
A Theory Details

We formalize and generalize the notation of Section 4.1 and prove the results.

For the remainder of this section, we fix a dimension D (e.g. D = 2 for a 2-dimensional SSM). The
D-dimensional SSM will be a map from a function u : D ! to y : D ! .
Definition 2 (Indexing notation). Let [d] denote the set {1, 2, . . . , d}. Let [0] denote the empty set {}.

Given a subset I ✓ [D], let �I denote its complement [D] \ I . Let [�d] = �[d] = {d+ 1, . . . , D}.

Definition 3 (Tensor products and contractions). Given a 2 N1 and b 2 N2 , let a⌦ b 2 N1⇥N2

be defined as (a⌦ b)n1,n2 = an1bn2 .

Given a tensor x 2 N1⇥···⇥ND and matrix A 2 N1⇥N1 , define A ·(1) x 2 N1⇥···⇥ND as

(A ·(1) x)n1,...,nD =
X

m

An1mxk,n2,...,nD .

which is simply a matrix multiplication over the first dimension. Let ·(⌧) similarly denote matrix

multiplication over any other axis.

It will be easier to work directly from the convolutional definition of SSM (equation (5)). We will
then show equivalence to a PDE formulation (equation (4)).
Definition 4 (Multidimensional SSM). Let N1, . . . , ND be state sizes for each of the D dimen-

sions. The D-dimensional SSM has parameters A(⌧) 2 N(⌧)⇥N(⌧)

, B(⌧) 2 N(⌧)

, and

C 2 N(1)⇥···⇥N(D)

for each dimension ⌧ 2 [D].

and is defined by the map u 7! y given by

x(t) = (u ⇤
DO

⌧=1

et
(⌧)A(⌧)

B(⌧))(t)

y(t) = hC, x(t)i.

Note that at all times t = (t(1), . . . , t(D)), the dimension of the state is x(t) 2 N1⇥···⇥ND .

Finally, it will be convenient for us to define “partial bindings” of u, x, y where one or more of the
coordinates are fixed.
Definition 5 (Partial binding of u). Let I ✓ [D] and let tI = (t(I1), . . . , t(I|I|)) be an partial

assignment of the time variables. Define uI(tI) to be the function
D�|I| 7! where the I indices

are fixed to tI .

For example, if D = 3 and I = [1], then

uI(t
I) = u(t(1), ·, ·)

is a function from
2 ! mapping (t(2), t(3)) 7! u(t(1), t(2), t(3)).

Definition 6 (Partial binding of x).

xI(t
I)(t�I) = (uI(t

I) ⇤
O

⌧2�I

et
(⌧)A(⌧)

B(⌧))(t�I)

Note that x[0]() :
D 7! N1⇥···⇥ND coincides with the full state x.

The following more formal theorem shows the equivalence of this convolutional LTI system with a
standard 1D SSM differential equation in each dimension.

Theorem 2. Given a partial state xI(tI) and a time variable t(⌧) for ⌧ 62 I , let I 0 = I [{⌧}. Then

the partial derivatives satisfy

@xI(tI)

@t(⌧)
(t�I) = A(⌧) ·(⌧) xI(t

I)(t�I)

+B(⌧) ⌦ xI0(tI
0
)(t�I0

)

17

Proof. WLOG assume I = [d], since all notions are permutation-independent. We will consider
differentiating the state xI with respect to the time variable t(d+1). The key fact is that differentiating
a convolution d

dt (f ⇤ g) is equivalent to differentiating one of the operands f ⇤ (d
dtg).

@x[d](t
[d])

@t(d+1)
(t�[d]) =

@

@t(d+1)
(uI(t

I) ⇤
O

⌧2�I

et
(⌧)A(⌧)

B(⌧))(t�I)

= (uI(t
I) ⇤ @

@t(d+1)

O

⌧2�[d]

et
(⌧)A(⌧)

B(⌧))(t�I)

=

0

@uI(t
I) ⇤

⇣
A(d+1)et

(d+1)A(d+1)

B(d+1) +B(d+1)�(t(d+1))
⌘ O

⌧2�[d+1]

et
(⌧)A(⌧)

B(⌧)

1

A (t�I)

