by U(t)> and right-multiply by V (t), we see that:

U(t)>Ẇ (t)V (t) = U(t)>U̇(t)D(t) + Ḋ(t) +D(t)V̇ (t)V (t)

where the orthonormal columns of U(t) and V (t) have helped simplify the earlier expression.
Focusing on the diagonal elements of the above expression and suppressing the notation for time
dependence, we see that they are:

u>
i Ẇvi = u>

i u̇
>
i �i + �̇i + �iv̇

>
i vi

where ui and vi are the i-th left and right singular vectors associated with the i-th diagonal element
or, equivalently, the i-th singular value �i. Since the columns of U are orthonormal by definition, and
because ui and vi has constant unit length by definition (i.e. u>

i ui =
1
2

d
dt ||ui(t)||22 = 0), the above

equation can be distilled down into:

�̇i = u>
i Ẇvi

Taking the (column-order first) vectorization of the expression above, then:

vec(�̇i) = �̇i = (u>
i ⌦ v>

i )vec(Ẇ ) = vec(viu
>
i )

>vec(Ẇ ) (20)

We can then substitute our expression for vec(Ẇ ) from Eq. (18) to characterize the singular values
under Adam:

�̇i = �vec(viu
>
i )

>
PW,Gvec(rWL(W )) (21)
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A.4.3 Lemma 4 (Adam, with penalty)

We omit the details of deriving �̇ under gradient flow from the beginning and defer to the appendix of
[6] for a more comprehensive review. We highlight the key parts.

Evolution of W under Adam with penalty. To characterize the evolution of the end-product matrix
W under Adam in presence of the penalty, we can simply leverage our earlier results from Eq. (18)
and combine them with the gradient of the penalty since the penalty is simply an additive component
to the same loss function. Denoting our penalty by R(W ), we can characterize Ẇ as:

vec(Ẇ ) = �PW,Gvec(rWL(W ) + �rWR(W ))

Substituting in the gradient of the penalty and vectorizing accordingly, we have:

vec(Ẇ ) = �PW,G

 
vec (rWL(W )) + �

vec(UV
> � U ⌃̃V >)

||W ||2F

!
(22)

where U and V
> are the matrices containing the left and right singular vectors of the end-product

matrix W at time t (time notation suppressed in the expression above), � is the regularization strength,
and ⌃̃ is a re-weighted version of a rectangular diagonal matrix containing the singular values of W
(i.e. ⌃̃ = ||W ||⇤

||W ||F ⌃). Here, we can see that PW,G in Eq. (22) is accelerating not just the loss gradient
in helping with optimization with respect to performance via the loss but also the penalty gradient in
its tendency towards low-rankedness.

Interestingly, we also note that the second term in the parenthesis of Eq. (22) can be seen as a re-scaled
version of W . Namely, if we ignore the vectorization operator, the term (UV

>�U ⌃̃V >)/||W ||2F can
be re-expressed as a new spectrally shifted and re-scaled W that we can define as W̄ := U ⌃̄V > where
⌃̄ = (I � ⌃̃)/||W ||2F . In other words, we see that the explicit regularizer affects the network’s (i.e.,
W ) trajectory by introducing a new spectrally adjusted version of itself as part of the penalization.

Evolution of � under Adam with penalty. Similar to the approach taken to characterize Ẇ under
the penalty, we can re-use the expression in Eq. (20) and substitute in the appropriate expression for
vec(Ẇ ) in the case of Adam with the penalty:

�̇i = �vec(uiv
>
i )

>
PW,G

 
vec(rWL(W )) + �

vec(UV
> � U ⌃̃V >)

||W ||2F

!
(23)

A.4.4 Depth 1 dynamics

Lastly, we clarify the dynamics of the end-product matrix W and its singular values � in the case of a
depth 1 network.

Un-regularized gradient flow and Adam. As mentioned in Section 3, for un-regularized gradient
flow, at N = 1, the trajectories of the end-product matrix and its singular values reduce down to:

�̇i = �u>
i rWL(W )vi (24)

vec(Ẇ ) = �vec (rWL(W )) (25)

where PW = Imn has now reduced down to the identity; as such, the accelerative pre-conditioning
that typically strengthens with depth no longer exists, as expected.

For un-regularized Adam, at N = 1, we have:

�̇i = �vec(viu
>
i )

>(G · vec(rWL(W ))) (26)

vec(Ẇ ) = �G · vec(rWL(W )) (27)

where PW,G = Imn, Gj = G since now N = j = 1, G = diag(vec(Sj)), and Sj is defined as a
matrix whose elements are: [Sj ]m,n = [(rWL(W )2 + s

2)�1/2]m,n as defined in Eq. (6). While
the depth-dependent accelerative pre-conditioning still no longer exists, we have a new sort of “pre-
conditoning” in the form of a p.s.d. matrix G that is a function of the squared loss gradient and its
variance.
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Regularized gradient flow and Adam. Finally, we describe the dynamics for the end-product
matrix and its singular values under gradient flow and Adam at depth 1, but now with the penalty.

For gradient flow with the penalty, we see that:

�̇r = �u>
i rWL(W )vi �

�

||W ||2F

✓
1� ||W ||⇤

||W ||F

◆
�

1
2
r (28)

vec(Ẇ ) = �
 
vec (rWL(W )) + �

vec(UV
> � U ⌃̃V >)

||W ||2F

!
(29)

As noted earlier, in the absence of any pre-conditioning, we do have an additional degree of freedom
provided by the penalty both in terms of the evolution of Ẇ (i.e. via the penalty gradient and not just
the loss gradient) and �̇ (i.e. to depend on its own relative magnitude unlike un-regularized gradient
flow).

For Adam, we have:

�̇i = �vec(viu
>
i )

>
G

 
vec (rWL(W )) + �

vec(UV
> � U ⌃̃V >)

||W ||2F

!
(30)

vec(Ẇ ) = �G

 
vec (rWL(W )) + �

vec(UV
> � U ⌃̃V >)

||W ||2F

!
(31)

As noted earlier in Section 3, the key is the combination of G, a pre-conditioning that is a function of
the variance of the loss gradient and appears under Adam and Adam-like variants, and the gradient
penalty from our normalized nuclear norm ratio, that allows a depth 1 network (i.e. no depth) to
generalize as well as a deep network, or deep factorization, and perform the same extent of rank
reduction, as gradient flow/descent’s implicit regularization in the presence of depth, to the point of
perfect rank recovery as measured by effective rank like in [7].
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