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Abstract

Diffusion models are recent state-of-the-art methods for image generation and
likelihood estimation. In this work, we generalize continuous-time diffusion mod-
els to arbitrary Riemannian manifolds and derive a variational framework for like-
lihood estimation. Computationally, we propose new methods for computing the
Riemannian divergence which is needed for likelihood estimation. Moreover, in
generalizing the Euclidean case, we prove that maximizing this variational lower-
bound is equivalent to Riemannian score matching. Empirically, we demonstrate
the expressive power of Riemannian diffusion models on a wide spectrum of
smooth manifolds, such as spheres, tori, hyperboloids, and orthogonal groups.
Our proposed method achieves new state-of-the-art likelihoods on all benchmarks.

1 Introduction

By learning to transmute noise, generative models seek to uncover the underlying generative
factors that give rise to observed data. These factors can often be cast as inherently geometric
quantities as the data itself need not lie on a flat Euclidean space. Indeed, in many scientific
domains such as high-energy physics (Brehmer & Cranmer, 2020), directional statistics (Mardia &
Jupp, 2009), geoscience (Mathieu & Nickel, 2020), computer graphics (Kazhdan et al., 2006), and
linear biopolymer modeling such as protein and RNA (Mardia et al., 2008; Boomsma et al., 2008;
Frellsen et al., 2009), data is best represented on a Riemannian manifold with a non-zero curvature.
Naturally, to effectively capture the generative factors of these data, we must take into account the
geometry of the space when designing a learning framework.

Recently, diffusion based generative models have emerged as an attractive model class that not
only achieve likelihoods comparable to state-of-the-art autogressive models (Kingma et al., 2021)
but match the sample quality of GANs without the pains of adversarial optimization (Dhariwal &
Nichol, 2021). Succinctly, a diffusion model consists of a fixed Markov chain that progressively
transforms data to a prior defined by the inference path, and a generative model which is another
Markov chain that is learned to invert the inference process (Ho et al., 2020; Song et al., 2021b).

While conceptually simple, the learning framework can have a variety of perspectives and goals.
For example, Huang et al. (2021) provide a variational framework for general continuous-time
diffusion processes on Euclidean manifolds as well as a functional Evidence Lower Bound (ELBO)
that can be equivalently shown to be minimizing an implicit score matching objective. At present,
however, much of the success of diffusion based generative models and its accompanying variational
framework is purpose built for Euclidean spaces, and more specifically, image data. It does not
easily translate to general Riemannian manifolds.

In this paper, we introduce Riemannian Diffusion Models (RDM)—generalizing conventional
diffusion models on Euclidean spaces to arbitrary Riemannian manifolds. Departing from diffusion
models on Euclidean spaces, our approach uses the Stratonovich SDE formulation for which the
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conventional chain rule of calculus holds, which, as we demonstrate in section §3, can be exploited
to de�ne diffusion on a Riemannian manifold. Furthermore, we take an extrinsic view of geometry
by de�ning the Riemannian manifold of interest as an embedded sub-manifold within a higher
dimensional (Euclidean) ambient space. Such a choice enables us to de�ne both our inference
and generative SDEs using the coordinate system of the ambient space, greatly simplifying the
implementation of the theory developed using the intrinsic view.

Main Contributions . We summarize our main contributions below:

• We introduce a variational framework built on the Riemannian Feynman-Kac representation and
Giransov's theorem. In Theorem 2 we derive a Riemannian continuous-time ELBO, strictly gen-
eralizing the CT-ELBO in Huang et al. (2021) and prove in Theorem 4 that its maximization is
equivalent to Riemannian score matching for marginally equivalent SDEs (Theorem 3).

• To compute the Riemannian CT-ELBO it is necessary to compute the Riemannian divergence of
our parametrized vector �eld, for which we introduce a QR-decomposition-based method that is
computationally ef�cient for low dimensional manifolds as well a projected Hutchinson method
for scalable unbiased estimation. Notably, our approach does not depend on the closest point
projection which may not be freely available for many Riemannian manifolds of interest.