= A(d+1) ·(d+1)

0

@uI(t
I) ⇤

O

⌧2�[d]

et
(⌧)A(⌧)

B(⌧)

1

A (t�I)

+ u[d+1](t
[d+1])B(d+1)

O

⌧2�[d+1]

et
(⌧)A(⌧)

B(d+1)

= A(d+1) ·(d+1) x[d](t
[d])(t�[d])

+B(d+1) ⌦ x[d+1](t
[d+1])(t�[d+1])

The following corollary follows immediately from linearity of the convolution operator, allowing the
order of convolution and inner product by C to be switched.
Corollary A.1. The output y is equivalent to y = K ⇤ u where

K(t) = hC,
DO

⌧=1

et
(⌧)A(⌧)

B(⌧)i

This completes the proof of Theorem 1.

Finally, Corollary 4.1 is an immediate consequence of the Kronecker mixed-product identity

(A⌦B)(C ⌦D) = (AC)⌦ (BD).

B Experimental Details

We use PyTorch for all experiments, and build on the publicly available S4 code.

B.1 Image Classification

ImageNet training: all models were trained from scratch with no outside data using 8 Nvidia A100
GPUs. For both ViT and ConvNeXt experiments, we follow the procedure from T2T-ViT [69] and
the original ConvNeXt [42], respectively, with minor adjustments. Preprocessing and dataloading
was done using the TIMM [66] library. In S4ND-ViT, we turn off weight decay and remove the class
token prepending of the input sequence. For the ConvNeXt models, we add RepeatAug [29], as well
as reduce the batch size to 3840 for S4ND-ConvNeXt.

S4ND specific settings include a bidirectional S4 kernel followed by Goel et al [17], and a state
dimension of 64 for the SSMs.

B.2 Video Classification

HMDB-51 training: all models were trained from scratch on a single Nvidia A100 GPU. We use the
Pytorchvideo library for data loading and minimal preprocessing of RGB frames only (no optical

18

https://github.com/HazyResearch/state-spaces

Table 6: (Performance on image classification.) ImageNet settings for ViT and ConvNeXt baseline models.
VIT CONVNEXT

image size 2242 2242

optimizer AdamW AdamW
optimizer momentum �1,�2 = 0.9, 0.999 �1,�2 = 0.9, 0.999
weight init trunc. normal (std=0.02) trunc. normal (std=0.02)
base learning rate 0.001 0.004
weight decay 0.05 0.05
dropout None None
batch size 4096 4096
training epochs 300 300
learning rate schedule cosine decay cosine decay
warmup epochs 10 20
warmup schedule linear linear
layer-wise lr decay [3, 6] None None
randaugment [7] (9,0.5,layers=2) (9,0.5,layers=2)
mixup [72] 0.8 0.8
cutmix [70] 1.0 1.0
repeataug [29] None 3
random erasing [73] 0.25 0.25
label smoothing [59] 0.1 0.1
stochastic depth [30] 0.1 0.1
layer scale [63] None 1e-6
head init scale [63] None None
exp.mov. avg (EMA) [48] 0.9999 None

flow). During training, we randomly sample 2 second clips from each video. At validation and test
time, 2 second clips are sampled uniformly to ensure that an entire video is seen. For each ConvNeXt
3D video model (baselines and S4ND versions), we fix the hyperparameters in Table 7, and do a
sweep over the RandAugment[7] settings num layers= {1, 2} and magnitude= {3, 5, 7, 9}.

S4ND specific settings were similar to image classification, a bidirectional S4 kernel and a state
dimension of 64 for the SSMs.

Table 7: (Performance on video classification.) HMDB-51 settings for all 3D ConvNeXt models (baselines
and S4ND models).

CONVNEXT 3D

image size 2242

frames 30
clip duration (sec) 2
optimizer AdamW
optimizer momentum �1,�2 = 0.9, 0.999
weight init trunc. normal (std=0.02)
base learning rate 0.0001
weight decay 0.2
dropout (head) 0.2
batch size 64
training epochs 50
learning rate schedule cosine decay
warmup epochs 0
stochastic depth [30] 0.2
layer scale [63] 1e-6
head init scale [63] None
exp.mov. avg (EMA) [48] None

19

B.3 Continuous Time Capabilities Experiments

We use the CIFAR-10 and Celeb-A datasets for all our experiments. Below, we include all ex-
perimental details including data processing, model training and hyperparameters, and evaluation
details.

