
A Proof and Derivation

A.1 Proof of Contrastive Invariance

Proof. We start our proof from the contrastive loss in eq. (1), rewritten as follows:

L(hV1

i ,hV2

i) = log
exp(θ(hV1

i ,hV2

i)/τ)

exp(θ(hV1

i ,hV2

i)/τ) +
∑
k ̸=i

exp(θ(hV1

i ,hV2

k)/τ)
, (9)

Here, for simplification, we set τ = 1, θ is dot product similarity, the number of GCN layer is 1 and
without non-linear activation. In the case study, we utilize augmentations A and V as two inputs.
And then, for the optimization of node i, we have:

L(hA
i ,hV

i) = log
exp(hA

i hV ⊤

i)∑
k

exp(hA
i hV ⊤

k)

= hA
i hV ⊤

i − log
∑
k

exp(hA
i hV ⊤

k)

≤ hA
i hV ⊤

i − logN · exp

∑
k

hA
i hV ⊤

k

N

 (10a)

= hA
i hV ⊤

i − logN − 1

N

∑
k

hA
i hV ⊤

k

⇒ hA
i hV ⊤

i − 1

N

∑
k

hA
i hV ⊤

k . (10b)

In formula (10a) we utilize inequality of arithmetic and geometric means, where given any N positive
numbers, they meet x1+···+xN

N ≥ N
√
x1 . . . xN . And in formula (10b), we neglect the constant logN .

Then, we gather the losses of all nodes as follows:

L =
∑
i

L(hA
i ,hV

i)

≤
∑
i

hA
i hV ⊤

i −
∑
i

1

N

∑
k

hA
i hV ⊤

k

= tr(HAHV ⊤
)− 1

N
sum(HAHV ⊤

),

(11)

where HA and HV ⊤
denote the embeddings matrices for all nodes under A and V , respectively.

tr(U) means the trace of matrix U , and sum(U) means the sum of all elements in matrix U .
Please recall that V is composed of different eigenspaces of A, so we can have that A = UΛU⊤

and V = UΓU⊤, where U is the collection of eigenspaces, and Λ = diag(λ1, . . . , λN) and
Γ = diag(γ1, . . . , γN) are the diagonal weight matrices of different eigenspaces. Because we
simplify that only one layer GCN without activation function is used, we have the following formula:

HAHV ⊤
= AXWWXV , (12)

where W is learnable parameters of the encoder. Then, we set M = XWWX . And thus, we can
view M as the similarities of features between every two nodes after projection. As mentioned in
previous studies, linked nodes often have similar features [15], and thus their similarity should be
also higher after projection. Therefore w.l.o.g., we assume that transformed features between nodes
present a kind of high-order proximity, given in [34]:

Assumption 1. (High-order Proximity) M = w0 +w1A+w2A
2 + · · ·+wqA

q , where Ai means
matrix multiplications between i As, and wi is the weight of that term.

In other words, this assumption aims to expand M with the weighted sum of different orders of A.
Furthermore, we have that:

13

Theorem 4. When q ≥ N − 1, M = UΘU⊤, where Θ = diag(θ1, . . . , θN). And {θ1, . . . , θN}
are N different parameters, if {λ1, . . . , λN} are N different frequency amplitudes.

Proof.

M = w0 + w1A+ w2A
2 + · · ·+ wqA

q

= Uw0IU
⊤ +Uw1ΛU⊤ +Uw2Λ

2U⊤ + · · ·+UwqΛ
qU⊤

= U [w0I + w1Λ+ w2Λ
2 + · · ·+ wqΛ

q]U⊤

= U

q∑
i=0

wiλ
i
1

q∑
i=0

wiλ
i
2

. . .
q∑

i=0

wiλ
i
N

U⊤

(13)

We firstly give the following equation set:
w0 + w1λ1+ · · ·+ wqλ

q
1 = θ1

w0 + w1λ2+ · · ·+ wqλ
q
2 = θ2

. . .

w0 + w1λN+ · · ·+ wqλ
q
N = θN ,

(14)

where {θ1, . . . , θN} are N randomly given parameters. And the determinant of coefficient of this

equation set is D =

∣∣∣∣∣∣∣
1 λ1 . . . λq

1
1 λ2 . . . λq

2
. . .

1 λN . . . λq
N

∣∣∣∣∣∣∣. From the linear algebra, we know that if (1) q = N − 1,

D is the Vandermonde determinant, and then D =
∏

N≥i≥j≥1(λi − λj). If ∀i, j ∈ [1, N], we all
have λi ̸= λj , so D ̸= 0. In this case, the coefficient matrix is a full-rank matrix, and there will be
one unique solution of the set (14). If ∃ one pair of i, j ∈ [1, N] and λi = λj , we can force θi and
θj to be equal, which means that the encoder deploys the same effect on the repeated frequencies.
The number of repeated frequencies is considerably smaller that that of different frequencies, so we
neglect this case; (2) q > N − 1, the number of unknown numbers is larger than that of equations in
set (14), so there are infinite solutions. Above all, theorem 4 is proved.

