
Broader Impact

Graph Neural Networks are used in many applications with potential societal implications: predictions
on social networks, drug design, computational chemistry and materials science, traffic predictions,
etc. In many of these applications, the model may be faced with distribution shifts that may lead to a
decline in performance. This work is a step towards understanding and estimating such behavior, by
understanding and formalizing what kinds of distribution shifts may impact the model.

Indeed, robustness is closely related to fairness, when the distribution shifts are associated with
different demographic groups [12, 4, 59]. Among the above applications, this may be particularly an
issue with social network analysis, and possibly drug design and traffic prediction. In that case, the
results in this paper may provide a basis for diagnostic tools be enabling to quantify the amount of
potentially risky distribution shifts.

A Proof

A.1 Preliminaries

Equivalence between OT and Wasserstein Distance Throughout the proof, we will frequently
use the equivalence between optimal transport and Wasserstein distance to simplify the notation.
Following the setting in section 3, let X = {xi}mi=1 and Y = {yi}mj=1 be two multisets, both
containing m elements, and let U(X) denote the uniform distribution over a multiset X . We first
note the following equivalence:

OTd(X,Y) := min
γ∈Γ(X,Y)

⟨C, γ⟩ = m · OT∗
d(X,Y) = m · Wd(U(X),U(Y))),

where Wd(P,Q) is the Wasserstein distance between P,Q with cost function d defined as follows:

Wd(P,Q) = inf
π∈Π(P,Q)

∫
d(x, y)dπ(x, y).

The Π denotes the set of measure couplings whose marginals are P and Q, respectively.

Invariance to Additional Augmentation Here we show that unnormalized OT is invariant to
“blank” augmentation, which is an important property for proving the main theorem.

Lemma 13. Assume we are given two multisets X = {xi}mi=1, Y = {yj}mj=1 with the same cardinal-
ity m, where xi, yj ∈ X for all i, j. Let d be a metric on X and 0 ∈ X . Then we have

OTd(X ∪ (0)n, Y ∪ (0)n) = OTd(X,Y).

Proof. First, by construction, we already have

OTd(X ∪ (0)n, Y ∪ (0)n) ≤ OTd(X,Y),

as we can always keep the original coupling padded with an identity matrix and get the same cost.
Now suppose we adopt a new coupling for OTd(X ∪ (0)n, Y ∪ (0)n) which might lead to smaller
cost. Note that any change to the coupling can be decomposed into two steps: (1) permute, change the
permutation in the original coupling and (2) decouple, change the coupling (x−y) to (x−0), (y−0)
for some pairing (x, y). In the permutation step, the cost is always increasing as we are destroy the
original optimal coupling. In the second step, the cost will also increase due to the triangle inequality
of cost function d:

d(x, y) + d(0, 0) = d(x, y) ≤ d(x, 0) + d(y, 0).

Therefore, we prove that the equality case must hold by contradiction. Note that the proof holds for
any augmentation, not only zero vectors.

Unnormalized OT is a Metric for Multisets Finally, we show that if the transportation cost d is
a pseudometric, then the unnormalized OT with blank augmentation ρ is also a pseudometric for
multisets.

15

Lemma 14. If d is a metric, then OTd(ρ(·, ·)) is a metric over multisets that do not contain 0. If 0 is
included, OTd(·, ·) is a pseudometric.

Proof. The first two axioms, OTd(ρ(X,X)) = 0 if and only if X = X and OTd(ρ(X,Y)) =
OTd(ρ(Y,X)) immediately hold via the property of optimal transport and Wasserstein distance if
0 /∈ X,Y . The constraint on 0 is due to the fact OTd(ρ(X,X ∪ 0)) = 0, which violates the first
axiom. But practically the augmentations are specified to be different from the elements in the sets.

Next, we prove the Triangle inequality of unnormalized OT. In particular, we will leverage the
equivalence of unnormalized OT and Wasserstein distance as follows:

OTd(ρ(X,Y))

= max(|X|, |Y |) · Wd

(
U
(
X
⋃

(0)
max(|Y |−|X|,0)

)
,U
(
Y
⋃

(0)
max(|X|−|Y |,0)

))
= max(|X|, |Y |, |Z|) · Wd

(
U
(
X
⋃

(0)
max(max(|Y |,|Z|)−|X|,0)

)
,U
(
Y
⋃

(0)
max(max(|X|,|Z|)−|Y |,0)

))
(Lemma 13)

