
A Broader impact of this work

Tabular data is the most common data format used in practical data analysis including healthcare,
finance, business, advertising, manufacturing, etc. Regardless of its importance, much more effort
was made to play deep learning with other domains like vision, language, and audio. As a result,
non-deep algorithms especially tree-based still dominate tabular data analysis. This paper opens the
door to leverage the power of transfer learning in the tabular domain because TransTab is capable of
dealing with variable-column input tables. This property also alleviates the workload required for
data preprocessing because TransTab permits missing features and make good predictions based on
the remaining features. This advance is expected to bring tremendous savings of time and money
from the data engineering which often takes up 80% of efforts for data science projects [72]. It
also sheds light on developing foundation models for the tabular domain because of the success of
pretraining on scale.

The potential negative effect would be that it requires more effort on solving data privacy issues
because TransTab works better when features are represented by descriptive texts compared with
discretized indices. However, this can be alleviated by mapping features to machine-readable tokens
in advance by a private codebook. Besides, TransTab needs more resources than simple models
like MLP and Trees. The main cause is the use of full attention in multihead attention modules
and the tokenization in the featurizing process. The former problem can be alleviated by replacing
transformers with MLP-based blocks like gated attention units. The latter can be circumvented by
pre-tokenization before the model training.

B Baseline architecture and implementation

In this section, we introduce the implementation details of baselines in experiments.

• LR: Use the default setting of the package scikit-learn4 except the max iterations is set 1000.
• XGBoost: We set the maximum number of estimators in {50, 100, 500} and the max depth in
{4, 6, 8}. Implemented based on the XGBoost package5.

• MLP & SNN: We keep the same architecture for both except for their activations: three dense
layers with hidden dimensions 256, 256, 1; dropout with rate of 0.1 is used. They are trained with
batch size ∈ {16, 32, 64, 128}, learning rate ∈ {5e-5, 1e-4, 5e-4, 1e-3}, and early stopping patience
of 5 with 100 maximum epochs.

• TabNet: Use the official implementation with the default recommended parameters6. Trained
with batch size ∈ {16, 32, 64, 128}, learning rate ∈ {1e-4, 1e-3, 2e-2}, na, nd ∈ {8, 16, 64, 128},
γ ∈ {1.3, 1.5, 1.8}, categorical embedding dimension ∈ {1, 8, 16} and early stopping patience of
5 with 100 maximum epochs.

• DCN: Use the implementation by Deep-CTR7. The number of cross is 2; dropout rate for feed-
forward component is 0.1; MLP part has two dense layers of dimension 256, 128; Trained with
batch size ∈ {16, 32, 64, 128}, learning rate ∈ {5e-5, 1e-4, 1e-3}, and early stopping patience of
10 in 100 maximum epochs.

• AutoInt: Use the implementation by Deep-CTR. Attention layer number is set 2; Attention head
number is set 2; MLP part has two dense layers of dimension 256, 128; dropout deactivated;
Trained with batch size ∈ {16, 32, 64, 128}, learning rate ∈ {5e-5, 1e-4, 1e-3}, and early stopping
patience of 10 in 100 maximum epochs.

• TabTransformer: Use the official implementation8. Feed-forward component has 128 dimension;
2 transformer layers are used; The number of heads of attention is ∈ {2, 4, 8}; Dropout rate
is 0.1; ReLU activation is used; Trained with batch size ∈ {16, 32, 64, 128}, learning rate ∈
{5e-5,1e-4,1e-3}, and early stopping patience of 10 in 100 maximum epochs.

• FT-Transformer: Use the official implementation9. Feed-forward component has 128 dimension; 2
transformer layers are used; The number of heads of attention is ∈ {2, 4, 8}; Dropout rate is 0.1;

4sklearn.linear_model.LogisticRegression
5xgboost.sklearn
6https://github.com/dreamquark-ai/tabnet
7https://github.com/shenweichen/DeepCTR-Torch
8https://github.com/lucidrains/tab-transformer-pytorch
9https://github.com/Yura52/rtdl

15

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://github.com/dreamquark-ai/tabnet
https://github.com/shenweichen/DeepCTR-Torch
https://github.com/lucidrains/tab-transformer-pytorch
https://github.com/Yura52/rtdl


Table 7: Statistics of the used public datasets. All are binary classification tasks. Positive ratio means
the ratio of data points belong the positive class. Source links are available at Table 13.