Theorem 4 points that M can be easily rewritten in UΘU⊤, if we use sufficient orders of A to
approach M . Combined with this theorem, we resume the derivation of eq. (12) as follows:

HAHV ⊤
= AMV

= UΛU⊤MUΓU⊤ = UΛΘΓU

= U

λ1θ1γ1
λ2θ2γ2

. . .
λnθnγn

U⊤

= λ1θ1γ1u1u
⊤
1 + λ2θ2γ2u2u

⊤
2 + · · ·+ λNθNγNuNu⊤

N

(15)

Therefore, we have:

tr(HAHV ⊤
) =

∑
i

λiθiγi, and sum(HAHV ⊤
) =

∑
i

λiθiγisum(uiu
⊤
i) (16)

Finally, plug this equation into eq. (11), we can get:

14

L ≤ tr(HAHV ⊤
)− 1

N
sum(HAHV ⊤

)

=
∑
i

λiθiγi[1−
1

N
sum(uiu

⊤
i)]

≤ (1 +N)
∑
i

λiθiγi (17a)

=
1 +N

2

∑
i

θi[λ
2
i + γ2

i − (λi − γi)
2]

≤ 1 +N

2

∑
i

θi[2− (λi − γi)
2]. (17b)

In eq. (17a), we utilize the following lemma:

Lemma 1. sum(uiu
⊤
i) ≥ −N2.

Proof. We have known that u⊤
i ui = u2

i1 + · · · + u2
iN = 1, which implies that ∀j ∈ [1, N], uij ∈

(−1, 1). Thus, ∀j, k ∈ [1, N], uijuik ∈ (−1, 1). Finally, sum(uiu
⊤
i) =

∑
j,k

uijuik >
∑
j,k

(−1) =

−N2.

And in eq. (17b), we utilize the fact that for A, amplitudes of its frequencies lay in [-1, 1], while
for V , amplitudes of its all frequencies equal to 1. Therefore, λ2

i ≤ 1 and γ2
i ≤ 1. Similarly for

L(hV2

i ,hV1

i), we also have the same upper bound. Therefore, we have the following results:

LInfoNCE =
∑
i

1

2

(
L(hV1

i ,hV2

i) + L(hV2

i ,hV1

i)
)
≤ 1 +N

2

∑
i

θi[2− (λi − γi)
2]. (18)

So, the contrastive invariance is proved.

A.2 Derivation of optimization objective

In this subsection, we provide detailed derivation of optimization objective in eq. (3). As shown in
section 5, we attempt to learn an augmented graph from original graph based on the GAME rule.
Based on eigenvalue perturbation formula (2) removing the high-order term O(||∆A||), we have:

∆λi ≈ u⊤
i ∆Aui − λiu

⊤
i ∆Dui

=
∑
m,n

[(uiu
⊤
i) ∗∆A]m,n − λiu

⊤
i ∆Dui (19a)

=< Si,∆A > −λiu
⊤
i ∆Dui. (19b)

In eq. (19a), we use ’*’ to represent element-wise product, and use < P ,Q > to represent the sum
of all elements of P ∗Q in eq. (19b). Before further derivation, we give a lemma as following:
Lemma 2. |λiu

⊤
i ∆ Dui| ≤ N |λi|.

This lemma is proved in Appendix A.2.1. Then with Lemma 2, we gather the changes of all
eigenvalues together, and have the following two theorems:
Theorem 5. Given ∆total =

∑
i αi|∆λi|, we have

∆total ⇐⇒
∑
i

αi |< Si,∆A >| ≥
∑
i

αi |< Si,∆A+ >| −
∑
j

aj |< Sj ,∆A− >| = ∆+ −∆−,

where αi ≥ 0 is the weight for the change of λi. Formally, we have ∆A = ∆A+ −∆A−, where
∆A+ and ∆A− indicate which edge is added and deleted, respectively.
Theorem 6. Given N eigenspaces [S1, . . . ,SN], if | < Si,∆A > | is maximized, then ∀j, | <
Sj , ∆A > | → 0.

15

The proof is given in Appendix A.2.2 and A.2.3. Theorem 6 implies that ∆A can only be related
to one of these eigenspaces. Please recall that we need |∆λi| in FL is smaller than that in FH.
Therefore, we first make αi is larger for ∆λi in FH than in FL. Then, we maximize ∆total, and ∆A
will only be related to Si in FH. That means |∆λi| in FH will be larger. Particularly, Theorem 5
indicates that we can maximize ∆+ and minimize ∆− simultaneously to maximize ∆total. For ∆+,
we can maximize it by following formula:

∆+ =
∑
i

αi |< Si,∆A+ >| = |
∑
i

αi < Si,∆A+ > |

= | <
∑
i

αiuiu
⊤
i , ∆A+ > | =

∣∣< Ug(λ)U⊤, ∆A+ >
∣∣ = |< C, ∆A+ >| . (20a)

In eq. (20a), we define C = Ug(λ)U⊤ and αi = g(λi), where g(λ) should be a monotone increasing
function. As can be seen, if ∆A+ is learnt to be closed to some predefined C, ∆+ will increase.

Setting C We notice that the graph spectrum of Laplacian L does meet our need about g(λ). Therefore,
we simply set C = ΘL, where Θ is a parameter. We change Θ as the training goes.