≤ max(|X|, |Y |, |Z|) ·
(
Wd

(
U
(
X
⋃

(0)
max(max(|Y |,|Z|)−|X|,0)

)
,U
(
Z
⋃

(0)
max(max(|X|,|Y |)−|Z|,0)

))
+Wd

(
U
(
Z
⋃

(0)
max(max(|X|,|Y |)−|Z|,0)

)
,U
(
Y
⋃

(0)
max(max(|X|,|Z|)−|Y |,0)

)))
(Triangle Ineq of W)

= max(|X|, |Z|) · Wd

(
U
(
X
⋃

(0)
max(|Z|−|X|,0)

)
,U
(
Z
⋃

(0)
max(|X|−|Z|,0)

))
+max(|Z|, |Y |) · Wd

(
U
(
Z
⋃

(0)
max(|Y |−|Z|,0)

)
,U
(
Y
⋃

(0)
max(|Z|−|Y |,0)

))
(Lemma 13)

= OTd(ρ(X,Z)) + OTd(ρ(Z, Y))

The inequality holds as Wasserstein distance is a pseudometric if the transportation cost is a pseudo-
metric [45, 3].

A.2 Tree Mover’s Distance is a Pseudometric

Via Lemma 14, to show TMD is a pseudometric, we will focus on proving that the transportation cost
TD is a pseudometric between two trees.

Lemma 15. The distance TDw(ρ(·, ·)) is a metric for two rooted trees if w(·) > 0 and node features
do not contain zero vectors, where ρ is the blank tree augmentation. Otherwise, it is a pseudometric.

Proof. We first prove that TDw(Ta, Tb) = 0 if and only if Ta = Tb by induction. In particular, we
will focus on the case Depth(Ta) = Depth(Tb), otherwise the statement trivially holds. When depth
= 1, the TDw reduces to Euclidean distance, which is a metric. Suppose the statement holds for
depth-k trees. Given two tree Ta, Tb with depth equals to k + 1, their distance is

TDw(Ta, Tb) = ∥rTa − rTb
∥+ w(Depth(Ta)) · OTTDw

(
ρ(TrTa

, TrTb
)
)
.

Since TDw is a metric for depth-k tree by assumption, and OTTDw
(ρ(·, ·)) is a metric if TDw is a

metric via Lemma 14, TDw(Ta, Tb) = 0 if and only if rTa = rTb
and TrTa

= TrTb
, which completes

the proof of induction. Nevertheless, similar to Lemma 14, this does not hold if the nodes contains
0, which should not be the case practically. Otherwise, one can simply add a small values to node
features to distinguish them from the zero vector.

For the triangle inequality, we give a proof by induction on depth. For the base case depth = 1, the
tree mover’s distance is simply the Wasserstein-1 distance between the distribution of augmented
node feature vectors and the transportation cost TDw(·, ·) reduces to the Euclidean distance, which is
a metric and satisfies the Triangle inequality. Next, we show that if TDw(·, ·) satisfies the Triangle

16

ineuqality for depth-k trees, it is also a metric for depth-(k+1) trees. For trees Ta and Tb with depth
k + 1, introduced the third tree Tc with depth k + 1, we have

TDw(Ta, Tb) =∥rTa − rTb
∥+ w(k + 1)OTTDw

(
ρ(TrTa

, TrTb
)
)

≤∥rTa − rTc∥+ ∥rTc − rTb
∥+ w(k + 1)OTTDw

(
ρ(TrTa

, TrTb
)
)

≤∥rTa − rTc∥+ ∥rTc − rTb
∥+ w(k + 1)OTTDw

(
ρ(TrTa

, TrTc
)
)

+ w(k + 1)OTTDw

(
ρ(TrTc

, TrTb
)
)

(Induction hypothesis)

=TDw(Ta, Tc) + TDw(Tc, Tb).

The second inequality holds since OT is a pseudometric for multisets over depth-k trees as TDw(·, ·)
satisfies the Triangle ineuqality for depth-k trees via induction hypothesis. Since TDw satisfies the
triangle inequality for depth-k + 1 trees, via Lemma 14, TMD also satisfies the triangle inequality,
which completes the proof by mathematical induction.

A.3 WL Proof

Theorem 16 (Discriminative Power of TMD). If two graphs Ga = (Va, Ea), Gb = (Vb, Eb) are
determined to be non-isomorphic in WL iteration L and w(l) > 0 for all 0 < l ≤ L + 1 and
0 /∈ Va, Vb, then TMDL+1

w (Ga, Gb) > 0.