Name N Datapoints Categorical Binary Numerical Positive ratio

credit-g (CG) 1000 11 2 7 0.7
credit-approval (CA) 690 6 3 6 0.56
dresses-sales (DS) 500 11 0 1 0.42
adult (AD) 48842 12 0 2 0.24
cylinder-bands (CB) 540 13 4 18 0.58
blastchar (BL) 7043 11 5 3 0.27
insurance-co (IO) 5822 2 0 83 0.06
1995-income (IC) 32561 8 0 6 0.24

Table 8: Test AUROC results on public datasets the under supervised learning setting. The dataset
name is abbreviated referring to Table 7.

Methods CG CA DS AD CB BL IO IC Rank(Std)

LR 0.720 0.836 0.557 0.851 0.748 0.801 0.769 0.860 9.88(1.90)
XGBoost 0.726 0.895 0.587 0.912 0.892 0.821 0.758 0.925 5.12(3.86)
MLP 0.643 0.832 0.568 0.904 0.613 0.832 0.779 0.893 9.25(2.07)
SNN 0.641 0.880 0.540 0.902 0.621 0.834 0.794 0.892 8.00(3.32)
TabNet 0.585 0.800 0.478 0.904 0.680 0.819 0.742 0.896 10.75(1.49)

DCN 0.739 0.870 0.674 0.913 0.848 0.840 0.768 0.915 4.12(1.69)
AutoInt 0.744 0.866 0.672 0.913 0.808 0.844 0.762 0.916 4.62(2.52)

TabTrans 0.718 0.860 0.648 0.914 0.855 0.820 0.794 0.882 6.50(3.12)
FT-Trans 0.739 0.859 0.657 0.913 0.862 0.841 0.793 0.915 3.94(1.35)

VIME 0.735 0.852 0.485 0.912 0.769 0.837 0.786 0.908 6.06(2.83)
SCARF 0.733 0.861 0.663 0.911 0.719 0.833 0.758 0.905 6.75(2.12)

TransTab 0.768 0.881 0.643 0.907 0.851 0.845 0.822 0.919 3.00(1.93)

ReLU activation is used; Trained with batch size ∈ {16, 32, 64}, learning rate ∈ {5e-5,1e-4,1e-3},
and early stopping patience of 10 in 100 maximum epochs.

• VIME: We reproduce it by PyTorch [73] based on the original official implementation10 where its
encoders, mask estimators, decoders are all one dense layer with the hidden dimension same as the
input features. During the pretraining phase, we train the model on all training data taking mask
rate 0.3, batch size 128, learning rate 1e-4, and 10 epochs; during the fine-tuning phase, we add a
classifier after the encoder with three dense layers of 100 dimension and ReLU activations. Trained
with batch size ∈ {16, 32, 64, 128}, learning rate {5e-5,1e-4,1e-3}, and early stopping patience of
10 in 100 maximum epochs.

• SCARF: Since no official code is found, we reproduce it by PyTorch based on the descriptions
in the original paper. A 4-layer encoder and a 2-layer decoder with ReLU activations are used.
Hidden dimensions of their intermediate layers are all 256. During the pretraining phase, we train
the model on all trainign data taking mask rate 0.5, InfoNCE loss [74] with learning rate 1e-3,
batch size 128, and 10 epochs; during the fine-tuning phase, we add a classifier after the encoder
with two dense layers with 256 hidden dimensions. Trained with batch size ∈ {16, 32, 64, 128},
learning rate ∈ {5e-5,1e-4,1e-3}, and early stopping patience of 10 in 100 maximum epochs.

C Preprocessing of clinical trial datasets

The raw real-world de-identified patient-level clinical records are obtained from Project Data Sphere.
All clinical trial data used in this paper are available under registration for the data platform. For

10https://github.com/jsyoon0823/VIME

16

https://data.projectdatasphere.org/projectdatasphere/html/home
https://github.com/jsyoon0823/VIME


Table 9: Test AUROC results on public datasets the under feature incremental learning setting. The
dataset name is abbreviated referring to Table 7.

