
Lazy and Fast Greedy MAP Inference for
Determinantal Point Process

Shinichi Hemmi
The University of Tokyo, Tokyo, Japan

hemmi.shinichi@gmail.com

Taihei Oki
The University of Tokyo, Tokyo, Japan

oki@mist.i.u-tokyo.ac.jp

Shinsaku Sakaue
The University of Tokyo, Tokyo, Japan
sakaue@mist.i.u-tokyo.ac.jp

Kaito Fujii
National Institute of Informatics, Tokyo, Japan

fujiik@nii.ac.jp

Satoru Iwata
The University of Tokyo, Tokyo, Japan

ICReDD, Hokkaido University, Sapporo, Japan
iwata@mist.i.u-tokyo.ac.jp

Abstract

The maximum a posteriori (MAP) inference for determinantal point processes
(DPPs) is crucial for selecting diverse items in many machine learning applications.
Although DPP MAP inference is NP-hard, the greedy algorithm often finds high-
quality solutions, and many researchers have studied its efficient implementation.
One classical and practical method is the lazy greedy algorithm, which is applicable
to general submodular function maximization, while a recent fast greedy algorithm
based on the Cholesky factorization is more efficient for DPP MAP inference.
This paper presents how to combine the ideas of “lazy” and “fast”, which have
been considered incompatible in the literature. Our lazy and fast greedy algorithm
achieves almost the same time complexity as the current best one and runs faster in
practice. The idea of “lazy + fast” is extendable to other greedy-type algorithms.
We also give a fast version of the double greedy algorithm for unconstrained DPP
MAP inference. Experiments validate the effectiveness of our acceleration ideas.

1 Introduction

Determinantal point processes (DPPs) offer a popular diversification model in machine learning.
Macchi [34] first used DPPs to represent repulsion in quantum physics, and later, DPPs have been
used in various scenarios such as recommendation systems [13], document summarization [21, 31],
and diverse molecule selection [39]. An important problem in the DPP applications is the maximum a
posteriori (MAP) inference, which asks to find an item subset with the highest probability. Intuitively,
if each item is associated with a vector whose length and direction represent its importance and
feature, respectively, then the aim of DPP MAP inference is to select items whose vectors form the
largest volume parallelotope, thus selecting important and diverse items.

In DPPs, exact MAP inference is NP-hard [27]. Fortunately, however, the standard greedy algorithm
(GREEDY) for submodular function maximization [41] enjoys a (1− 1/e)-approximation guarantee
in terms of the log-determinant function value under the monotonicity assumption, and it often finds
high-quality solutions in practice. A naive implementation of GREEDY, however, incurs too much
computation cost for large instances since evaluating the determinant of a k × k matrix takes O(kω)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

time, where ω ∈ [2, 3] is the matrix-multiplication exponent (usually ω = 3). To overcome this issue,
researchers have studied techniques for implementing efficient greedy algorithms. One classical
and powerful method is the so-called lazy greedy algorithm (LAZYGREEDY) [37], which avoids the
redundant computation of function values by making good use of the submodularity. LAZYGREEDY
is applicable to submodular function maximization, and it empirically runs much faster than naive
GREEDY, although the worst-case running time is not improved. Chen et al. [13] proposed another
notable Cholesky-factorization-based method, called the fast greedy algorithm (FASTGREEDY). Their
algorithm is specialized for DPP MAP inference and provides the fastest O(knd)-time implementation
of GREEDY for selecting k out of n items represented by d-dimensional vectors. Chen et al. [13] also
experimentally showed that FASTGREEDY can run faster than LAZYGREEDY.

Since the study of [13], although a pre-processing method for customized DPP MAP inference [23]
and fast parallel algorithms for submodular function maximization [3, 4, 18, 8, 17, 14, 29] have been
studied, no progress has been made that directly accelerates GREEDY for DPP MAP inference. Since
real-world dataset sizes have been growing, a further speed-up of GREEDY is eagerly awaited.

Our main contribution is to combine the two ideas, “lazy” and “fast”, to develop an even faster
implementation of GREEDY for DPP MAP inference, which we call LAZYFASTGREEDY. In the
literature, the two ideas have been thought to be incompatible; in fact, experiments in [13] compared
FASTGREEDY with LAZYGREEDY without considering their combination. The core idea of “lazy +
fast” is widely applicable to other greedy-type algorithms. Below is a summary of our results.

1. We present LAZYFASTGREEDY for cardinality-constrained DPP MAP inference. It takes
O(kn(d+log n)) time even in the worst case and is faster than FASTGREEDY in practice. We
also extend the idea of “lazy + fast” to other greedy-type algorithms: RANDOMGREEDY [10],
STOCHASTICGREEDY [38, 43], and INTERLACEGREEDY [28].

2. We present a “fast” version of DOUBLEGREEDY [11] for unconstrained DPP MAP inference
by extending the idea of [13] with Jacobi’s complementary minor formula.

3. Experiments on synthetic and real-world datasets validate the empirical effectiveness of
our acceleration techniques for the greedy-type algorithms. In particular, our LAZYFAST-
GREEDY runs up to about 17 times faster than FASTGREEDY in real-world settings.

Accelerating the greedy variants [10, 38, 28, 43], which enjoy approximation guarantees for non-
monotone submodular function maximization, is worthwhile since the log-determinant function is
non-monotone in general. Also, note that both cardinality-constrained and unconstrained settings are
important in DPP MAP inference and require substantially different technical ideas. Therefore, we
study the fast version of [11] separately from the algorithms for the cardinality-constrained setting.
In short, we accelerate various important greedy-type algorithms for DPP MAP inference.

1.1 Related work

The greedy algorithm (GREEDY) is a popular approach to DPP MAP inference [31]. Han et al.
[24] gave a fast but inexact implementation of GREEDY. Later, Chen et al. [13] gave an exact
implementation of GREEDY with the same time complexity as that of [24]. Han and Gillenwater [23]
studied special cases where kernel matrices of DPPs are generated via customization (or re-weighting)
of fixed feature vectors and developed a pre-processing method for accelerating GREEDY. Note that
this pre-processing usually takes longer than the algorithm of [13] (see [23, Section 4]), while their
algorithm after pre-processing is much faster. In summary, the algorithm of Chen et al. [13] has been
the fastest greedy-style algorithm for general DPPs.