With eq. (20a), we give the following optimization objective:

J =< C, ∆A+ >2 +ϵH(∆A+)+ < f ,∆A+1n − a > + < g,∆⊤
A+1n − b >, (21)

where H(P) is the entropy regularization, defined as −
∑

i,j Pi,j(log(Pi,j)− 1) [21], and ϵ is the
weight of this term. This term exposes more edges in ∆A+ to optimization. The last two terms
are Lagrange constraint conditions, where f ∈ RN and g ∈ RN are Lagrange multipliers, and
a ∈ RN×1 and b ∈ RN×1 are distributions that the row and column sums of ∆A+ should meet.

A.2.1 Proof of Lemma 2

Proof.

|λiu
⊤
i ∆Dui| = |λi||u⊤

i diag(d1, . . . , dN)ui| = |λi|
[
|d1|u2

i1 + · · ·+ |dN |u2
iN

]
≤ |d|max|λi|

[
u2
i1 + · · ·+ u2

iN

]
= |d|max|λi| ≤ N |λi|.

In this proof, we utilize two facts: (1) the length of any eigenvector is 1, and (2) the change of degree
matrix does not exceed N (in the limiting case, one node becomes from isolated to reaching all other
nodes, where dmax equals to N).

A.2.2 Proof of Theorem 5

Proof.

∆total =
∑
i

ai|∆λi|

=
∑
i

ai
∣∣< Si,∆A > −λiu

T
i ∆Dui

∣∣
≥

∑
i

ai |< Si,∆A >| −
∣∣λiu

T
i ∆Dui

∣∣
=

∑
i

ai |< Si,∆A >| −
∑
k

∣∣λku
T
k∆Duk

∣∣
≥

∑
i

ai |< Si,∆A >| −N
∑
k

|λk| (22a)

≥
∑
i

ai |< Si,∆A >| −N2 (22b)

⇐⇒
∑
i

ai |< Si,∆A >| (22c)

≥
∑
i

ai| < Si,∆A+ > | −
∑
j

aj | < Si,∆A− > |.

16

In eq. (22a), we utilize the result of lemma 2, and in eq. (22b) we again utilize that the amplitudes of
frequencies of A are between [-1, 1]. For simplification, we ignore the constant N2 in eq. (22c).

A.2.3 Proof of Theorem 6

Proof. To prove the Theorem 6, we firstly prove the following lemma:

Lemma 3. < Si,Sj >= 0, when i ̸= j.

Proof. We have that < Si,Sj >=< uiu
⊤
i ,uju

⊤
j >=

∑
m,n

(uiu
⊤
i) ∗ (uju

⊤
j) = u⊤

i uju
⊤
j ui = 0,

where we take advantage of any two different eigenvectors are orthogonal, or u⊤
i uj = 0.

With this lemma, we give the following derivation:

2 < Si, ∆A >= 2∆A11Si11 + 2∆A12Si12 + · · ·+ 2∆ANNSiNN . (23)

Then we conduct category discussion on < Si, ∆A >:

1. For < Si, ∆A > > 0, we have:

2| < Si, ∆A > | = 2∆A11Si11 + 2∆A12Si12 + · · ·+ 2∆ANNSiNN

=
∑
m,n

∆A2
mn + S2

imn − (∆Amn − Simn)
2

=
∑
m,n

∆A2
mn + ||Si||2F −

∑
m,n

(∆Amn − Simn)
2

≤ N2 + ||Si||2F −
∑
m,n

(∆Amn − Simn)
2. (24a)

In eq. (24a), we make use of that the change of one element in ∆A is in [−1, 1]. From eq. (24a),
we can infer that if ∆A is learnt to be similar with some eigenspace Si, maximizing the left hand
of above equation, then

∑
m,n

(∆Amn − Simn)
2 will be minimized, which means ∆Amn → Simn.

Then, if we test the similarity between ∆A and another eigenspace Sj , we have that:

< Sj , ∆A > = ∆A11Sj11 +∆A12Sj12 + · · ·+∆ANNSjNN

⇒ Si11Sj11 + Si12Sj12 + · · ·+ SiNNSjNN

=< Sj , Si >= 0.

2. For < Si, ∆A > < 0, we have:

2| < Si, ∆A > | = −2∆A11Si11 − 2∆A12Si12 − · · · − 2∆ANNSiNN

=
∑
m,n

∆A2
mn + S2

imn − (∆Amn + Simn)
2

=
∑
m,n

∆A2
mn + ||Si||2F −

∑
m,n

(∆Amn + Simn)
2

≤ N2 + ||Si||2F −
∑
m,n

(∆Amn + Simn)
2.

In this case,
∑
m,n

(∆Amn + Simn)
2 will be minimized, which means ∆Amn → −Simn. Then, for

another eigenspace Sj , we have:

< Sj , ∆A > = ∆A11Sj11 +∆A12Sj12 + · · ·+∆ANNSjNN

⇒ −Si11Sj11 − Si12Sj12 − · · · − SiNNSjNN

= − < Sj , Si >= 0.

Above all, we prove that ∆A can only be related to part of eigenspaces, rather than all of them.