Methods CG CA DS AD CB BL IO IC Rank(Std)

LR 0.670 0.773 0.475 0.832 0.727 0.806 0.655 0.825 8.88(2.80)
XGBoost 0.608 0.817 0.527 0.891 0.778 0.816 0.692 0.898 5.50(3.13)
MLP 0.586 0.676 0.516 0.890 0.631 0.825 0.626 0.885 9.50(2.07)
SNN 0.583 0.738 0.442 0.888 0.644 0.818 0.643 0.881 9.69(1.28)
TabNet 0.573 0.689 0.419 0.886 0.571 0.837 0.680 0.882 9.19(3.34)

DCN 0.674 0.835 0.578 0.893 0.778 0.840 0.660 0.891 3.38(2.01)
AutoInt 0.671 0.825 0.563 0.893 0.769 0.836 0.676 0.887 4.75(1.25)

TabTrans 0.653 0.732 0.584 0.856 0.784 0.792 0.674 0.828 7.62(3.78)
FT-Trans 0.662 0.824 0.626 0.892 0.768 0.840 0.645 0.889 4.81(2.59)

VIME 0.621 0.697 0.571 0.892 0.769 0.803 0.683 0.881 7.00(3.01)
SCARF 0.651 0.753 0.556 0.891 0.703 0.829 0.680 0.887 6.56(1.32)

TransTab 0.741 0.879 0.665 0.894 0.791 0.841 0.739 0.897 1.12(0.35)

Table 10: Test AUROC results on public datasets under transfer learning across tables.
Methods CG CA DS AD CB BL IO IC Rank(Std)

set1 set2 set1 set2 set1 set2 set1 set2 set1 set2 set1 set2 set1 set2 set1 set2

LR 0.69 0.69 0.81 0.82 0.47 0.56 0.81 0.81 0.68 0.78 0.77 0.82 0.71 0.81 0.81 0.84 8.57(2.83)
XGB 0.72 0.71 0.85 0.87 0.46 0.63 0.88 0.89 0.80 0.81 0.76 0.82 0.65 0.74 0.92 0.91 5.57(3.62)
MLP 0.67 0.70 0.82 0.86 0.53 0.67 0.89 0.90 0.73 0.82 0.79 0.83 0.70 0.78 0.90 0.90 5.00(2.86)
SNN 0.66 0.63 0.85 0.83 0.54 0.42 0.87 0.88 0.57 0.54 0.77 0.82 0.69 0.78 0.87 0.88 8.67(2.92)
TabNet 0.60 0.47 0.66 0.68 0.54 0.53 0.87 0.88 0.58 0.62 0.75 0.83 0.62 0.71 0.88 0.89 9.87(2.92)

DCN 0.69 0.70 0.83 0.85 0.51 0.58 0.88 0.74 0.79 0.78 0.79 0.76 0.70 0.71 0.91 0.90 6.67(2.94)
AutoInt 0.70 0.70 0.82 0.86 0.49 0.55 0.88 0.74 0.77 0.79 0.79 0.76 0.71 0.72 0.91 0.90 6.03(3.23)

TabTrans 0.72 0.72 0.84 0.86 0.54 0.57 0.88 0.90 0.73 0.79 0.78 0.81 0.67 0.71 0.88 0.88 6.03(2.93)
FT-Trans 0.72 0.71 0.83 0.85 0.53 0.64 0.89 0.90 0.76 0.79 0.78 0.84 0.68 0.78 0.91 0.91 4.97(1.95)

VIME 0.59 0.70 0.79 0.76 0.45 0.53 0.88 0.90 0.65 0.81 0.58 0.83 0.67 0.70 0.90 0.90 8.83(3.24)
SCARF 0.69 0.72 0.82 0.85 0.55 0.64 0.88 0.89 0.77 0.73 0.78 0.83 0.71 0.75 0.90 0.89 5.47(2.42)

TransTab 0.74 0.76 0.87 0.89 0.55 0.66 0.88 0.90 0.80 0.80 0.79 0.84 0.73 0.82 0.91 0.91 2.33(2.10)

each trial, we manage to extract patient’s baseline information as the features, including demographic
information, medical history, medication history, lab test, vital signs, adverse events, etc. We draw
the target labels from the survival analysis section where censoring is considered as "alive" and other
events are tagged "mortality" so as to transform the datasets into binary prediction tasks.