• We also provide a variance reduction technique to estimate the Riemannian CT-ELBO objective
that leverages importance sampling with respect to the time integral, which crucially avoids care-
fully designing the noise schedule of the inference process.

• Empirically, we validate our proposed models on spherical manifolds towards modelling natural
disasters as found in earth science datasets, products of spherical manifolds (tori) for protein
and RNA, synthetic densities on hyperbolic spaces and orthogonal groups. Our empirical results
demonstrate that RDM leads to new state-of-art likelihoods over prior manifold generative models.

2 Background

In this section, we provide the necessary background on diffusion models and key concepts
from Riemannian geometry that we utilize to build RDMs. For a short review of the latter, see
Appendix A or Ratcliffe (1994) for a more comprehensive treatment of the subject matter.

2.1 Euclidean diffusion models

A diffusion model can be de�ned as the solution to the (Itô) SDE (Øksendal, 2003),

dX = � dt + � dB t ; (1)

with the initial conditionX 0 following some unstructured priorp0 such as the standard normal
distribution, whereB t is a standard Brownian motion, and� and� are the drift and diffusion coef-
�cients of the diffusion process, which control the deterministic forces driving the evolution and the
amount of noise injected at each time step. This provides us a way to sample from the model, via
numerically solving the dynamics fromt = 0 to t = T for some �xed termination timeT. To train
the model via maximum likelihood, we require an expression for the log marginal density ofX T ,
denoted bylogp(x; T ), which is generally intractable.

The marginal likelihood can be represented using a stochastic instantaneous change-of-variable for-
mula, by applying the Feynman-Kac theorem to the Fokker-Planck PDE of the density. An applica-
tion of Girsanov's theorem followed by an application of Jensen's inequality leads to the following
variational lower bound (Huang et al., 2021; Song et al., 2021a):

logp(x; T ) � E

"

logp0(YT ) �
Z T

0

�
1
2

ka(Ys; s)k2
2 + r � � (Ys; T � s)

�
ds

�
�
�
�
�
Y0 = x

#

(2)

wherea is the variational degree of freedom,r� denotes the (Euclidean) divergence operator, and
Ys follows the inference SDE (the generative coef�cients are evaluated in reversed time,i.e.T � s)

dY = ( � � + �a ) ds + � dB̂s (3)

with B̂s being another Brownian motion. This is known as the continuous-time evidence lower
bound, or the CT-ELBO for short.
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2.2 Riemannian manifolds

We work with ad-dimensional Riemannian manifold(M ; g) embedded in a higher dimensional
ambient spaceRm , for m > d . This assumption does not come with a loss of generality, since any
Riemannian manifold can be isometrically embedded into a Euclidean space by theNash embedding
theorem(Gunther, 1991). In this case, the metricg coincides with the pullback of the Euclidean
metric by the inclusion map. Now, given a coordinate chart' : M ! Rd and its inverse = ' � 1,
we can de�ne~E j for j = 1 ; � � � ; d to be the basis vectors of the tangent spaceTx M at pointx 2 M .
The tangent space can be understood as the pushforward of the Euclidean derivation of the patch
space along ; i.e., for any smooth functionf 2 C1 (M ), ~E j (f ) = @

@~x j
f �  .

We denote byPx the orthogonal projection onto the linear subspace spanned by the column vectors
of the JacobianJx = d  = d~x. Speci�cally, Px can be constructed viaPx = Jx (J T

x Jx ) � 1J T
x . Note

that this subspace is isomorphic to the tangent spaceTx M , which itself is a subspace ofTx Rm . As
a result, we identify this subspace withTx M . Lastly, we refer to the action ofPx as the projection
onto the tangential subspace, andPx itself as the tangential projection.

2.3 SDE on manifolds

Unlike Euclidean spaces, Riemannian manifolds generally do not possess a vector space structure.
This prevents the direct application of the usual (stochastic) calculus. We can resolve this by de�ning
the process via test functions. Speci�cally, letVk be a family of smooth vector �elds onM , and let
Z k be a family of semimartingales (Protter, 2005). Symbolically, we write

dX t =
X

k

Vk (X t ) � dZ k
t if df (X t ) =

X

k

Vk (f )(X t ) � dZ k
t (4)

for anyf 2 C1 (M ) (Hsu, 2002). The� in the second differential equation is to be interpreted in
the Stratonovich sense (Protter, 2005). The use of the Stratonovich integral is the �rst step deviating
from the Euclidean diffusion model (1), as the Itô integral does not follow the usual chain rule.