A continuous-relaxation-based 1/4-approximation algorithm for general down-closed constraints was
also studied [21]. Our implementation of INTERLACEGREEDY [28] yields a faster 1/4-approximation
algorithm for a special case with a cardinality constraint. Approximation algorithms and inap-
proximability results of DPP MAP inference (without log) have also been extensively studied
[15, 35, 36, 6, 42]. Sampling is another important research subject in DPPs and has been widely
studied [2, 33, 16, 22, 1, 12, 32]. Also, we leave extension of our algorithms to non-symmetric DPPs
[20], which have recently gained increasing attention, for future work.

Since the log-determinant function is known to be submodular [19], DPP MAP inference has a
close connection to submodular function maximization [41]. Besides LAZYGREEDY, STOCHASTIC-
GREEDY [38, 43] is a popular fast variant of GREEDY, which we will discuss later. A recent line of

2

work [3, 4, 18, 8, 17, 14, 29] has studied adaptive algorithms for submodular function maximization,
where we are allowed to execute polynomially many queries in parallel to reduce the number of
sequential rounds. Those studies consider oracle models of submodular functions, whereas we focus
on the log-determinant functions and develop fast algorithms without such parallelization.

2 Background

Let [n] denote the set {1, 2, . . . , n} for any n ∈ N. For any S ⊆ [n], S denotes its complement
[n] \S. We use 0 and O as all-zero vectors and matrices, respectively, and 1 as all-ones vectors (their
sizes will be clear from the context). Let ⟨·, ·⟩ denote the inner product. For a matrix L ∈ Rn×n and
subsets S, T ⊆ [n], L[S, T] is the submatrix of L indexed by S in rows and T in columns. For brevity,
we write Li,j = L[{i}, {j}], L[S] = L[S, S], L[S, i] = L[S, {i}], and L[i, S] = L[{i}, S] for any
i, j ∈ [n] and S ⊆ [n]. The determinant of L is denoted by detL. Set detL[∅] = 1 by convention.
For any M ∈ Rn×n, we suppose that M⊤M is computed in O(nω) time, which implies that we can
compute detM and M−1 (if non-singular) in O(nω) time (see, e.g., [7, Chapter 2]).

DPP MAP inference. Let L ∈ Rn×n be a positive semi-definite matrix. A probability measure P
on 2[n] is called a determinantal point process (DPP) with a kernel matrix L if P[X = S] ∝ detL[S]
holds for all S ⊆ [n].1 MAP inference for DPPs is the problem of finding a subset S ⊆ [n] with
the largest detL[S] value. We suppose that each i ∈ [n] is associated with a vector ϕi ∈ Rd and
that a kernel matrix L ∈ Rn×n is given as L = B⊤B, where B = [ϕ1,ϕ2, . . . ,ϕn] ∈ Rd×n, i.e.,
Li,j = ⟨ϕi,ϕj⟩ for i, j ∈ [n]. Note that

√
detL[S] represents the volume of the parallelotope

spanned by {ϕi | i ∈ S}. Hence, if the length and direction of ϕi indicate i’s importance and feature,
respectively, the larger value of detL[S] implies that S contains more important and diverse items.
In many situations, we want to select a limited number of items; let k ∈ N denote the upper bound.
Therefore, MAP inference for DPPs with a cardinality constraint, or k-DPP [30], is often considered.
Note that since rankL ≤ min{n, d}, we can assume k ≤ min{n, d} without loss of generality.

Submodular function maximization. For a set function f : 2[n] → R ∪ {−∞}, the marginal
gain of i ∈ [n] with respect to S ⊆ [n] is defined by fi(S) = f(S ∪ {i}) − f(S). A set function
f : 2[n] → R ∪ {−∞} is called monotone if fi(S) ≥ 0 for every S ⊆ [n] and i ∈ S. It is called
submodular if it has the diminishing returns property: fi(S) ≥ fi(T) for every S ⊆ T ⊆ [n] and
i ∈ T . Since f(S) = log detL[S] is submodular, DPP MAP inference can be written as submodular
function maximization: maxS∈X f(S), where X ⊆ 2[n] is a family of feasible subsets. This paper
mostly considers the cardinality-constrained setting, i.e., X = {S ⊆ [n] | |S| ≤ k} for given k ∈ N;
in Section 4, we study the unconstrained setting, i.e., X = 2[n]. The log-determinant function f is
monotone if the smallest eigenvalue of L is at least 1 (see, e.g., [44]), but this is not always the case.

It is well-known that the greedy algorithm (GREEDY) enjoys a (1− 1/e)-approximation guarantee
for cardinality-constrained monotone submodular function maximization with f(∅) ≥ 0 [41]. This
approximation ratio is optimal under the evaluation oracle model [40]. GREEDY works as follows:
setting S(0) = ∅, in each tth step (t = 1, . . . , k), choose jt ∈ argmax{fi(S(t−1)) | i ∈ S(t−1) }
and put S(t) = S(t−1) ∪ {jt}. We call a solution obtained in this way a greedy solution.

Besides GREEDY, many algorithms [11, 10, 28, 43] achieve constant-factor approximations for
cardinality-constrained/unconstrained submodular function maximization. These results motivate us
to apply submodular-function-maximization algorithms to DPP MAP inference, although constant-
factor approximations of the log-determinant value do not imply those of the determinant value.

2.1 Lazy greedy algorithm for submodular function maximization

LAZYGREEDY [37] is an efficient implementation of GREEDY for submodular function maximization.
As explained above, GREEDY finds jt by computing marginal gains fi(S(t−1)) for all i ∈ S(t−1).
LAZYGREEDY attempts to find jt more efficiently by keeping an upper bound ρi on fi(S

(t−1)) for
each i ∈ S(t−1), which is an old marginal gain, i.e., ρi = fi(S

(ui)) for some ui ≤ t − 1. In each

1Strictly speaking, this is the so-called L-ensemble DPP, but we here call it a DPP for simplicity.