17

A.3 Proof of Theorem 2

Proof. Here, we start from eq. (4b), and replace (∆A+)ij with ∆ij , shown as following:

f(∆ij) =
∂J

∂(∆A+)ij
= mij + 2C2

ij(∆A+)ij − ϵ log(∆A+)ij + fi + gj

= mij + 2C2
ij∆ij − ϵ log∆ij + fi + gj ,

(28)

where the domain of definition is ∆ij ∈ (0, 1). We observe eq. (28) that f(0) → +∞ and f(1) =

mij + 2C2
ij + fi + gj . Then, we conduct category discussion.

1. If f(1) < 0, we have C2
ij < −fi+gj+mij

2 , and fi + gj +mij < 0. In this case, by Existence
Theorem of Zero Points, we know that there must be a point making f(∆ij) = 0, and the loss J can
obtain the extremum. This is the condition (1) in Theorem 2.

2. If f(1) > 0, we must let the minimal value of f(∆ij) < 0, in order to guarantee there exists Zero
Points. To get the minimal value, we need take the derivative about f(∆ij) as follows:

∂f(∆ij)

∂∆ij
= 2C2

ij −
ϵ

∆ij
. (29)

From above formula, the minimal value is ∆ij = ϵ
2C2

ij
by letting ∂f(∆ij)

∂∆ij
= 0. Then, we need to

meet the following two conditions:
ϵ

2C2
ij

< 1 and f(
ϵ

2C2
ij

) < 0. (30)

The solution of above two conditions is the condition (2) in Theorem 2.

A.4 Proof of Theorem 3

Proof. To begin with, we introduce some basic definitions, which will be used in this part of proof.

Definition 1. (Hilbert’s projective metric)[3] Given ∀(x, x′) ∈ (Rn
+)

2, then the Hilbert’s projective
metric on Rn

+ is defined as:

d(x, x′) = logmax
i,k

xix
′
k

x′
ixk

.

This is an explicitly defined distance function on a bounded convex subset of the n-dimensional
Euclidean space, which can greatly simplified the global convergence analysis of Sinkhorn [7]. This
metric satisfies the triangular inequality, and d(x, x′) = 0 if ∃s > 0, x = sx′.

Definition 2. (Contraction ratio)[7] Given a positive n × n matrix A, then the contraction ratio of
A is defined as:

γ = κ(A) = sup
{

d(Ay,Ay′)
d(y,y′) : y, y′ ∈ Rn

+, y ̸= αy′
}

Specially, if we set ℵ = sup
{
d(Ay,Ay′) : y, y′ ∈ Rn

+, y ̸= αy′}, then γ = ℵ1/2−1
ℵ1/2+1

.

With these two definitions, the authors in [22] give the following lemma:

Lemma 4. One has

|| log(P (l))− log(P ⋆)||∞ ≤ 1

1− γ
{d(r(l),a) + d(c(l), b)}, (31)

where P (l) and P ⋆ are the intermediate result after lth Sinkhorn’s Iteration and the final result,
respectively. r(l) and c(l) are the row and column sum vectors of P (l), and a and b are two predefined
distributions.

Now, please recall that we utilize the trick to operate Sinkhorn’s Iteration in eq. (6). In this case, we
set l in eq. (31) as 0, so the left hand of equation will be changed as:

|| log(P (0))− log(P ⋆)||∞ = || log(K+)− log(∆A+)||∞. (32)

18

This is because before iteration, P (0) is actually K+, and ∆A+ is the final result of iteration. Then,
we have the following derivation:

|log((∆A+)ij)− log((K+)ij)| ≤ || log(∆A+)− log(K+)||∞

≤ 1

1− γ
{d(r(0),a) + d(c(0), b)}∣∣ϵ log((∆A+)ij)− 2 < C,∆′

A+ > Cij

∣∣ ≤ 1

ϵ(1− γ)
{d(r(0),a) + d(c(0), b)}∣∣ϵ log((∆A+)ij)− 2C2

ij(∆
′
A+)ij −mij

∣∣ ≤ 1

ϵ(1− γ)
{d(r(0),a) + d(c(0), b)}∣∣ϵ((∆A+)ij − 1)− 2C2

ij(∆
′
A+)ij −mij

∣∣ ≤ 1

ϵ(1− γ)
{d(r(0),a) + d(c(0), b)}

∵
∣∣ϵ(∆A+)ij − 2C2

ij(∆
′
A+)ij

∣∣− ϵ− |mij | ≤ |ϵ((∆A+)ij − 1)− 2C2
ij(∆

′
A+)ij −mij |

∴
∣∣ϵ(∆A+)ij − 2C2

ij(∆
′
A+)ij

∣∣ ≤ 1

ϵ(1− γ)
{d(r(0),a) + d(c(0), b)}+ ϵ+ |mij |∣∣∣∣∣ ϵ

2C2
ij

(∆A+)ij − (∆′
A+)ij

∣∣∣∣∣ ≤ 1

2C2
ijϵ(1− γ)

{d(r(0),a) + d(c(0), b)}

+
ϵ+ |mij |
2C2

ij

.