Working with this abstract de�nition is not always convenient, so instead we work with speci�c
coordinates ofM . Let ' be a chart, and let~v = (~vjk ) be a matrix representing the coef�cients
of Vk in the coordinate basis—i.e.Vk (f ) =

P d
j =1 ~vjk

@
@~x j

f � ' � 1
�
�
~x = ' (x ) . This allows us to

write d' (X t ) = ~v � dZ . Similarly, supposeM is a submanifold embedded inRm , and denote by
v = ( vik ) the coef�cients wrt the Euclidean basis.v and~v are related byv = d' � 1

d~x ~v. Then we can
express the dynamics ofX as a regular SDE using the Euclidean space's coef�cientsdX = v � dZ .
Notably, by the relation betweenv and~v, the column vectors ofv are required to lie in the span of
the column vectors of the Jacobiand' � 1

d~x which restricts the dynamics to move tangentially onM .

3 Riemannian diffusion models

We now develop a variational framework to estimate the likelihood of a diffusion model de�ned on
a Riemannian manifold(M ; g). Let X t 2 M be a process solving the following SDE:

Generative SDE: dX = V0 dt + V � dB t ; X 0 � p0 (5)

whereV0 and the columns of the diffusion matrix1 V := [ V1; � � � ; Vw ] are smooth vector �elds
on M , andB t is a w-dimensional Brownian motion. The law of the random variableX t can be
written asp(x; t ) � (dx), wherep(x; t ) is the probability density function and� is thed-dimensional
Hausdorff measure on the manifold associated with the Riemannian volume density. LetV � r be
a differential operator de�ned by(V � r g)U :=

P w
k=1 (r g � Uk )Vk , wherer g � Uk denotes the

Riemannian divergenceof the vector �eldUk :

r g � Uk = jGj �
1
2

dX

j =1

@
@~x j

(jGj
1
2 ~ujk ): (6)

Our �rst result is a stochastic instantaneous change-of-variable formula for the Riemannian SDE by
applying the Feynman-Kac theorem to the Fokker Planck PDE of the densityp(x; t ).

1The multiplication is interpreted similarly to matrix-vector multiplication,i.e.V � dB t =
P w

k =1 Vk � dB k
t .
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Theorem 1(Marginal Density). The densityp(x; t ) of the SDE (5) can be written as

p(x; t ) = E

"

p0 (Yt ) exp
�

�
Z t

0
r g �

�
V0 �

1
2

(V � r g)V
�

ds
� �

�
�
�
�
Y0 = x

#

(7)

where the expectation is taken wrt the following process induced by a Brownian motionB 0
s

dY = ( � V0 + ( V � r g)V ) ds + V � dB 0
s: (8)

For effective likelihood maximization, we require access tologp and its gradient. Towards this goal,
we prove the following Riemannian CT-ELBO which serves as our training objective and follows
from an application of change of measure (Girsanov's theorem) and Jensen's inequality.

Theorem 2(Riemannian CT-ELBO). Let B̂s be aw-dimensional Brownian motion, and let
Ys be a process solving the following

Inference SDE: dY = ( � V0 + ( V � r g)V + V a) ds + V � dB̂s; (9)

wherea : Rm � [0; T] ! Rm is the variational degree of freedom. Then we have

logp(x; T ) � E

"

logp0(YT ) �
Z T

0

1
2

ka(Ys; s)k2
2 + r g �

�
V0 �

1
2

(V � r g)V
�

ds

�
�
�
�
�
Y0 = x

#

;

(10)

where all the generative degree of freedomsVk are evaluated in the reversed time direction.

3.1 Computing Riemannian divergence

Similar to the Euclidean case, computing the Riemannian CT-ELBO requires computing the diver-
gence “r g �” of a vector �eld, which can be achieved by applying the following identity.