3

Algorithm 1 FASTGREEDY [13] for cardinality-constrained DPP MAP inference

1: V ← O, d
(0)
i ←

√
Li,i (∀i ∈ [n]), S(0) ← ∅

2: for t = 1 to k do
3: Take jt ∈ argmax

i∈S(t−1) d
(t−1)
i ▷ Terminate if d(t−1)

jt
≤ 1 (i.e., fjt(S

(t−1)) ≤ 0)
4: S(t) ← S(t−1) ∪ {jt} ▷ S(t) = {j1, . . . , jt}
5: for i in S(t) do ▷ Skip Lines 5–7 (updates for the next step) if t = k
6: Vi,jt ← (Li,jt − ⟨V [i, S(t−1)], V [jt, S

(t−1)]⟩)/d(t−1)
jt

▷ V [i, ∅] = 0 for any i ∈ [n]

7: d
(t)
i ←

√(
d
(t−1)
i

)2 − Vi,jt
2

8: return S(k) ▷ Return S(t−1) if terminates with t < k

iteration, LAZYGREEDY picks i ∈ S(t−1) with the largest ρi value as the most promising element. It
then updates the ρi value to the latest marginal gain fi

(
S(t−1)

)
. If ρi is still the largest among ρi′ for

all i′ ∈ S(t−1), the diminishing returns property guarantees i ∈ argmax{fi′(S(t−1)) | i′ ∈ S(t−1) },
and hence it adds jt = i to S(t−1). LAZYGREEDY thus constructs a greedy solution, deferring updates
of upper bounds of unpromising elements. If the upper bounds are managed by a priority queue,
every single iteration computes the marginal gain only once and makes O(log n) comparisons (note
that “iteration” is distinguished from “step” of GREEDY). With this contrivance, LAZYGREEDY runs
much faster than GREEDY in practice, even though it does not improve the worst-case complexity.

2.2 Fast greedy algorithm for DPP MAP inference

We turn to DPP MAP inference with a kernel matrix L = B⊤B and B ∈ Rd×n. If we apply GREEDY
to f(S) = log detL[S], it takes O(kω+1n) time since computing an f value takes O(kω) time; in
addition, computing L at first takes O(min{nω−1d, n2dω−2}) time. FASTGREEDY [13] provides an
O(knd)-time implementation of GREEDY for cardinality-constrained DPP MAP inference.

Algorithm 1 describes the procedure of FASTGREEDY, which is based on the Cholesky factorization
of L with maximum pivoting. The Cholesky decomposition produces a matrix V ∈ Rn×n such that
L = V V ⊤ and PV is lower triangular for some permutation matrix P . We call V a Cholesky factor
of L. In each tth step, Lines 5–7 calculate the tth column of PV via backward substitution (see
Fig. 1a). The following Proposition 2.1 implies an important fact that once V [i, S(t)] is filled, we
can obtain fi(S

(t)) from d
(t)
i computed in Line 7, which is equal to the diagonal Vi,i of the current

Cholesky factor. Although the proposition is already proved in [13], we present a proof sketch since
it would be helpful to understand the subsequent discussion (see [13] for the complete proof).

Proposition 2.1 ([13]). For t = 0, 1, . . . , k− 1, it holds that fi
(
S(t)

)
= 2 log d

(t)
i for every i ∈ S(t).

Proof sketch. The proof is by induction on t. If t = 0, it holds that fi
(
S(t)

)
= f({i}) − f(∅) =

logLi,i = 2 log d
(0)
i for i ∈ [n]. Given a Cholesky factor V [S(t)] of L[S(t)], for i ∈ S(t), we have

L[S(t) ∪ {i}] =
[
L
[
S(t)

]
L
[
S(t), i

]
L
[
i, S(i)

]
Li,i

]
=

[
V [S(t)] 0

V [i, S(t)] d
(t)
i

][
V [S(t)]

⊤
V [i, S(t)]

⊤

0⊤ d
(t)
i

]
.

Hence, we have log detL[S(t)∪{i}] = log
(
d
(t)
i detV [S(t)]

)2
= 2 log d

(t)
i +log detL[S(t)], which

implies log detL[S(t) ∪ {i}]− log detL[S(t)] = 2 log d
(t)
i . Thus, the statement holds.

Therefore, by iteratively adding jt ∈ argmax
i∈S(t−1) d

(t−1)
i to S(t−1) as in Algorithm 1, we can

obtain a greedy solution. Since Li,jt = ⟨ϕi,ϕjt⟩ is computed in O(d) time and d ≥ k, Line 6 takes
O(d) time. This is repeated O(kn) times, hence the total time complexity of O(knd).

4

n

t

(PV)[S(t)]

PV

(a) FASTGREEDY

n

t

(PV)[S(t)]

PV

(b) LAZYFASTGREEDY

Figure 1: Images of Cholesky factors computed by FASTGREEDY and LAZYFASTGREEDY. Off-
diagonals are shaded if they are already computed, and arrows represent the direction in which the
computation of off-diagonals proceeds. Diagonals are shaded if they give the latest marginal gains,
each of which becomes available once |S(t)| off-diagonals in the same row are computed (shaded).
Diagonals with bold lines correspond to elements that are already selected.

3 Lazy and fast algorithms for cardinality-constrained DPP MAP inference

3.1 Lazy and fast greedy algorithm

We combine LAZYGREEDY and FASTGREEDY to obtain even faster LAZYFASTGREEDY.

As described above, LAZYGREEDY is designed for submodular function maximization under the
oracle model, where a marginal gain is computed for each i ∈ S(t−1). Meanwhile, the core idea of
FASTGREEDY is to obtain marginal gains of all i ∈ S(t−1) efficiently by computing a new column of
a Cholesky factor, as in Fig. 1a. To combine these seemingly incompatible methods, we need to take
a closer look at how FASTGREEDY updates the entries in V . The following observation is obvious
but elucidates the essential row-wise independence of the updates of Cholesky-factor entries.

Observation 3.1. In each tth step in Algorithm 1, for each i ∈ S(t), Vi,jt in Line 6 is computed from
d
(t−1)
jt

, Li,jt , and V [{i, jt}, S(t−1)]. Thus, conditioned on S(t), the ith row of V [S(t), S(t)] can be
updated independently for each i ∈ S(t) in a sense that computing Vi,jt only requires Vi,jt′ for t′ < t

and V [jt, S
(t−1)], which is included in the already fixed Cholesky factor V [S(t)].

That is, in Fig. 1b, once (PV)[S(t)] is fixed, we can update the ith row independently for each i ∈ S(t).
In the words of submodular function maximization, we can compute fi

(
S(t)

)
if fjt′

(
S(t′−1)

)
and

fi
(
S(t′−1)

)
for t′ ≤ t are available. This enables us to apply the idea of lazy updates to FASTGREEDY.