(33)

If we set α = ϵ
2C2

ij
, we have:

∣∣α(∆A+)ij − (∆A+)′ij
∣∣ ≤ α

ϵ2(1− γ)
{d(r(0),a) + d(c(0), b)}+ α(1 +

|mij |
ϵ

). (34)

B More details of Section 3

B.1 Experimental settings

In Fig. 2, we show the GCL model used in following case study. Here, we provide more experimental
settings about case study. As description, we use a shared GCN to encode A and V and get their
nodes embeddings as HA and HV . In the training, we set dimensions of HA and HV as 8, learning
rate as 0.001, τ in eq. 1 as 0.5 and weight decay as 0. We train the model 300 epochs, and then test
the quality of HA. In the test phrase, we follow DGI, and the split of each dataset is consistent with
that in table 4 in Appendix D.2, and we only test the case where training set contains 20 nodes per
class.

B.2 More results of case study

In section 3, we design a simple GCL framework to contrast A and generated V . When con-
structing V , we conduct augmentations in FL (or FH) by adding eigenspaces in FL (or FH)
back in low-to-high frequency order. Here, we consider the inverse high-to-low frequency order.
The process is shown in Fig. 11, where V augmenting 20% in FL is u0.8∗N/2u

⊤
0.8∗N/2 + · · · +

u(N−1)/2u
⊤
(N−1)/2 + uN/2u

⊤
N/2 + · · · + uNu⊤

N . Similarly, V augmenting 20% in FH is
u1u

⊤
1 + · · ·+uN/2u

⊤
N/2 +u1.8∗N/2u

⊤
1.8∗N/2 + · · ·+uNu⊤

N . We take Cora as an example, and
report the results in Fig. 12. As can be observed, we get the similar conclusions as in section 3: (1)
From the curve marked by “Low”, the performances remain stably low until the lowest-frequency
components are involved; (2) From the curve marked by “High”, the performances continually rise,
as more high-frequency components are involved. Therefore, based on observations, we emphasize
the importance of lowest-frequency and more high-frequency information in GCL. So, whether we

19

Figure 11: New generation of V, where
we follow high-to-low frequency or-
der in both low-frequency and high-
frequency part.

Figure 12: The results of inverse adding
order on Cora.

incrementally add in the low-to-high or high-to-low frequency order, as long as lowest-frequency and
more high-frequency information is preserved in V , the results will be better.

C Another Experimental Analysis of GAME Rule

Figure 13: The spectrum of A and A2.

We substitute A2 (two-hop of A) for augmentation V
in the case study. In Fig. 13, we simultaneously plot the
graph spectra of A and A2. It can be seen that A and A2

meet GAME rule. Next, we compare the performances
of this pair with two other pairs: A and A, A2 and A2,
where the spectra of two augmentations are the same and
not meet GAME rule in each pair. We randomly run 10
times for each pairs, and report the average accuracy on
four datasets. The results are shown in Table 3, where we
can see that the pair of A and A2 actually excels the other
two pairs.

Table 3: Performance of there different pairs of augmentations to verify the GAME rule.
Pair of Augmentations Cora Citeseer BlogCatalog Flickr

A &A 37.0±6.1 35.4±3.9 50.6±3.2 26.6±2.6
A & A2 53.7±3.2 44.7±5.0 63.1±4.6 33.7±2.3
A2 &A2 33.3±2.1 35.8±4.1 56.2±2.1 28.2±1.6

D Experimental Details

D.1 Implementation details

For two semi-supervised GNN models (GCN, GAT), we utilize the original codes from their authors,
and train the models in an end-to-end way. For six graph contrastive learning methods, we obey the
traditional GSL setting: we first train each model by optimizing corresponding objective, and get the
embeddings for all nodes; then, we feed the node embeddings into a logistic regression to evaluate
the quality of embeddings. We use the source codes provided by authors, and follow the settings in
their original papers with carefully tune.

For the proposed SpCo, we search on combination coefficient η from 0.1 to 1.2 with step 0.1. For ϵ,
we test it ranging from {1e-1, 1e-2, 1e-3, 1e-4}. We tune the iteration Iter for Sinkhorn’s Iteration in
algorithm 1 from {1, 2, 3}. Finally, we carefully select total epochs T and update epochs Ω for target
model, and tune the scope S from one-hop or two-hop neighbors.

For fair comparisons, we randomly run 10 times and report the average results for all methods. For
the reproducibility, we report the related parameters in Appendix D.3.

20

D.2 Datasets and baselines

We choose the five commonly used Cora, Citeseer, Pubmed [11], BlogCatalog and Flickr [16] for
evaluation. The first three datasets are citation networks, where nodes represent papers, edges are
the citation relationship between papers, node features are comprised of bag-of-words vector of
the papers and labels represent the fields of papers. For them, we choose 500 nodes for validation,
1000 nodes for test. The BlogCatalog dataset is a social network with bloggers and their social
relationships from the BlogCatalog website. Node features are constructed by the keywords of user
profiles, and the labels represent the topic categories provided by the authors. The Flickr dataset is an
image and video hosting website, where users interact with each other via photo sharing. It is a social
network where nodes represent users and edges represent their relationships. For these two methods,
We choose 1000 nodes for validation, 1000 nodes for test. We uniformly select three label rates for
the training set (i.e., 5, 10, 20 labeled nodes per class) for all datasets. Please notice that we adopt
classical splits [11] on the first three datasets for the 20 labeled nodes per class setting. The details of
these datasets are summarized in table 4.