Proposition 1 (Riemannian divergence identity). Let (M; g) be ad-dimensional Rieman-
nian manifold. For any smooth vector �eldVk 2 X(M ), the following identity holds:

r g � Vk =
dX

j =1

D
r ~E j

Vk ; ~E j
E

g
: (11)

Furthermore, if the manifold is a submanifold embedded in the ambient spaceRm equipped
with the induced metricg = � � �g, then

(r g � Vk )(x) = tr
�

Px
dvk

dx
Px

�
; (12)

wherevk = ( v1k ; � � � ; vmk ) are the ambient space coef�cientsVk =
P m

i =1 vik
@

@xi
andPx is

the orthogonal projection onto the tangent space.

Intrinsic coordinates. The patch-space formula (6) can be used to compute the Riemannian diver-
gence. This view was adopted by Mathieu & Nickel (2020), where they combined the Hutchinson
trace identity and the internal coordinate formula to estimate the divergence. The drawbacks of this
framework include: (1) obtaining local coordinates may be dif�cult for some manifolds, hindering
generality in practice; (2) we might need to change patches, which complicates implementations;
and (3) the inverse scaling of

p
jGj might result in numerical instability and high variance.

Closest-point projection. The coordinate-free expression (11) leads to the closest-point projection
method proposed by Rozen et al. (2021). Concretely, de�ne the closest-point projection by� (x) :=
arg miny2M kx � yk, wherek�k is the Euclidean norm. LetVk (x) be the derivation corresponding
to the ambient space vectorvk (x) = P� (x ) u(� (x)) for some unconstraintedu : Rm ! Rm . Rozen
et al. (2021) showed thatr g � Vk (x) = r � vk (x), sincevk is in�nitesimally constant in the normal
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direction toTx M . This allows us to compute the divergence directly in the ambient space. However,
the closest-point projection map� may not always be easily obtained.

QR decomposition. An alternative to the closest-point projection is to instead search for an or-
thogonal basis forTx M . Let Q = [ e1; � � � ; ed; n1; � � � ; nm � d] be an orthogonal matrix whose
�rst d columns span theTx M , and the remainingm � d vectors span its orthogonal complement
Tx M ? . To constructQ we can simply sampled vectors—e.g.from N (0; 1)–in the ambient space
and orthogonally project them toTx M usingPx . These vectors, although not orthogonal yet, form
a basis forTx M . Next we concatenate them withm � d random vectors and apply a simpleQR
decomposition to retrieve an orthogonal basis. UsingQ we may rewrite equation (12) as follows:

(r g � Vk )(x) = tr
�

QQ> Px
dvk

dx
Px

�
= tr

�
(Px Q)> dvk

dx
Px Q

�
=

dX

j =1

e>
j

dvk

dx
ej (13)

where we used (1) the orthogonality ofQ, (2) the cyclic property of trace, (3) and the fact that
Px ej = ej andPx nj = 0 . In practice, concatenation with the remainingm � d vectors is not
needed as they are effectively not used in computing the divergence, speeding up computation when
m � d. Moreover, the vector-Jacobian product can be computed inO(m) time using reverse-mode
autograd and importantly does not require the closest-point projection� .

Projected Hutchinson. When QR is too expensive for higher dimensional problems, the Hutchin-
son trace estimator (Hutchinson, 1989) can be employed within the extrinsic view representa-
tion (12). For example, letz be a standard normal vector (or a Rademacher vector), we have
(r g �Vk )(x) = Ez�N ;z 0= Px z [z0> dvk

dx z0]. Different from a direct application of the trace estimator to
the closest-point method, we directly project the random vector to the tangent subspace. Therefore,
the closest-point projection is again not needed.