Proof. We will show that if two nodes have the same subtree, then their WL labels will be the same
by induction. The statement holds when depth is 1, as all the WL labels are the same and all the
subtrees have the same single node. Suppose the statement holds for depth-k tree. If WL identifies
two graphs are non-isomorphic at iteration k + 1, this means there are at least a pair of nodes whose
neighbors have different WL label at k-th iteration. This implies that the neightbors have different
subtree via induction hypothesis. Therefore, the depth-k+1 subtree of the node, which is constructed
by appending the subtrees of neightbors to a new node, will also be different. Therefore, the TMD
between the subtrees will be greater than zero via Lemma 15, implying that TMDk+1

λ also determine
two graphs are non-isomorphic for all λ > 1. Again, we add the zero vector constraint for the same
reason as Lemma 14 and 15.

A.4 Lipschitz Bound of GNN proof

Proof. For simplicity, we set ϵ = 1 through out the proof. We first bound the difference in prediction
based on the embedding in the last layer:

∥∥h(Ga)− h(Gb)
∥∥ =

∥∥∥∥∥∥ϕ(L+1)

∑
i∈Va

z
(L)
i

− ϕ(L+1)

∑
j∈Vb

z
(L)
j

∥∥∥∥∥∥
≤ K

(L+1)
ϕ ·

∥∥∥∥∥∥
∑
i∈Va

z
(L)
i −

∑
j∈Vb

z
(L)
j

∥∥∥∥∥∥ . (Definition of Lipschitz Condition)

Let V ρ
a and V ρ

b be two multisets of nodes after blank tree augmentation: (V ρ
a , V

ρ
b) = ρ(Va, Vb), we

have ∥∥∥∥∥∥
∑
i∈Va

z
(L)
i −

∑
j∈Vb

z
(L)
j

∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∑

i∈V ρ
a ,j∈V ρ

b

T
(L,VaVb)
i,j

(
z
(L)
i − z

(L)
j

)∥∥∥∥∥∥∥ (4)

≤
∑

i∈V ρ
a ,j∈V ρ

b

T
(L,VaVb)
i,j

∥∥∥z(L)
i − z

(L)
j

∥∥∥ (5)

17

where T (L,V ρ
a V ρ

b) is a transportation plan between V ρ
a and V ρ

b . Note that the inequality holds for any

valid transportation plan. Let ∆(L)

T (L,V
ρ
a V

ρ
b

)
=
∑

i∈V ρ
a ,j∈V ρ

b
T

(L,V ρ
a V ρ

b)
i,j

∥∥∥z(L)
i − z

(L)
j

∥∥∥, we have

∆
(L)

T (L,V
ρ
a V

ρ
b

)

≤
∑

i∈V ρ
a ,j∈V ρ

b

T
(L,V ρ

a V ρ
b)

i,j

∥∥∥∥∥∥ϕ(L)

z
(L−1)
i +

∑
i′∈N (i)

[z
(L−1)
i]

− ϕ(L)

z
(L−1)
j +

∑
j′∈N (i)

[z
(L−1)
j]

∥∥∥∥∥∥

≤K
(l)
ϕ

 ∑
i∈V ρ

a ,j∈V ρ
b

T
(L,V ρ

a V ρ
b)

i,j

∥∥∥z(L−1)
i − z

(L−1)
j

∥∥∥+
∥∥∥∥∥∥
∑

i′∈N (i)

z
(L−1)
i −

∑
j′∈N (i)

z
(L−1)
j

∥∥∥∥∥∥

≤K
(l)
ϕ

(∑
i∈V ρ

a ,j∈V ρ
b

T
(L,V ρ

a V ρ
b)

i,j

[∥∥∥z(L−1)
i − z

(L−1)
j

∥∥∥+ ∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

[∥∥∥z(L−1)
i′ − z

(L−1)
j′

∥∥∥])

=K
(l)
ϕ

(∑
i∈V ρ

a ,j∈V ρ
b

T
(L,V ρ

a V ρ
b)

i,j

[∥∥∥z(L−1)
i − z

(L−1)
j

∥∥∥+∆
(L−1)

T (L−1,N(i)ρN(j)ρ)

)

Here we introduce another transportation plan T
(L−1,N (i)ρN (j)ρ)
i′,j′ to pair augmented N (i)

ρ and
N (j)