Algorithm 2 describes our LAZYFASTGREEDY, and Fig. 1b illustrates how entries in V are updated.
In each iteration, it picks the most promising element i in Line 3, as with LAZYGREEDY. Then, it
calls UPDATEROW to compute the entries of V [i, S] via backward substitution. Once V [i, S] is filled,
the resulting di computed in Line 12 satisfies 2 log di = fi(S) by Proposition 2.1, thus obtaining
the latest marginal gain of i. Lines 5–7 check whether the latest fi(S) is still the largest among the
(old) marginal gains of i′ ∈ S; if so, j|S|+1 = i is added to S. Note that the deferred updates of di′
(i′ ∈ S \ {i}) do not matter when deciding whether to add i to S due to the submodularity. Here,
d = (d1, . . . , dn) plays the role of upper bounds (ρ1, . . . , ρn) of LAZYGREEDY and is maintained
by a priority queue. LAZYFASTGREEDY thus finds a greedy solution by exactly mimicking the
behavior of LAZYGREEDY while computing marginal gains efficiently as with FASTGREEDY.

The vector u = (u1, . . . , un) keeps track of when the upper bounds are last updated; specifically, each
ui ∈ {0, 1, . . . , k − 1} indicates that the upper bound di is last updated with respect to {j1, . . . , jui},
i.e., 2 log di = fi({j1, . . . , jui

}). Since UPDATEROW starts to fill V [i, S] from the (ui + 1)st entry,
no off-diagonals Vi,jt are computed more than once in Line 11. Thus, the complexity of Algorithm 2
depends on the number of computed off-diagonals. We denote it by u =

∑
i∈[n] ui with ui values

at the end of Algorithm 2. The u value changes in the range of [k(k − 1)/2, (k − 1)(n− k/2)]
depending on how well the lazy update works and affects the overall time complexity as follows.

5

Algorithm 2 LAZYFASTGREEDY for cardinality-constrained DPP MAP inference

1: V ← O,d←
(√

Li,i

)
i∈[n]

,u← 0, S ← ∅ ▷ d is maintained by a priority queue
2: while |S| < k do
3: Take i ∈ argmaxi′∈S di′ ▷ Terminate if di ≤ 1 (i.e., fi(S) ≤ 0)
4: UPDATEROW(V,d,u; i, S, L) ▷ Nothing is done if |S| = 0
5: if di ≥ maxi′∈S di′ then ▷ Otherwise insert di into the priority queue
6: j|S|+1 ← i
7: S ← S ∪ {j|S|+1}
8: return S

9: function UPDATEROW(V,d,u; i, S, L) ▷ S =
{
j1, j2, . . . , j|S|

}
10: for t = ui + 1, ui + 2, . . . , |S| do
11: Vi,jt ← (Li,jt − ⟨V [i, S(t−1)], V [jt, S

(t−1)]⟩)/djt ▷ S(t−1) = {j1, . . . , jt−1}
12: di ←

√
di

2 − Vi,jt
2

13: ui ← |S| ▷ This line is not needed in Algorithm 3

Theorem 3.2. Algorithm 2 returns a greedy solution in O(nd+u(d+log n)) time. If the lazy update
works best and worst, it runs in O((n+ k2)d) and O(kn(d+ log n)) time, respectively.

Proof. Algorithm 2 returns a greedy solution as explained above. We below discuss the running time.

At the beginning, we need O(nd) time to compute Li,i = ⟨ϕi,ϕi⟩ for i = 1, . . . , n. In UPDATEROW,
an access to Li,jt in Line 11 takes O(d) time, and the inner product takes O(k) (≲ O(d)) time. This
computation is done u times, and thus the total computation time caused by UPDATEROW is O(ud).
In Line 5, we need O(log n) time to update the priority queue if di < maxi′∈S di′ , which can hold
only when at least one off-diagonal is computed in UPDATEROW. Therefore, Line 5 takes O(u log n)
time in total. Thus, the overall time complexity is O(nd+ u(d+ log n)).

Let S be the output of Algorithm 2 and P a permutation matrix such that (PV)[S] is lower triangular.
In the best case, UPDATEROW is called up to k times and u = k(k − 1)/2 off-diagonals of (PV)[S]
are computed. Moreover, updates of the priority queue are done only up to k times, taking O(k log n)
(≲ O(nd)) time in total. Thus, it runs in O((n+k2)d) time. In the worst case, Algorithm 2 calculates
the off-diagonals of (PV)[S] and all the entries of V [S, S \ {jk}]; the total number of those entries is
u = k(k− 1)/2+ (k− 1)(n− k) = (k− 1)(n− k/2). Hence, it takes O(kn(d+ logn)) time.

The best-case time complexity is better than O(knd) of FASTGREEDY if k = o(n). Even in the
worse case, it is as fast as FASTGREEDY if d = Ω(log n). Note that both k = o(n) and d = Ω(log n)
are true in most practical situations. Experiments in Section 5 demonstrate that LAZYFASTGREEDY
can run much faster than FASTGREEDY in practice.

3.2 Extension to random, stochastic, and interlace greedy algorithms

The core idea of LAZYFASTGREEDY can be used for speeding up other greedy-type algorithms:
RANDOMGREEDY [10], STOCHASTICGREEDY [38, 43], and INTERLACEGREEDY [28], which enjoy
1/e-, 1/4-, and 1/4-approximation guarantees, respectively, for non-monotone submodular function
maximization with a cardinality constraint. Note that the guarantees for the non-monotone case are
essential in DPP MAP inference since the log-determinant function is non-monotone in general. Due
to the space limitation, we present the details of those extensions in Appendix A.

4 Fast double greedy algorithm for unconstrained DPP MAP inference

This section discusses unconstrained DPP MAP inference with a kernel matrix L = B⊤B, where
B ∈ Rd×n. In this setting, if f(S) = log detL[S] is monotone, S = [n] is a trivial optimal solution.
Thus, we suppose f to be non-monotone. We also assume L to be positive definite since the algorithm
of [11] discussed below requires f(S) > −∞ for any S ⊆ [n]. Note that this implies d ≥ n.