Table 4: The statistics of the datasets.

Dataset Nodes Edges Classes Features Training Validation Test
Cora 2708 10556 7 1433 35/70/140 500 1000

Citeseer 3327 9228 6 3703 30/60/120 500 1000
BlogCatalog 5196 343486 6 8189 30/60/120 1000 1000

Flickr 7575 479476 9 12047 45/90/180 1000 1000
Pubmed 19717 88651 3 500 15/30/60 500 1000

These five datasets used in experiments can be found in these URLs:

• Cora, Citeseer, Pubmed: https://github.com/tkipf/gcn
• BlogCatalog, Flickr: https://github.com/mengzaiqiao/CAN

And the publicly available implementations of Baselines can be found at the following URLs:

• GCN: https://github.com/tkipf/gcn
• GAT: https://github.com/PetarV-/GAT
• DGI: https://github.com/PetarV-/DGI
• MVGRL: https://github.com/kavehhassani/mvgrl
• GRACE: https://github.com/CRIPAC-DIG/GRACE
• GCA: https://github.com/CRIPAC-DIG/GCA
• GraphCL: https://github.com/Shen-Lab/GraphCL
• CCA-SSG: https://github.com/hengruizhang98/CCA-SSG

D.3 Hyper-parameters settings

We implement SpCo in PyTorch, and list some important parameter values in our model in table 5.

During experiments, we notice that Pubmed is a large graph, which will consume much time to
operate Sinkhorn’s Iteration. Meanwhile, we find that our SpCo is model-agnostic, which means that
the Sinkhorn’s Iteration is independent of some specific model. Therefore, we choose to calculate
the iteration results for Pubmed and store them for utilization. Specifically, we firstly calculate 10
intermediate iteration results for Pubmed, and then for each method, we take num intermediate
results at equal intervals, and feed them one by one into the target model every epoch_inter epochs.
Therefore, the relative parameter values are shown in table 6.

D.4 More experiment results

D.4.1 Node classification

In this section, we provide more experimental results on node classification, where we choose 5 and
10 labeled nodes per class as training set respectively, and keep the same validation and test set. The

21

https://github.com/tkipf/gcn
https://github.com/mengzaiqiao/CAN
https://github.com/tkipf/gcn
https://github.com/PetarV-/GAT
https://github.com/PetarV-/DGI
https://github.com/kavehhassani/mvgrl
https://github.com/CRIPAC-DIG/GRACE
https://github.com/CRIPAC-DIG/GCA
https://github.com/Shen-Lab/GraphCL
https://github.com/hengruizhang98/CCA-SSG

Table 5: The values of parameters used in SpCo on Cora, Citeseer, BlogCatalog and Flickr.

Method Dataset T / patience for early stopping Ω S(hop) η ϵ Iter

DGI+SpCo

Cora 40 (patience) 20 1 0.1 1.0 3
Citeseer 30 (patience) 20 1 0.5 1.0 3

BlogCatalog 30 (patience) 30 2 0.3 1e-2 3
Flickr 30 (patience) 30 1 0.3 1e-2 2

GRACE+SpCo

Cora 300 (T) 30 1 0.5 1.0 3
Citeseer 150 (T) 20 1 1.0 1e-2 3

BlogCatalog 800 (T) 300 1 1.0 1e-2 3
Flickr 1300 (T) 300 1 1.0 1e-1 2

CCA-SSG+SpCo

Cora 40 (T) 15 1 0.5 1e-2 3
Citeseer 15 (T) 5 1 0.1 1e-1 3

BlogCatalog 75 (T) 10 1 0.1 1e-1 3
Flickr 100 (T) 30 1 0.5 1e-2 2

Table 6: The values of parameters used in SpCo on Pubmed.

Method T / patience for early stopping num epoch_inter S(hop) η ϵ Iter

DGI+SpCo 30 (patience) 3 100 1 0.1 1e-2 1
GRACE+SpCo 1500 (T) 7 100 1 1.0 1e-2 1

CCA-SSG+SpCo 170 (T) 7 15 1 0.1 1e-2 1

relative results are given in Table 7. Again, we can see that additional SpCo generally improves
the performance of corresponding baselines on all datasets, which comprehensively demonstrates
that SpCo can boost node classification in an effective way. Especially, we notice that the loss used
in CCA-SSG is originated from canonical correlation analysis, which is definitely different from
InfoNCE loss (1). But, we can still boost the results of CCA-SSG by plugging SpCo, indicating the
necessity to design effective augmentations.

D.4.2 Visualisation of graph spectrum

In this section, we mainly supplement the visualisation of graph spectrum on Cora, shown in Fig. 14.
Again, A_ and A have a smaller difference in FL than in FH, indicating they satisfy the GAME rule.
And V1 and V2 got from them also present the same pattern. Therefore, with contrastive invariance
theorem 1, they will instruct encoder to capture more low-frequency information, and hence improve
the results.

(a) DGI: Cora (b) GRACE: Cora (c) CCA-SSG: Cora

Figure 14: The visualisation of graph spectrum on Cora.