ρ for all i ∈ V ρ
a , j ∈ V ρ

b at layer L− 1. We then further bound first term using similar strategy:

∑
i∈V ρ

a ,j∈V ρ
b

T
(L,VaVb)
i,j

[∥∥∥z(L−1)
i − z

(L−1)
j

∥∥∥]

=
∑

i∈V ρ
a ,j∈V ρ

b

T
(L,VaVb)
i,j

∥∥∥∥∥∥ϕ(L−1)

z
(L−2)
i +

∑
i′∈N (i)

z
(L−2)
i′

− ϕ(L−1)

z
(L−2)
j +

∑
j′∈N (j)

z
(L−2)
j′

∥∥∥∥∥∥

≤K
(L−1)
ϕ

(∑
i∈V ρ

a ,j∈V ρ
b

T
(L,VaVb)
i,j

(∥∥∥z(L−2)
i − z

(L−2)
j

∥∥∥+ ∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

∥∥∥z(L−2)
i′ − z

(L−2)
j′

∥∥∥)).
=K

(L−1)
ϕ

(∑
i∈V ρ

a ,j∈V ρ
b

T
(L,VaVb)
i,j

(∥∥∥z(L−2)
i − z

(L−2)
j

∥∥∥+∆
(L−2)

T (L−1,N(i)ρN(j)ρ)

))
.

Note that we still use the same transportation plan T
(L−1,N (i)ρN (j)ρ)
i′,j′ to bound the sum difference.

Apply this step recursively, the first term will eventually become ∥xi − xj∥ as

K
(L)
ϕ

∥∥∥z(L−1)
i − z

(L−1)
j

∥∥∥→ K
(L)
ϕ K

(L−1)
ϕ

∥∥∥z(L−2)
i − z

(L−2)
j

∥∥∥→
L∏

m=1

K
(m)
ϕ

∥∥∥z(0)i − z
(0)
j

∥∥∥ =

L∏
m=1

K
(m)
ϕ ∥xi − xj∥,

18

and the bound will become

∆
(l)

πl
Va,Vb

≤
∑

i∈V ρ
a ,j∈V ρ

b

T
(L,VaVb)
i,j

[L∏
m=1

K
(m)
ϕ

 ∥xi − xj∥+
L∑

k=1

 k∏
m=1

K
(L+1−m)
ϕ

 ·∆(L−k)

T (L−1,N(i)ρN(j)ρ)

]

= E(i,j)∼πl
Va,Vb

[L∏
m=1

K
(m)
ϕ

 ∥xi − xj∥

+K
(L)
ϕ

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

∥∥∥z(L−1)
i′ − z

(L−1)
j′

∥∥∥
︸ ︷︷ ︸

1

+K
(L)
ϕ K

(L−1)
ϕ

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′ ∥z(L−2)

i′ − z
(L−2)
j′ ∥

︸ ︷︷ ︸
2

· · ·

+K
(L)
ϕ K

(L−1)
ϕ · · ·K(1)

ϕ

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′ ∥xi′ − xj′∥︸ ︷︷ ︸

L

]
.

Next, we will bound 1 , 2 , · · · to l using a similar way as described above. To start, we
introduce the second coupling πl−2

N (i′),N (j′) for all i′, j′ ∼ πl−1
N (i),N (j):

1 ≤K
(L)
ϕ

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

[
K

(L−1)
ϕ K

(L−2)
ϕ · · ·K(1)

ϕ ∥xi′ − xj′∥

+K
(L−1)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−2

i′′ − zL−2
j′′ ∥

]
+K

(L−1)
ϕ K

(L−2)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−3

i′′ − zL−3
j′′ ∥

]
· · ·

+K
(L−1)
ϕ K

(L−2)
ϕ · · ·K(1)

ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥xi′′ − xj′′∥

]]
:= bound(1)

19

2 ≤K
(L)
ϕ K

(L−1)
ϕ

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

[
K

(L−2)
ϕ K

(L−1)
ϕ · · ·K(1)

ϕ ∥xi′ − xj′∥

+K
(L−2)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−3

i′′ − zL−3
j′′ ∥

]
+K

(L−2)
ϕ K

(L−3)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−4

i′′ − zL−4
j′′ ∥

]
· · ·

+K
(L−2)
ϕ K

(L−3)
ϕ · · ·K(1)

ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥xi′′ − xj′′∥

]]

=K
(L)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
K

(L−1)
ϕ K

(L−2)
ϕ · · ·K(1)