As noted in Table 3, we consider 3 resolutions for each dataset, a base resolution that is considered
the standard resolution for that dataset, as well as two lower resolutions low and mid. Images at the
lower resolutions are generated by taking an image at the base resolution, and then downsampling
using the resize function in torchvision, with bilinear interpolation and antialiasing turned on.

CIFAR-10. The base resolution is chosen to be 32 ⇥ 32, which is the resolution at which models
are generally trained on this dataset. The lower resolutions are 16⇥ 16 and 8⇥ 8. We use no data
augmentation for either zero-shot resolution change or progressive resizing experiments. We train
with standard cross-entropy loss on the task of 10-way classification. For reporting results, we use
standard accuracy over the 10 classes.

We use a simple isotropic model backbone, identical to the one used by Gu et al. [21] for their (1D)
S4 model. The only difference is that we use either the S4ND or Conv2D layer in place of the S4
block, which ensures that the model can accept a batch of 2D spatial inputs with channels. For results
reported in the main body, we use a 6⇥256 architecture consisting of 6 layers and a model dimension
of 256.

For all CIFAR-10 experiments, we train for 100 epochs, use a base learning rate of 0.01 and a weight
decay of 0.03.

Celeb-A. On Celeb-A, we consider 160⇥160 as the base resolution, and 128⇥128 and 64⇥64 as the
lower resolutions. Images on Celeb-A are generally 218⇥ 178, and we run a CenterCrop(178) !
Resize(160) transform in torchvision to resize the image. We use no data augmentation for either
zero-shot resolution change or progressive resizing experiments. We train with standard binary
cross-entropy loss on the task of 40-way multilabel attribute classification on Celeb-A. For reporting
results, we use the multilabel binary accuracy, i.e. the average binary accuracy across all 40 tasks.

Similar to our ImageNet experiments, we use a ConvNeXt model as the basic backbone for ex-
periments on Celeb-A. However, use a particularly small model here, consisting of 4 stages with
depths (3, 3, 3, 3) and corresponding model dimensions (64, 128, 256, 512). For S4ND, we simply
follow the same process as ImageNet, replacing all depthwise Conv2D layers with S4ND. A minor
difference is that we use a global convolution in the stem downsampling for S4ND, rather than the
smaller kernel size that we use for ImageNet. We use a drop path rate of 0.1 for both S4ND and the
Conv2D baseline in all experiments.

For all Celeb-A experiments, we train for 20 epochs, use a base learning rate of 0.004, and use
automatic mixed precision for training.

Other fixed hyperparameters. For all experiments, we use bidirectional S4 kernels following Goel
et al. [17], and use a state dimension of 64 for the S4 SSMs. We use AdamW as the optimizer.

B.3.1 Zero-Shot Resolution Change

For Table 4, we simply train on a single resolution among base, mid and low, and then directly
test at all higher resolutions. For model selection at a particular test resolution, we select the best
performing model for that test resolution i.e. we checkpoint the model at the epoch where it performs
best at the test resolution in question. Note that we refer to “test resolutions” but report validation
metrics in Table 4, as is standard practice for additional experiments and ablations.

CIFAR-10. We use a batch size of 50, and for both methods (and all resolutions), we use a cosine
decay schedule for the learning rate with no restarts and a length of 100000, and a linear warmup of
500 steps.

For baseline Conv2D hyperparameters, we compare the performance of Conv2D with and without
depthwise convolutions. Otherwise, all hyperparameters are fixed to the common values laid out in
the previous section (and are identical to those used for S4ND).

20

For S4ND hyperparameters, we sweep the choice of initialization for the state space parameters A,B
in the S4 model among {legs, fourier, random-linear, random-inv}2 and sweep bandlimit (↵) values
among {0.05, 0.10, 0.20, 0.50,1}.

Celeb-A. We use a batch size of 256 when training on the lower resolutions, and 128 when training
at the base resolution. For both methods (and all resolutions), we use a cosine decay schedule for the
learning rate with no restarts and a length of 13000 (batch size 256) or 26000 (batch size 128), and a
linear warmup of 500 steps.