6

Algorithm 3 FASTDOUBLEGREEDY for unconstrained DPP MAP inference

1: Compute L = B⊤B and L−1

2: V ← O, W ← O, d←
(√

Li,i

)
i∈[n]

, e←
(√

(L−1)i,i

)
i∈[n]

, S ← ∅
3: for i = 1 to n do
4: UPDATEROW(V,d,0; i, S, L) ▷ S is sorted in order of 1, 2, . . . , n
5: UPDATEROW(W, e,0; i, [i] \ S,L−1) ▷ [i] \ S is sorted in order of 1, 2, . . . , n
6: ai ← max{2 log di, 0}, bi ← max{2 log ei, 0}
7: S ← S ∪ {i} w.p. ai/(ai + bi) ▷ Implicity update T = [n] \ S w.p. bi/(ai + bi)

8: return S

A famous algorithm for unconstrained submodular function maximization is DOUBLEGREEDY [11],
a randomized 1/2-approximation algorithm. Although it calls an evaluation oracle only O(n) times,
its naive implementation is too costly for large DPP MAP inference instances since computing the log-
determinant function value takes O(nω) time, which will lead to the total time of O(nω−1d+ nω+1).
We below extend the idea of FASTGREEDY [13] to DOUBLEGREEDY and obtain its O(nω−1d+ n3)-
time implementation for unconstrained DPP MAP inference.

DOUBLEGREEDY maintains two subsets S and T , which are initially set to S = ∅ and T = [n].
For i = 1, . . . , n, it computes ai = max{fi(S), 0} and bi = max{−fi(T \ {i}), 0}, and then either
adds i to S with probability ai/(ai+bi) or removes i from T with probability bi/(ai+bi).2 Note that
T = [n] \ ([i] \ S) = [i] \ S always holds. Finally, it returns S (or equivalently T = [n] \ S = S).

As for the growing subset S, we can efficiently compute marginal gains fi(S) by incrementally
updating a Cholesky factor, as with FASTGREEDY. When it comes to the shrinking subset T ,
however, we cannot directly use the efficient incremental update for computing −fi(T \ {i}). If we
naively compute it in each step, it takes O(nω) time, resulting in the same time complexity as the
naive implementation. Our key idea for overcoming this difficulty is to use the following Jacobi’s
complementary minor formula (see, e.g., [9]).
Proposition 4.1. Let L ∈ Rn×n be a non-singular matrix and I, J ⊆ [n] be subsets with |I| = |J |.
Then, it holds that detL[I, J] = (−1)

∑
i∈I i+

∑
j∈J j

detLdetL−1[I, J].

This formula provides a lemma that enables us to compute −fi(T \ {i}) via incremental updates.
Lemma 4.2. Let L ∈ Rn×n be positive definite. For any S ⊆ [n], define f(S) = log detL[S] and
g(S) = log detL−1[S]. Then, g(S ∪ {i})− g(S) = f(S \ {i})− f(S) holds for any S ⊆ [n] and
i ∈ [n].

Proof. By using Proposition 4.1, we can prove the claim as follows:

f(S \ {i})− f(S) = log detL[S \ {i}]− log detL[S]

= log detLdetL−1[[n] \ (S \ {i})]− log detLdetL−1[[n] \ S]
= log detL−1[S ∪ {i}]− log detL−1[S]

= g(S ∪ {i})− g(S).

Lemma 4.2 implies g(([i] \ S) ∪ {i}) − g([i] \ S) = f(([i] \ S) \ {i}) − f([i] \ S) = −fi(T).
Therefore, by computing L = B⊤B and L−1 in O(nω−1d) (≳ O(nω)) time in advance, we can
compute −fi(T \ {i}) in each step by incrementally updating a Cholesky factor of size |[i] \ S|.
Algorithm 3 presents our FASTDOUBLEGREEDY based on this idea. In each ith step, the first and
second calls to UPDATEROW, defined in Algorithm 2, fill V [i, S] and W [i, [i] \ S], respectively.
Hence, Proposition 2.1 and Lemma 4.2 imply 2 log di = fi(S) and 2 log ei = gi([i] \ S) = −fi(T).
Thus, Algorithm 3 exactly mimics the behavior of DOUBLEGREEDY while efficiently computing
marginal gains via incremental updates of Cholesky factors. In UPDATEROW defined in Algorithm 2,
since L and L−1 are already computed, each Vi,jt is calculated in O(n) time; therefore, a single call
to UPDATEROW takes O(n2) time. Since UPDATEROW is called 2n times, Lines 2–7 construct a
solution in O(n3) time. In total, Algorithm 3 runs in O(nω−1d+ n3) time.

2The algorithm thus sequentially examines all elements, and hence there is no room for the lazy update.

7

5 Experiments

We evaluate the effectiveness of our acceleration techniques on synthetic and real-world datasets.
Section 5.1 examines speed-ups of GREEDY for cardinality-constrained DPP MAP inference, and
Section 5.2 focuses on DOUBLEGREEDY for the unconstrained setting. We present experimental
results on RANDOMGREEDY, STOCHASTICGREEDY, and INTERLACEGREEDY in Appendix A.4.

The algorithms are implemented in C++ with library Eigen 3.4.0 for matrix computations. Exper-
iments are conducted using a compiler GCC 10.2.0 on a computer with 3.8GHz Intel Xeon Gold
CPU and 800GB RAM.

We use synthetic and two real-world datasets, Netflix Prize [5] and MovieLens [25]. Each dataset
provides a matrix B ∈ Rd×n consisting of column vectors ϕ1,ϕ2, . . . ,ϕn ∈ Rd of n items, which
defines an n× n kernel matrix L = B⊤B. Below we explain the item vectors of each dataset.

Synthetic datasets. We use the setting of [21]. Each entry of ϕi ∈ Rd is independently drawn
from the standard normal distribution, ϕij ∼ N (0, 1). As a result, the kernel matrix L conforms to a
Wishart distribution with n degrees of freedom and an identity covariance matrix, i.e., L ∼ W(I, n, n).
We consider various n values in the experiments below, and we always set the vector length d to n.

Real-world datasets. Both Netflix Prize and MovieLens datasets contain users’ ratings of movies
from one to five, where we regard a movie as an item. Following [13], we binarize the ratings based
on whether it is greater than or equal to four. After that, we eliminate movies that result in all-zero
vectors and users who result in all-zero ratings since those are redundant. Consequently, the Netflix
Prize dataset has n = 17770 movies and d = 478615 users with 56919190 ratings; the MovieLens
dataset has n = 40858 movies and d = 162342 users with 12452811 ratings.

B- and L-input settings. It is important to care about whether L = B⊤B is computed in advance
or not. In practice, a matrix B ∈ Rd×n of item vectors is often given. Then, computing L = B⊤B
in advance takes O(min{nω−1d, n2dω−2}) time, which we should avoid when n is large since the
running time of LAZYFASTGREEDY (and FASTGREEDY) increases only linearly in n. On the other
hand, we are sometimes given a pre-computed kernel matrix L, and we can access Li,j in O(1) time.