ϕ ∥xi′ − xj′∥

+K
(L−1)
ϕ K

(L−2)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−3

i′′ − zL−3
j′′ ∥

]
+K

(L−1)
ϕ K

(L−2)
ϕ K

(L−3)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−4

i′′ − zL−4
j′′ ∥

]
· · ·

+K
(L−1)
ϕ K

(L−2)
ϕ · · ·K(1)

ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥xi′′ − xj′′∥

]]
:= bound(2)

We can see that the bounds for 1 and 2 only differ in the term

K
(l−1)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ T

(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−2

i′′ − zL−2
j′′

]
. More-

over, one can show that bound(k) and bound(k+1) only differ in

K
(l−1)
ϕ · · ·K(l−k)

ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ T

(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−k−1

i′′ − zL−k−1
j′′

]
. Therefore, we

can merge bound 1 to bound l and get

l∑
i=1

bound i =K
(L)
ϕ

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

[
L ·K(L−1)

ϕ K
(L−2)
ϕ · · ·K(1)

ϕ ∥xi′ − xj′∥

+K
(L−1)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−2

i′′ − zL−2
j′′ ∥

]
+ 2K

(L−1)
ϕ K

(L−2)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−3

i′′ − zL−3
j′′ ∥

]
· · ·

+ (L− 1)K
(L−1)
ϕ K

(L−2)
ϕ · · ·K(1)

ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥xi′′ − xj′′∥

]]

20

Plugging the bound back yields

=
∑

i∈V ρ
a ,j∈V ρ

b

T
(L,VaVb)
i,j

[L∏
m=1

K
(m)
ϕ

 ∥xi − xj∥

+K
(L)
ϕ

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

[
L ·K(L−1)

ϕ K
(L−2)
ϕ · · ·K(1)

ϕ ∥xi′ − xj′∥

+K
(L−1)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−2

i′′ − zL−2
j′′ ∥

]
︸ ︷︷ ︸

1’

+ 2K
(L−1)
ϕ K

(L−2)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥zL−3

i′′ − zL−3
j′′ ∥

]
︸ ︷︷ ︸

2’

· · ·

+ (L− 1)K
(L−1)
ϕ K

(L−2)
ϕ · · ·K(1)

ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
∥xi′′ − xj′′∥

]
︸ ︷︷ ︸

(L− 1)′

]]

Now we see something familiar: 1’ to (L− 1)′ can all be bounded in the same way, e.g.,

1’ ≤K
(L−1)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
K

(L−2)
ϕ K

(L−3)
ϕ · · ·K(1)

ϕ ∥xi′ − xj′∥+

K
(L−2)
ϕ

∑
i′′′∈N (i′′)ρ,j′′′∈N (j′′)ρ

T
(L−3,N (i′′)ρN (j′′)ρ)
i′′′,j′′′

[
∥zL−3

i′′ − zL−3
j′′ ∥

]
K

(L−2)
ϕ K

(L−3)
ϕ

∑
i′′′∈N (i′′)ρ,j′′′∈N (j′′)ρ

T
(L−3,N (i′′)ρN (j′′)ρ)
i′′′,j′′′

[
∥zL−4

i′′ − zL−4
j′′ ∥

]
· · ·

K
(L−2)
ϕ K

(L−3)
ϕ · · ·K(1)

ϕ

∑
i′′′∈N (i′′)ρ,j′′′∈N (j′′)ρ

T
(L−3,N (i′′)ρN (j′′)ρ)
i′′′,j′′′

[
∥xi′′′ − xj′′′∥

]]
:= bound(1’)

21

Similarly, plugging the bound gives

=
∑

i∈V ρ
a ,j∈V ρ

b

T
(L,VaVb)
i,j

[L∏
m=1

K
(m)
ϕ

 ∥xi − xj∥

+K
(l)
ϕ

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

[
L ·K(L−1)

ϕ K
(L−2)
ϕ · · ·K(1)

ϕ ∥xi′ − xj′∥

+K
(l−2)
ϕ

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′

[
(1 + 2 + · · ·+ (L− 1)) ·K(L−2)

ϕ K
(L−3)
ϕ · · ·K(1)

ϕ ∥xi′ − xj′∥

+ 1 ·K(l−2)
ϕ

∑
i′′′∈N (i′′)ρ,j′′′∈N (j′′)ρ

T
(L−3,N (i′′)ρN (j′′)ρ)
i′′′,j′′′

[
∥zL−3

i′′ − zL−3
j′′ ∥

]
+ (1 + 2) ·K(l−2)