D Establishment of subsets

For experiments in §3.2, §3.3, §3.4, we create subsets randomly with a fixed seed, respectively. That
is, subsets vary across these experiments.

• Feature incremental learning. The columns are splitted into three distinct parts v1, v2, v3.
Set1 contains v1, set2 contains v1, v2, and set3 has v1, v2, v3. Three sets have the equal
number of samples.

• Transfer learning. The columns are splitted into two parts v1, v2 where v1 and v2 have 50%
of elements overlapped. Two sets have the equal number of samples.

• Zeroshot learning. The columns are splitted into three distinct parts v1, v2, v3. Set1 contains
v1, set2 contains v2, set3 contains v3. Three sets have the equal number of samples.

17



Table 11: Test AUROC results on public datasets under zero-shot learning setting.
TransTab CG CA DS AD CB BL IO IC

Supervised 0.581 0.635 0.571 0.898 0.733 0.822 0.702 0.875
Transfer 0.719 0.758 0.561 0.900 0.854 0.831 0.761 0.880
Zero-shot 0.685 0.721 0.538 0.892 0.710 0.804 0.742 0.874

Table 12: Test AUROC on public datasets under the across-table pretraining plus finetuning setting.
Supervised: baseline supervised model; Transfer: vanilla supervised transfer learning. Red shows the
one worse than the baseline Supervised.

TransTab CG CA DS AD CB BL IO IC

Supervised 0.763 0.858 0.630 0.907 0.841 0.844 0.821 0.919
Transfer 0.786 0.861 0.653 0.907 0.819 0.843 0.813 0.918

Self-VPCL 0.777 0.837 0.626 0.907 0.819 0.843 0.823 0.919

VPCL 0.776 0.858 0.637 0.907 0.862 0.844 0.819 0.919

2 3 4
Num of partitions

0.72

0.73

0.74

0.75

Av
g 

AU
RO

C

Supervised
self-VPCL
VPCL

Figure 4: Analysis of the number of partitions for
VPCL and self-VPCL on the clinical trial datasets.

2 3 4
Num of partitions

0.81

0.82

0.83

0.84

Av
g 

AU
RO

C

Supervised
self-VPCL
VPCL

Figure 5: Analysis of the number of partitions for
VPCL and self-VPCL on the public datasets

Table 13: Benchmark dataset links.
Dataset URL

credit-g https://www.openml.org/search?type=data&status=active&id=31
credit-approval https://archive.ics.uci.edu/ml/datasets/credit+approval
dress-sales https://www.openml.org/search?type=data&status=active&id=23381
adult https://www.openml.org/search?type=data&status=active&id=1590
cylinder-bands https://www.openml.org/search?type=data&status=active&id=6332
blastchar https://www.kaggle.com/datasets/blastchar/telco-customer-churn
insurance-co https://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+%28COIL+2000%29
1995-income https://www.kaggle.com/datasets/lodetomasi1995/income-classification

18

https://www.openml.org/search?type=data&status=active&id=31
https://archive.ics.uci.edu/ml/datasets/credit+approval
https://www.openml.org/search?type=data&status=active&id=23381
https://www.openml.org/search?type=data&status=active&id=1590
https://www.openml.org/search?type=data&status=active&id=6332
https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+%28COIL+2000%29
https://www.kaggle.com/datasets/lodetomasi1995/income-classification


0.0 0.2 0.5 0.8 1.0
Column Overlap

0.55

0.60

0.65

0.70

0.75

AU
C

ZSL on credit-g
Zero Shot

0.0 0.2 0.5 0.8 1.0
Column Overlap

0.80

0.82

0.84

0.86

0.88

AU
C

ZSL on credit-approval
Zero Shot

0.0 0.2 0.5 0.8 1.0
Column Overlap

0.50

0.55

0.60

0.65

0.70

AU
C

ZSL on cylinder-bands
Zero Shot

0.0 0.2 0.5 0.8 1.0
Column Overlap

0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725

AU
C

ZSL on dress-sales
Zero Shot

Figure 6: Evaluate how the overlap ratio of two tables’ columns influences zero-shot learning (ZSL)
performance of TransTab, on public data CG, CA, CB, and DS. x-axis: the ratio of test table columns
exist in the training table (0: no test table column appears in training table; 1: all test table columns
in training table); y-axis: the test AUC when making ZSL.

19