For baseline ConvNeXt hyperparameters, we use a weight decay of 0.1 after an initial sweep over
weight decay values {0.05, 0.1, 0.2, 0.5}.

For S4ND hyperparameters, we sweep the choice of initialization for the state space parameters
A,B in the S4 model among {legs, fourier, random-linear, random-inv}, sweep bandlimit (↵) values
among {0.05, 0.10, 0.20, 0.50,1}, and use a weight decay of 1.0. The value of the weight decay
was chosen based on an initial exploratory sweep over weight decay values {0.1, 0.2, 0.5, 1.0, 5.0}.

B.3.2 Progressive Resizing

For Table 5, we train with a resizing schedule that progressively increases the resolution of the data.
We report all metrics on validation sets, similar to our zero-shot experiments. We only use 2 resizing
stages in our experiments, as we found in preliminary experiments that 2+ stages had little to no
benefit.

All hyperparameters and training details are identical to the zero-shot resolution change experiments,
except for those we describe next. When training with multiple stages, we reset the cosine learning
rate scheduler at the beginning of each stage (along with the linear warmup). The length of the
scheduler is varied in proportion to the length of the stage, e.g. on CIFAR-10, for a stage 50 epochs
long, we change the length of the decay schedule from 100000 steps to 50000 steps (and similarly for
Celeb-A). We always use a linear warmup of 500 steps for each stage. Additionally, Table 5 denotes
the length (in epochs) of each stage, as well as their training resolutions.

Another important detail is that we set the bandlimit parameter carefully for each stage. We found
that bandlimiting in the first stage is critical to final performance, and without bandlimiting the
performance on the base resolution is substantially worse. Bandlimiting is generally not useful for
a stage if it is training at the base resolution i.e. at the resolution that we will be testing at (in our
experiments, this is the case only for second stage training on CIFAR-10).

On CIFAR-10, we use a bandlimit ↵ of 0.10 or 0.20 for the first stage, depending on whether the first
stage was training at 8⇥ 8 (low) or 16⇥ 16 (mid) respectively. In the second stage, we always train
at the base resolution and use no bandlimiting, since as stated earlier, it has a negligible effect on
performance.

For Celeb-A, we set the bandlimit parameter to 0.1 for both stages. Note that on Celeb-A, we do not
train at the base resolution at all, only training at low in the first stage and mid in the second stage.

C Discussion

Runtime profiling and potential optimization. We profile the runtime of an S4ND layer on
an A100 GPU, and plot the time taken by each operation in Fig. 6. We see that the majority of
the time (between 65% and 80%) are taken by the FFT, pointwise operation, and inverse FFT. The
higher-dimensional FFT is a very standard scientific primitive that should be substantially optimizable.

These operations are memory-bound, that is, the runtime is dominated the time to read/write to GPU
memory. There is currently no library support for fusing these steps, so for each of those steps the
data has to be loaded from GPU memory, arithmetic operations are performed, then the result is
written back to GPU memory. One potential optimization is kernel fusion: the input could be loaded
once, all the arithmetic operations for all three steps are performed, then the final result is written
back to GPU memory. We expect that with library support for such optimization, the S4ND runtime
can be reduced by 2-3⇥.

2These correspond to initializations of the model that allow the kernel to be expressed as a combination of
different types of basis functions. For more details, we refer the reader to Gu et al. [19, 21].

21

Figure 6: Timing breakdown of different steps in the S4ND forward pass, for a batch of 64 inputs, each of size
224 ⇥ 224, on an A100 GPU. FFT, pointwise operation, and inverse FFT take between 65% and 80% of the
time.

22

	Introduction
	Related Work
	Preliminaries
	Method
	S4ND
	Resolution Change and Bandlimiting

	Experiments
	S4ND in 1D & 2D: Large-scale Image Classification
	S4ND in 3D: Video Classification
	Continuous-signal Capabilities for Images

	Discussion
	Theory Details
	Experimental Details
	Image Classification
	Video Classification
	Continuous Time Capabilities Experiments
	Zero-Shot Resolution Change
	Progressive Resizing

	Discussion