ϕ K
(l−3)
ϕ

∑
i′′′∈N (i′′)ρ,j′′′∈N (j′′)ρ

T
(L−3,N (i′′)ρN (j′′)ρ)
i′′′,j′′′

[
∥zL−4

i′′ − zL−4
j′′ ∥

]
· · ·

+ (1 + 2 + · · · (l − 2)) ·K(l−2)
ϕ K

(l−3)
ϕ · · ·K(1)

ϕ

∑
i′′′∈N (i′′)ρ,j′′′∈N (j′′)ρ

T
(L−3,N (i′′)ρN (j′′)ρ)
i′′′,j′′′

[
∥xi′′′ − xj′′′∥

]]]

We can see that the weight of the center nodes gradually changes as: L → 1 + 2 + · · · (L− 1) →
1 + (1 + 2) + ·(1 + 2 + · · ·+ (L− 2)) → · · · . These are exactly the elements at level L+ 1 of the
Pascal’s triangle. See Figure 3 for an illustration. For instance, if L = 4, the L+ 1 level of Pascal’s
triangle is (1, 4, 6, 4, 1) = (1, 1 + (1 + 2), (1 + 2 + 3), 4, 1), which matches the weight of center
nodes in each level.

Let P l
L is the l-th number at level L of Pascal’s triangle. Applying the bound recursively and

extracting
∏L

m=1 K
(m)
ϕ gives the following bound:

∆
(L)

T (L,V
ρ
a V

ρ
b

)

≤

 L∏
m=1

K
(m)
ϕ

 ∑
i∈V ρ

a ,j∈V ρ
b

T
(L,VaVb)
i,j

[
∥xi − xj∥+ L

1
·

∑
i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

[
∥xi′ − xj′∥

+
1 + 2 + · · ·+ (L− 1)

L
·

∑
i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′ ∥xi′ − xj′∥+ · · ·

]]

=

 L∏
m=1

K
(m)
ϕ

 ∑
i∈V ρ

a ,j∈V ρ
b

T
(L,VaVb)
i,j

[
∥xi − xj∥+

PL
L+1

PL+1
L+1

·
∑

i′∈N (i)ρ,j′∈N (j)ρ

T
(L−1,N (i)ρN (j)ρ)
i′,j′

[
∥xi′ − xj′∥

+
PL−1
L+1

PL
L+1

·
∑

i′′∈N (i′)ρ,j′′∈N (j′)ρ

T
(L−2,N (i′)ρN (j′)ρ)
i′′,j′′ ∥xi′ − xj′∥+ · · ·

]]
By setting each transportation plan to the optimal plan acquired from the TMD OT problem, the bound
is equivalent the tree mover distance with depth-L+ 1 computation tree, and w(l) = P l−1

L+1/P
l
L+1.

The one with ϵ ̸= 1 can be trivially extended from the current proof.

A.5 Tree Mover’s Distance Stability Proof

A.5.1 Node Drop

Proof. We use a illustration to provide the conceptual idea of the proof.

Given a graph G = (V,E), let G′ be the graph where node v ∈ V is dropped. The computation tree
of node v will play an important role here. Firstly, the nodes in level l of the computation tree are the
nodes that can reach v within l− 1 steps. In particular, the number of nodes in level l determines how

22

Repeat (still be counted!)

Depth-3 Subtree

Depth-2 Subtree

Depth-1 Subtree

Width = 1

Width = 2

Width = 6

Figure 8: Illustration of Node Drop.

many depth-(L− l+1) computation tree of v exists in TG. Therefore, deleting v from the graph will
also delete all the subtrees in TG that are rooted at v, and the number of deleted trees are determined
by the width of Tv . See Figure 8 for a illustration. Deleting a subtree T will introduce an additional
transportation cost TDw(T, T0), which is the tree norm of subtree. By aggregating all the tree norms
and consider the effect of weights w, we arrive at

TMDL
w(G,G′) ≤

L∑
l=1

λl · Widthl(T
L
v)︸ ︷︷ ︸

Tree Size

·TDw(T
L−l+1
v , T0)︸ ︷︷ ︸

Tree Norm

,

where Widthl(T) is the width of l-th level of tree T and λ1 = 1, λl =
∏l−1

j=1 w(L+ 1− j). This is
an upper bound instead of equality as some deleted subtrees are repeated counted in the bound.