We below consider both settings, called B- and L-input settings, respectively. In the L-input setting,
we exclude the time to compute L = B⊤B from consideration. Under this condition, FASTGREEDY
takes O(k2n) time and LAZYFASTGREEDY does O(n+ u(k + log n)), where the first O(n) term is
for constructing a priority queue. By similar reasoning to that in the proof of Theorem 3.2, it runs in
O(n+k3+k log n) and O(kn(k+log n)) time if the lazy update works best and worst, respectively.

5.1 Greedy algorithm for cardinality-constrained DPP MAP inference

We compare the running time of GREEDY, LAZYGREEDY, FASTGREEDY, and LAZYFASTGREEDY,
which we here call Naive, Lazy, Fast, and LazyFast, respectively, for short. As regards synthetic
datasets, we consider two settings that fix either n or k: (i) n = 6000 and k = 1, 2, . . . , n, and (ii)
k = 200 and n = 1000, 2000, . . . , 10000. We set the timeout periods of (i) and (ii) to 3600 and 60
seconds, respectively. Regarding real-world datasets, n is fixed as explained above and we increase
k = 1, 2, . . . , n. We set the timeout period to 3600 seconds. With the Netflix (MovieLens) dataset,
the objective value peaked with k = 17762 (k = 18763), and thus we stopped increasing k after that.

Figures 2 and 3 present the results on synthetic and real-world datasets, respectively. The curves in
the runtime figures represent that faster algorithms can return greedy solutions to instances with larger
k or n values within the timeout periods. The rightmost figures present the number of off-diagonals
of Cholesky factors computed by Fast and LazyFast. As explained in Section 3.1, while Fast always
computes all the off-diagonals of V [[n], S], LazyFast does not due to the lazy update.

LazyFast was the fastest in all the settings. In particular, in the synthetic (ii) and real-world settings,
LazyFast computed fewer off-diagonals than Fast, thus running the fastest. In the synthetic setting (i),
although LazyFast computed almost all off-diagonals in V [[n], S], it was still faster than Fast. For
example, for the L-input setting with n = k = 6000, Fast and LazyFast took 37.4 and 13.7 seconds,
respectively. This unexpected speed-up is caused by the cache efficiency of LazyFast. Specifically,
every call to UPDATEROW computes off-diagonals from Vi,jui+1

to Vi,j|S| by accessing entries only in

8

0 3000 6000
k

0

1200

2400

3600

R
u

nt
im

e
[s

]

Naive

Lazy

Fast

LazyFast

0 200 4000

10

20

(a) n = 6000, B-input, Runtime

0 3000 6000
k

0

1200

2400

3600

R
u

nt
im

e
[s

]

Naive

Lazy

Fast

LazyFast

0 200 4000.0

0.5

1.0

(b) n = 6000, L-input, Runtime

0 2000 4000 6000
k

0

1

2

C
om

p
u

te
d

off
-d

ia
go

n
al

s

×107

Fast

LazyFast

(c) n = 6000, Off-diagonals

1000 5000 10000
n

0

20

40

60

R
u

nt
im

e
[s

]

Naive

Lazy

Fast

LazyFast

2000 40000

4

8

(d) k = 200, B-input, Runtime

1000 5000 10000
n

0

20

40

60

R
u

nt
im

e
[s

]

Naive

Lazy

Fast

LazyFast

2000 40000.00

0.05

0.10

(e) k = 200, L-input, Runtime

1000 5000 10000
n

0

1

2

C
om

p
u

te
d

off
-d

ia
go

n
al

s

×106

Fast

LazyFast

(f) k = 200, Off-diagonals

Figure 2: Results on synthetic datasets. In the four runtime figures, enlarged views of lower left parts
are shown for visibility. In Figs. 2c and 2f, the gray band indicates the range of the possible number
of computed off-diagonals: [k(k − 1)/2, (k − 1)(n− k/2)].

V [{i, jui+1, . . . , j|S|}, S(|S|−1)]. This process virtually creates blocks in a Cholesky factor, enabling
the cache-efficient computation of off-diagonals via blocking (see, e.g., [26, Section 2.3]). In fact,
the cache miss rates of Fast and LazyFast for the above example were 71.3% and 3.3%, respectively.

Another interesting observation in the synthetic (ii) and real-world settings is that while Fast was
often faster than Lazy in the L-input setting, the opposite occurred in the B-input setting. This is
because computing an off-diagonal in the B-input setting is costly relative to the L-input setting. As
a result, avoiding the redundant computation of off-diagonals by the lazy update tends to be more
effective than computing marginal gains efficiently via the Cholesky factorization.

5.2 Double greedy algorithm for unconstrained DPP MAP inference

We compare naive DOUBLEGREEDY and our FASTDOUBLEGREEDY by applying them to uncon-
strained DPP MAP inference on three datasets: synthetic (n = 6000), Netflix Prize, and MovieLens.
Since kernel matrices L in the real-world datasets are singular, we use kernel matrices computed as
L = 0.9B⊤B + 0.1I in this section, ensuring that the resulting matrices L are positive definite. In
this section, we set the timeout period to one day (86400 seconds).

Table 1 presents the results. Note that both algorithms require L to be computed in advance. Therefore,
we measured the time of computing B⊤B (Product) separately from the time of constructing solutions
(Greedy). Our FASTDOUBLEGREEDY additionally requires L−1 to be computed in advance for
accelerating the solution construction; therefore, we also measured the time of computing L−1

(Inverse) separately. As in Table 1, naive DOUBLEGREEDY took so long for solution construction that
it failed to return solutions to real-world instances in one day. By contrast, our FASTDOUBLEGREEDY
constructed solutions far faster and succeeded in returning solutions to all the instances.

Also, the computation of B⊤B (Product) took a considerably long time relative to the running time
of LAZYFASTGREEDY in the previous section. Therefore, as mentioned above, when a matrix B of
item vectors is given and our goal is to obtain a greedy solution for small k = o(n), we should avoid
computing the kernel matrix L = B⊤B in advance.