D.4.3 Hyper-parameter sensitivity

In this section, we show more results about ϵ on Cora, shown in Fig. 15. Then, we give more analyses
about hyper-parameter η, and test its sensitivity on Cora and BlogCatalog.

Analysis of η. The η in eq. (8) controls the strength that ∆A changes the original A. If η is larger,
∆A will give more impact on A, and the margin between A_ and A is larger in FH. We again
range the value of η from 0.2 to 1.2, and the results are shown in Fig 16. In the figure, the shallower
color is, the better performance is. And the maximal value is marked as red star. We can see that

22

Table 7: Quantitative results (%±σ) on node classification. The better results compared with target
model are in bold.

Datasets Metrics Splits GCN GAT DGI DGI+SpCo MVGRL GRACE GRACE+SpCo GCA GraphCL CCA-SSG CCA+SpCo

Cora

Ma-F1
5 68.4±1.4 74.4±0.3 76.1±0.4 76.2±0.3 76.2±0.5 70.5±2.0 71.4±2.1 70.7±2.8 75.1±0.4 73.4±0.7 73.7±0.6

10 72.9±0.5 75.7±0.5 77.8±0.7 78.2±0.4 78.4±0.8 73.9±1.5 75.7±1.6 75.5±1.4 77.8±0.7 77.1±0.4 78.4±1.0

Mi-F1
5 69.6±1.5 75.8±0.4 77.3±0.5 77.4±0.4 77.0±0.7 70.7±1.8 71.5±2.1 71.5±2.8 76.4±0.3 73.6±0.7 73.8±0.8

10 73.5±0.6 76.5±0.5 79.1±0.6 79.3±0.5 79.4±0.8 74.9±1.6 76.5±1.3 76.4±1.7 79.0±0.8 77.4±0.5 78.7±1.5

Citeseer

Ma-F1
5 48.2±1.5 55.3±0.4 62.6±1.2 63.3±0.6 58.3±0.9 58.1±1.5 59.2±1.3 52.3±2.5 62.1±1.1 57.2±1.4 59.0±2.1

10 63.8±0.7 64.6±0.5 64.9±0.7 65.0±0.5 62.8±0.8 61.9±0.9 62.1±0.5 59.3±1.4 64.4±0.6 63.6±1.1 65.2±0.5

Mi-F1
5 53.4±1.1 61.8±1.9 67.4±1.5 68.0±0.6 63.0±1.1 62.5±1.5 63.9±1.6 54.6±3.0 66.8±1.3 61.4±1.5 62.5±2.1

10 66.8±0.8 67.9±0.6 68.9±0.5 69.2±0.4 67.2±0.8 65.2±0.8 66.0±1.0 61.8±1.7 68.5±0.7 67.5±1.1 69.7±0.9

BlogCatalog

Ma-F1
5 61.4±2.8 55.7±3.9 60.2±1.8 65.9±1.3 69.0±7.1 56.6±1.5 58.4±0.6 62.5±0.8 55.6±3.1 67.9±0.4 68.2±0.5

10 68.2±1.8 65.0±1.3 67.1±1.1 70.5±0.4 76.2±4.0 64.9±0.8 65.8±0.9 69.9±0.4 63.3±1.6 67.6±0.5 67.5±0.3

Mi-F1
5 63.3±2.7 58.1±3.1 61.8±1.7 67.2±1.1 69.9±7.1 58.9±1.5 60.4±0.6 64.4±0.7 57.2±3.3 69.0±0.4 69.2±0.4

10 69.5±1.8 65.9±1.5 67.7±1.2 71.3±0.5 76.7±3.9 65.8±0.8 66.8±1.0 70.8±0.5 63.9±1.7 68.3±0.5 68.4±0.3

Flickr

Ma-F1
5 32.4±1.6 27.9±1.3 20.9±1.3 24.3±1.0 21.7±3.0 21.0±5.5 31.3±1.0 34.6±0.4 22.3±1.3 30.6±1.1 31.4±1.0

10 42.8±1.1 32.8±2.3 26.2±2.3 26.8±0.6 29.1±3.8 32.6±1.7 33.5±4.1 39.3±0.6 25.9±2.2 32.3±0.6 33.9±0.2

Mi-F1
5 35.4±1.0 30.9±0.2 21.9±1.0 26.6±1.1 23.0±3.0 23.6±4.2 32.7±0.9 35.7±0.4 23.4±1.1 33.4±0.8 33.8±0.1

10 44.2±1.0 35.3±1.4 27.1±2.0 29.8±0.6 30.5±3.8 34.9±1.0 35.9±2.4 40.4±0.5 27.3±1.9 35.2±0.9 36.2±0.3

PubMed

Ma-F1
5 69.3±0.7 70.1±0.4 72.3±1.0 73.0±0.4 73.8±0.7 75.5±0.7 75.4±0.6 70.9±1.5 70.7±0.4 72.1±0.8 73.1±0.4

10 73.1±1.1 72.5±0.3 73.2±0.7 74.2±0.5 72.9±0.5 73.2±1.6 73.4±1.4 75.0±0.1 72.3±0.4 73.0±1.0 74.2±0.6