A.5.2 Edge Drop

Proof. We again use a illustration to provide the conceptual idea of the proof.

Depth-2 Subtree

Depth-1 Subtree

Width = 1

Width = 3

Repeat (still be counted!)

Depth-2 Subtree

Depth-1 Subtree

Width = 1

Width = 3

Figure 9: Illustration of Edge Drop.
Given a graph G = (V,E), let G′ be the graph where edge (u, v) ∈ E is dropped. Different from
node drop, deleting an edge will affect both nodes. In particular, the number of nodes in level l of
computation tree Tv determines how many depth-L− l computation tree of u exists in TG. Therefore,
deleting edge u − v from the graph will also delete all the subtrees in TG that are rooted at v (u)
where the roots have ancestor u (v). See Figure 10 for a illustration. Similarly, by aggregating all the
tree norms and consider the effect of weights w, we arrive at

TMDL
w(G,G′) ≤

L−1∑
l=1

λl+1 ·
(

Widthl(T
L
v) · TDw(T

L−l
u , T0) + Widthl(T

L
u) · TDw(T

L−l
v , T0)

)
.

where Widthl(T) is the width of l-th level of tree T and λ1 = 1, λl =
∏l−1

j=1 w(L+ 1− j). This is
an upper bound instead of equality as some deleted subtrees are repeated counted in the bound.

A.5.3 Node Perturbation

Proof. The node perturbation is the simplified case of node drop, where only the node features are
perturbed.

Given a graph G = (V,E), let G′ be the graph where node feature xv is perturbed to x′
v. The tree

mover’s distance between G and G′ is equal to

23

Width = 1

Width = 2

Width = 6

Width = 1

Width = 2

Width = 6

Figure 10: Illustration of Node Perturbation.

TMDL
w(G,G′) ≤

L∑
l=1

λl · Widthl(TL
v) ·

∥∥xv − x′
v

∥∥ .
where Widthl(T) is the width of l-th level of tree T and λ1 = 1, λl =

∏l−1
j=1 w(L+ 1− j). This is

an upper bound instead of equality as changing node features would affect the optimal coupling of
OT. We might not have the optimal transportation plan after node perturbation.

B Lipschitz Condition for Other GNNs

B.1 Graph Convolutional Network

Here, we consider Graph Convolutional Network (GCN) [27] with the following message passing
rules:

Message
Passing z(l)v = ϕ(l)

(
z(l−1)
v + ϵEu∈N (v)z

(l−1)
u

)
, Graph

Readout h(G) = ϕ(L+1)
(

Eu∈V z
(L)
u

)
.

In particular, the SUM is replaced with MEAN in the message passing and graph readout. It is easy
to show that the same bound holds by replacing all the unnormalized OT with normalized OT∗ in tree
distance and tree mover’s distance, i.e.,

TD∗
w(Ta, Tb) =

{
∥xra − xrb∥+ w(L) · OT∗

TDw
(ρ(Tra , Trb)) if L > 1

∥xra − xrb∥ otherwise,

TMD∗L
w (Ga, Gb) = OT∗

TDw
(ρ(T L

Ga
, T L

Gb
)).

This gives the bound:

∥∥GCN(Ga)− GCN(Gb)
∥∥ ≤

L+1∏
l=1

K
(l)
ϕ · TMD∗L+1

w (Ga, Gb),

B.2 Other Message Passing GNNs

Sometimes, the center nodes are treated differently compared to the neighbors, e.g.,

Message
Passing z(l)v = ϕ(l)

z(l−1)
v + φ(l)

 ∑
u∈N (v)

z(l−1)
u

 , Graph

Readout h(G) = ϕ(L+1)

∑
u∈V

z(L)
u

24

The proof can be easily modified as follows:∥∥∥∥∥∥∥ϕ(l)

z
(l−1)
i + φ(l)

 ∑
i′∈N (i)

z
(l−1)
i

− ϕ(l)

z
(l−1)
j + φ(l)

 ∑
j′∈N (i)

z
l−1)
j

∥∥∥∥∥∥∥

≤K
(l)
ϕ

∥∥∥∥∥∥∥
z

(l−1)
i + φ(l)

 ∑
i′∈N (i)

z
(l−1)
i

−

z
(l−1)
j + φ(l)