9

0 1500 3000
k

0

1200

2400

3600

R
u

nt
im

e
[s

]

Naive

Lazy

Fast

LazyFast

(a) Netflix, B-input, Runtime

0 5000 10000 15000
k

0

1200

2400

3600

R
u

nt
im

e
[s

]

Naive

Lazy

Fast

LazyFast

(b) Netflix, L-input, Runtime

0 5000 10000 15000
k

0

1

2

C
om

p
u

te
d

off
-d

ia
go

n
al

s

×108

Fast

LazyFast

(c) Netflix, Off-diagonals

0 3000 6000
k

0

1200

2400

3600

R
u

nt
im

e
[s

]

Naive

Lazy

Fast

LazyFast

(d) MovieLens, B-input, Runtime

0 5000 10000 15000
k

0

1200

2400

3600

R
u

nt
im

e
[s

]

Naive

Lazy

Fast

LazyFast

(e) MovieLens, L-input, Runtime

0 5000 10000 15000
k

0

2

4

C
om

p
u

te
d

off
-d

ia
go

n
al

s

×108

Fast

LazyFast

(f) MovieLens, Off-diagonals

Figure 3: Results on real-world datasets. In Figs. 3c and 3f, the gray band indicates the range of the
possible number of computed off-diagonals: [k(k − 1)/2, (k − 1)(n− k/2)].

Table 1: Running time [s] of DOUBLEGREEDY and FASTDOUBLEGREEDY

Dataset
DOUBLEGREEDY FASTDOUBLEGREEDY

Product Greedy Total Product Inverse Greedy Total
Synthetic

n = 2000 1.1 258.6 259.7 1.1 1.8 0.7 3.6
n = 4000 8.7 5422.4 5431.1 8.7 16.9 10.0 35.6
n = 6000 30.0 36233.1 36263.1 30.0 59.8 34.6 124.4
n = 8000 70.2 > 86400.0 — 70.2 151.2 103.1 324.5
n = 10000 137.9 > 86400.0 — 137.9 294.2 182.6 614.7

Netflix Prize 20561.6 > 86400.0 — 20561.6 1706.7 916.2 23184.5
MovieLens 37829.5 > 86400.0 — 37829.5 21999.2 6337.3 66166.0

Acknowledgements

The authors thank anonymous reviewers for their valuable comments. This work was supported by
JST ERATO Grant Number JPMJER1903 and JSPS KAKENHI Grant Number JP22K17853.

References
[1] N. Anari and M. Dereziński. Isotropy and log-concave polynomials: Accelerated sampling

and high-precision counting of matroid bases. In Proceedings of the 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS 2020), pages 1331–1344. IEEE, 2020.

[2] N. Anari, S. Oveis Gharan, and A. Rezaei. Monte Carlo Markov chain algorithms for sampling
strongly Rayleigh distributions and determinantal point processes. In Proceedings of the 29th
Annual Conference on Learning Theory (COLT 2016), volume 49, pages 103–115. PMLR,
2016.

10

[3] E. Balkanski, A. Breuer, and Y. Singer. Non-monotone submodular maximization in exponen-
tially fewer iterations. In Advances in Neural Information Processing Systems (NeurIPS 2018),
volume 31. Curran Associates, Inc., 2018.

[4] E. Balkanski, A. Rubinstein, and Y. Singer. An exponential speedup in parallel running time for
submodular maximization without loss in approximation. In Proceedings of the 2019 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages 283–302. SIAM, 2019.

[5] J. Bennett and S. Lanning. The Netflix prize. In Proceedings of KDD Cup and Workshop, 2007.
URL https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data.

[6] A. Bhaskara, A. Karbasi, S. Lattanzi, and M. Zadimoghaddam. Online MAP inference of
determinantal point processes. In Advances in Neural Information Processing Systems (NeurIPS
2020), volume 33, pages 3419–3429. Curran Associates, Inc., 2020.

[7] D. Bini and V. Y. Pan. Polynomial and Matrix Computations, volume 1. Birkhäuser Boston,
1994.

[8] A. Breuer, E. Balkanski, and Y. Singer. The FAST algorithm for submodular maximization. In
Proceedings of the 37th International Conference on Machine Learning (ICML 2020), volume
119, pages 1134–1143. PMLR, 2020.

[9] R. A. Brualdi and H. Schneider. Determinantal identities: Gauss, Schur, Cauchy, Sylvester,
Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley. Linear Algebra and Its Applications,
52-53:769–791, 1983.

[10] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz. Submodular maximization with
cardinality constraints. In Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), pages 1433–1452. SIAM, 2014.

[11] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on Computing,
44(5):1384–1402, 2015.

[12] D. Calandriello, M. Derezinski, and M. Valko. Sampling from a k-DPP without looking at all
items. In Advances in Neural Information Processing Systems (NeurIPS 2020), volume 33,
pages 6889–6899. Curran Associates, Inc., 2020.

[13] L. Chen, G. Zhang, and E. Zhou. Fast greedy MAP inference for determinantal point process
to improve recommendation diversity. In Advances in Neural Information Processing Systems
(NeurIPS 2018), volume 31. Curran Associates, Inc., 2018.

[14] Y. Chen, T. Dey, and A. Kuhnle. Best of both worlds: Practical and theoretically optimal
submodular maximization in parallel. In Advances in Neural Information Processing Systems
(NeurIPS 2021), volume 34, pages 25528–25539. Curran Associates, Inc., 2021.

[15] A. Çivril and M. Magdon-Ismail. On selecting a maximum volume sub-matrix of a matrix and
related problems. Theoretical Computer Science, 410(47):4801–4811, 2009.

[16] M. Derezinski, D. Calandriello, and M. Valko. Exact sampling of determinantal point processes
with sublinear time preprocessing. In Advances in Neural Information Processing Systems
(NeurIPS 2019), volume 32. Curran Associates, Inc., 2019.

[17] A. Ene and H. Nguyen. Parallel algorithm for non-monotone DR-submodular maximization. In
Proceedings of the 37th International Conference on Machine Learning (ICML 2020), volume
119, pages 2902–2911. PMLR, 2020.

[18] M. Fahrbach, V. Mirrokni, and M. Zadimoghaddam. Non-monotone submodular maximization
with nearly optimal adaptivity and query complexity. In Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), volume 97, pages 1833–1842. PMLR, 2019.

[19] K. Fan. An inequality for subadditive functions on a distributive lattice, with application to
determinantal inequalities. Linear Algebra and Its Applications, 1(1):33–38, 1968.

[20] M. Gartrell, I. Han, E. Dohmatob, J. Gillenwater, and V.-E. Brunel. Scalable learning and
MAP inference for nonsymmetric determinantal point processes. In Proceedings of the 9th
International Conference on Learning Representations (ICLR 2021), 2021.