Mi-F1
5 68.4±0.8 69.8±0.4 72.2±1.2 73.0±0.6 73.2±1.2 75.5±0.7 76.0±0.6 70.5±1.8 70.4±0.6 71.5±0.8 72.7±0.4

10 72.7±1.3 72.2±0.4 72.5±0.9 73.3±0.6 71.9±0.6 72.1±1.9 72.9±1.6 74.6±0.2 71.3±0.5 71.9±1.2 73.3±0.7

(a) DGI: Cora (b) GRACE: Cora (c) CCA-SSG: Cora

Figure 15: Analysis of the hyper-parameter ϵ on Cora.

the performances are relative stable in this range. Please note that, this range is reasonable. If the
lower η is tested, our SpCo will have a smaller influence. And if the higher η is tested, our SpCo will
dominate the combination in eq. (8), which will destroy the original A heavily.

D.5 Operating environment

The environment where our code runs is shown as follows:

• Operating system: Linux version 3.10.0-693.el7.x86_64

• CPU information: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

• GPU information: GeForce RTX 3090

D.6 Detailed descriptions of target models

As introduced in experiments, we plug our SpCo into three existing GCL frameworks, including DGI
[28], GRACE [35] and CCA-SSG [33], to roundly verify the effectiveness of SpCo. Therefore, it is
necessary to briefly introduce their mechanisms in this section.

• DGI: This method deploys contrastive learning between local patch and summary vector.
Specifically, the authors utilize GCN to encode the original graph and get all node embed-
dings, which is viewed as local patch. Then, they design a readout function to summarize

23

(a) DGI: Cora (b) GRACE: Cora (c) CCA-SSG: Cora

(d) DGI: BlogCatalog (e) GRACE: BlogCatalog (f) CCA-SSG: BlogCatalog

Figure 16: Analysis of the hyper-parameter η on Cora and BlogCatalog.

node embeddings into one vector, which represents the global information of the graph. In
optimization, DGI views every node in the graph as the positive sample of the summary
vector, while views nodes in corrupted graph as negative samples. Different from InfoNCE
loss, DGI uses BCE loss as the objective.

• GRACE: This method uses feature mask and random edge dropping as two augmentation
strategies from feature and topology levels. Specifically, the authors perform two strategies
at the same time but with different ratios to generate two augmentations, respectively. Then,
they obey traditional InfoNCE loss, where the positive sample of one node is just it own
embedding in the other augmentation, and other nodes are viewed as negative samples.

• CCA-SSG: This method inherits previous augmentation strategies, like feature mask and
random edge dropping. However, the main contribution of this work is to involve canonical
correlation analysis into GCL framework and propose a new objective, which maximizes
the correlation between two views and prevent degenerated solutions simultaneously.

E Related Work

Graph Neural Networks. Recently, Graph Neural Networks (GNNs) have attracted considerable
attentions, which can be broadly divided into two categories, spectral-based and spatial-based.
Spectral-based GNNs are inheritance of graph signal processing, and define graph convolution
operation in spectral domain. For example, [2] utilizes Fourier bias to decompose graph signals; [5]
employs the Chebyshev expansion of the graph Laplacian to improve the efficiency. For another line,
spatial-based GNNs greatly simplify above convolution by only focusing on neighbors. For example,
GCN [11] simply averages information of one-hop neighbors. GraphSAGE [8] only randomly fuses
a part of neighbors with various poolings. GAT [27] assigns different weights to different neighbors.
More detailed surveys can be found in [29].

Graph Contrastive Learning. Graph Contrastive Learning has shown its distinguished capacity in
unsupervised setting, and many studies have been proposed. In this paper, we mainly focus on the
various augmentation strategies. Specifically, DGI [28] contrasts between local node embedding and
global summary vector. MVGRL [9] proposes several strategies based on diffusion or distance matrix.
For {GRACE [35], GCA [36], GraphCL [32], CCA-SSG [33]}, they can roughly be gathered into the
same category: the random edge and node perturbation. There are some frameworks aiming to learn
an adaptive augmentation with the help of different principles, such as AD-GCL [26], InfoGCL [30],
DGCL [13] and GASSL [31]. But these studies mainly focus on graph classification task. Besides,
we also notice that some papers propose augmentation free [12].

24

	Introduction
	Preliminaries
	Impact of Graph Augmentation: An Experimental Investigation
	Analysis of The General Graph Augmentation Rule
	Spectral Graph Contrastive Learning
	Experiments
	Node classification
	Visualisation of graph spectrum
	Hyper-parameter sensitivity

	Conclusion
	Proof and Derivation
	Proof of Contrastive Invariance
	Derivation of optimization objective
	Proof of Lemma 2
	Proof of Theorem 5
	Proof of Theorem 6

	Proof of Theorem 2
	Proof of Theorem 3

	More details of Section 3
	Experimental settings
	More results of case study

	Another Experimental Analysis of GAME Rule
	Experimental Details
	Implementation details
	Datasets and baselines
	Hyper-parameters settings
	More experiment results
	Node classification
	Visualisation of graph spectrum
	Hyper-parameter sensitivity

	Operating environment
	Detailed descriptions of target models

	Related Work