 ∑
j′∈N (i)

z
(l−1)
j

∥∥∥∥∥∥∥

≤K
(l)
ϕ

∥∥∥z(l−1)
i − z

(l−1)
j

∥∥∥+
∥∥∥∥∥∥φ(l)

 ∑
i′∈N (i)

z
(l−1)
i

− φ(l)

 ∑
j′∈N (i)

z
(l−1)
j

∥∥∥∥∥∥

≤K
(l)
ϕ

∥∥∥z(l−1)
i − z

(l−1)
j

∥∥∥+K(l)
φ

∥∥∥∥∥∥
∑

i′∈N (i)

z
(l−1)
i −

∑
j′∈N (i)

z
(l−1)
j

∥∥∥∥∥∥

Therefore, simply replacing the ϵ with K
(l)
φ leads to a Lipschitz bound for this variant:∥∥h(Ga)− h(Gb)
∥∥ ≤

L+1∏
l=1

K
(l)
ϕ · TMDL+1

w (Ga, Gb),

where w(l) = K
(l−1)
φ · P l−1

L+1/P
l
L+1 for all l ≤ L and P l

L is the l-th number at level L of Pascal’s
triangle.

C Additional Experiments

C.1 Graph Clustering

One advantage of graph metric over GNNs is that we can perform geometric analysis of graph
datasets such as graph clustering. We adopt k-medoids [24], a variant of k-means [30], to perform
unsupervised clustering with TMD. Figure 11 provides an qualitative example of clustering, and Table
3 measures the quallity of clusters with Normalized Mutual Information (NMI) and Completeness
Score (CS) [6]. We can see that k-medoids with tree mover’s distance generates meaningful clusters
that aligns with labels.

C
lu

st
er

 1
C

lu
st

er
 2

C
lu

st
er

 3

MUTAG PROTEINS

C
lu

st
er

 1
C

lu
st

er
 2

C
lu

st
er

 3

Figure 11: Unsupervised Clustering with TMD. Node attributes are indicated by colors.

C.2 t-SNE Visualization of Graphs

Equipped with TMD, we can extend t-SNE [48] from Euclidean space to graphs. Specifically, t-SNE
constructs a probability distribution based on pairwise distance and minimizes the divergence between

25

MUTAG (K=2) PROTEINS (K=2) ENZYMES (K=6)
NMI CS NMI CS NMI CS

TMD L=1 25.6±8.1 25.0±7.9 6.58±0.56 7.26±0.61 6.55±0.81 6.73±0.74
TMD L=2 30.4±8.9 29.7±8.9 7.70±0.90 8.24±0.69 6.70±1.11 6.90±1.01
TMD L=3 28.9±7.3 28.0±7.2 8.28±0.67 8.76±0.87 6.53±0.65 6.69±0.64
TMD L=4 26.6±5.4 25.8±5.4 9.22±0.01 9.91±0.78 6.34±0.60 6.57±0.55

Table 3: Unsupervised Clustering on TU Dataset. The number of clusters K is equal to the number
of graph classes. The performance is measured by Normalized Mutual Information (NMI) and
Completeness Score (CS).

the distribution of low dimensional and original data. We simply replace the Euclidean distance in
conventional t-SNE with tree mover’s distance and show the t-SNE visualization of various graph
datasets in Figure 12 . Although not perfectly, we can observe the separation between points with
different labels.

MUTAG PROTEINS NCI1 IMDB-BINARY

R
aw

 F
ea

t (
TM

D
)

G
N

N
 F

ea
t (

L2
)

Figure 12: t-SNE Visualization of Graph Datasets. The (binary) classes are indicated by colors.
The upper row shows the t-SNE visualization of input space with TMD and the bottome rows shows
the representation space of trained GNNs with Euclidean distance.

C.3 Additional Results for Section 5

3 Layers 2 Layers 1 Layers 0 Layer
r = 0.54 r = 0.53 r = 0.56r = 0.65

Figure 13: Correlation between GNNs and TMD on PROTEINS. The Pearson correlation coeffi-
cient r between ∥h(Ga)− h(Gb)∥ and TMD / WWL are showed on the upper left of the figures.

We repeat the experiments in section 5 with PROTEINS dataset and show the results in Figure 13 and
14. We can see that the GNNs are less sensitive to small graph perturbation as Figure 14 shows, as
the number of nodes and edges is much larger than the one in MUTAG.

26

Node Drop Edge Drop Node Perturbation

Figure 14: Robustness under Graph Perturbation on PROTEINS.

27