[21] J. Gillenwater, A. Kulesza, and B. Taskar. Near-optimal MAP inference for determinantal point
processes. In Advances in Neural Information Processing Systems (NeurIPS 2012), volume 25.
Curran Associates, Inc., 2012.

11

https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data

[22] J. Gillenwater, A. Kulesza, Z. Mariet, and S. Vassilvtiskii. A tree-based method for fast repeated
sampling of determinantal point processes. In Proceedings of the 36th International Conference
on Machine Learning (ICML 2019), volume 97, pages 2260–2268. PMLR, 2019.

[23] I. Han and J. Gillenwater. MAP inference for customized determinantal point processes via
maximum inner product search. In Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics (AISTATS 2020), volume 108, pages 2797–2807. PMLR,
2020.

[24] I. Han, P. Kambadur, K. Park, and J. Shin. Faster greedy MAP inference for determinantal point
processes. In Proceedings of the 34th International Conference on Machine Learning (ICML
2017), volume 70, pages 1384–1393. PMLR, 2017.

[25] F. M. Harper and J. A. Konstan. The MovieLens datasets: History and context. ACM Trans-
actions on Interactive Intelligent Systems, 5(4):1–19, 2015. URL https://grouplens.org/
datasets/movielens/25m/.

[26] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Elsevier,
6th edition, 2011.

[27] C.-W. Ko, J. Lee, and M. Queyranne. An exact algorithm for maximum entropy sampling.
Operations Research, 43(4):684–691, 1995.

[28] A. Kuhnle. Interlaced greedy algorithm for maximization of submodular functions in nearly
linear time. In Advances in Neural Information Processing Systems (NeurIPS 2019), volume 32.
Curran Associates, Inc., 2019.

[29] A. Kuhnle. Nearly linear-time, parallelizable algorithms for non-monotone submodular maxi-
mization. In Proceedings of the 35th AAAI conference on artificial intelligence (AAAI 2021),
volume 35, pages 8200–8208. AAAI Press, 2021.

[30] A. Kulesza and B. Taskar. k-DPPs: Fixed-size determinantal point processes. In Proceedings
of the 28th International Conference on Machine Learning (ICML 2011), pages 1193–1200.
Omnipress, 2011.

[31] A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Foundations
and Trends® in Machine Learning, 5(2–3):123–286, 2012.

[32] C. Launay, B. Galerne, and A. Desolneux. Exact sampling of determinantal point processes
without eigendecomposition. Journal of Applied Probability, 57(4):1198–1221, 2020.

[33] C. Li, S. Sra, and S. Jegelka. Fast mixing Markov chains for strongly Rayleigh measures, DPPs,
and constrained sampling. In Advances in Neural Information Processing Systems (NeurIPS
2016), volume 29. Curran Associates, Inc., 2016.

[34] O. Macchi. The coincidence approach to stochastic point processes. Advances in Applied
Probability, 7(1):83–122, 1975.

[35] S. Mahabadi, P. Indyk, S. O. Gharan, and A. Rezaei. Composable core-sets for determinant
maximization: A simple near-optimal algorithm. In Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), volume 97, pages 4254–4263. PMLR, 2019.

[36] S. Mahabadi, I. Razenshteyn, D. P. Woodruff, and S. Zhou. Non-adaptive adaptive sampling on
turnstile streams. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2020), pages 1251–1264. ACM, 2020.

[37] M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization Techniques, pages 234–243. Springer Berlin Heidelberg, 1978.

[38] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrak, and A. Krause. Lazier than lazy
greedy. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015),
volume 29, pages 1812–1818. AAAI Press, 2015.

[39] T. Nakamura, S. Sakaue, K. Fujii, Y. Harabuchi, S. Maeda, and S. Iwata. Selecting molecules
with diverse structures and properties by maximizing submodular functions of descriptors
learned with graph neural networks. Scientific Reports, 12(1):1124, 2022.

[40] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of Operations Research, 3(3):177–188, 1978.

[41] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions—I. Mathematical Programming, 14(1):265–294, 1978.

12

https://grouplens.org/datasets/movielens/25m/
https://grouplens.org/datasets/movielens/25m/

[42] N. Ohsaka. Some inapproximability results of MAP inference and exponentiated determinantal
point processes. Journal of Artificial Intelligence Research, 73:709–735, 2022.

[43] S. Sakaue. Guarantees of stochastic greedy algorithms for non-monotone submodular maxi-
mization with cardinality constraints. In Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics (AISTATS 2020), volume 108, pages 11–21. PMLR, 2020.

[44] D. Sharma, A. Kapoor, and A. Deshpande. On greedy maximization of entropy. In Proceedings
of the 32nd International Conference on Machine Learning (ICML 2015), volume 37, pages
1330–1338. PMLR, 2015.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Abstract and Section 1.

(b) Did you describe the limitations of your work? [Yes] The remarkable limitation is that
our LAZYFASTGREEDY does not improve the worst-case time complexity, and it is
clear from the description in Section 3.1.

(c) Did you discuss any potential negative societal impacts of your work? [No] This is a
purely algorithmic study, and no negative societal impacts are expected.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2.
Additional assumptions required in the unconstrained setting is described in Section 4.

(b) Did you include complete proofs of all theoretical results? [Yes] All theoretical
statements are followed by their proofs.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] No training is performed in our experiments.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Although some algorithms are randomized, it is obvious
that the randomness does not largely affect our experimental results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See [5, 25].
(b) Did you mention the license of the assets? [No] We used publicly available standard

datasets.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The codes of the algorithms are provided in the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] Since the datasets are publicly available standard ones, no such
discussion seems to be necessary.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Since the datasets are publicly available standard
ones, no such discussion seems to be necessary.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

13

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	1 Introduction
	1.1 Related work

	2 Background
	2.1 Lazy greedy algorithm for submodular function maximization
	2.2 Fast greedy algorithm for DPP MAP inference

	3 Lazy and fast algorithms for cardinality-constrained DPP MAP inference
	3.1 Lazy and fast greedy algorithm
	3.2 Extension to random, stochastic, and interlace greedy algorithms

	4 Fast double greedy algorithm for unconstrained DPP MAP inference
	5 Experiments
	5.1 Greedy algorithm for cardinality-constrained DPP MAP inference
	5.2 Double greedy algorithm for unconstrained DPP MAP inference