3.2 Fixed-inference parameterization

Following prior work (Sohl-Dickstein et al., 2015; Ho et al., 2020; Huang et al., 2021), we let the
inference SDE (9) be de�ned as a simple noise process taking observed data to unstructured noise:

dY = U0 dt + V � dB̂s; (14)

where U0 = 1
2 r g logp0 and V is the tangential projection matrix; that is,Vk (f )(x) =

P m
j =1 (Px ) jk

@f
@xj

for any smooth functionf . This is known as theRiemannian Langevin diffu-
sion(Girolami & Calderhead, 2011). As long asp0 satis�es a log-Sobolev inequality, the marginal
distribution ofYs (i.e. the aggregated posterior) converges top0 at a linear rate in the KL divergence
(Wang et al., 2020). For compact manifolds, we setp0 to be the uniform density, which means
U0 = 0 , and (14) is reduced to the extrinsic construction of Brownian motion onM (Hsu, 2002,
Section 1.2). The bene�ts of this �xed-inference parameterization are the following:

Stable and Ef�cient Training . With the �xed-inference parameterization we do not need to opti-
mize the vector �elds that generateYs, and the Riemannian CT-ELBO can be rewritten as:

E[logp0(YT )] �
Z T

0
EYs

"
1
2

ka(Ys; s)k2
2 + r g �

�
V0 �

1
2

(V � r g)V
� �

�
�
�
�
Y0 = x

#

ds; (15)

where the �rst term is a constant wrt the model parameters (or it can be optimized separately if we
want to re�ne the prior), and the time integral of the second term can be estimated via importance
sampling (see Section 3.3). A sample ofYs can be drawn cheaply by numerically integrating (14),
without requiring a stringent error tolerance (see Section 5.2 for an empirical analysis), which allows
us to estimate the time integral in (15) by evaluatinga(Ys; s) at a single time steps only.

Simpli�ed Riemannian CT-ELBO . The CT-ELBO can be simpli�ed as the differential operator
V � r g applied toV yields a zero vector whenV is the tangential projection.

Proposition 2. If V is the tangential projection matrix, then(V � r g)V = 0 .

This means that we can express the generative SDEV0 using the variational parametera via

dX = ( V a(X; T � t) � U0(X; T � t)) d t + V � dB̂ t ; (16)
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with the corresponding Riemannian CT-ELBO:

E[logp0(YT )] �
Z T

0
EYs

"
1
2

kak2
2 + r g � (V a� U0)

�
�
�
�
�
Y0 = x

#

ds: (17)

3.3 Variance reduction

The inference process can be more generally de�ned to account for a time reparameterization. In
fact, this leads to an equivalent model if one can �nd an invariant representation of the temporal
variable. Learning this time rescaling can help to reduce variance (Kingma et al., 2021).

In principle, we can adopt the same methodology, but this would further complicate the parameteri-
zation of the model. Alternatively, we opt for a simpler view for variance reduction via importance
sampling. We estimate the time integral “

R
: : : ds” in (17) using the following estimator:

I :=
1

q(s)

�
1
2

kak2
2 + r g � (V a� U0)

�
wheres � q(s) andYs � q(Ys j Y0); (18)

whereq(s) is a proposal density supported on[0; T]. We parameterizeq(s) using a 1D monotone
�ow (Huang et al., 2018). As the expected value of this estimator is the same as the time integral
in (17), it is unbiased. However, this means we cannot train the proposal distributionq(s) by max-
imizing this objective, since the gradient wrt the parameters ofq(s) is zero in expectation. Instead,
we minimize the variance of the estimator by following the stochastic gradient wrtq(s)

r q(s) Var( I ) = r q(s) E[I 2] � � � � � �
r q(s) E[I ]2 = r q(s) E[I 2]: (19)

The latter can be optimized using the reparameterization trick (Kingma & Welling, 2014) and is a
well-known variance reduction method in a multitude of settings (Luo et al., 2020; Tucker et al.,
2017). It can be seen as minimizing the� 2-divergence from a density proportional to the magnitude
of EYs [I ] (Dieng et al., 2017; Müller et al., 2019).

3.4 Connection to score matching

In the Euclidean case, it can be shown that maximizing the variational lower bound of the �xed-
inference diffusion model (16) is equivalent to score matching (Ho et al., 2020; Huang et al., 2021;
Song et al., 2021a). In this section, we extend this connection to its Riemannian counterpart.

Let q(ys; s) be the density ofYs following (14), marginalizing out the data distributionq(y0; 0).
The score function is the Riemannian gradient of the log-densityr g logq. The following theorem
tells us that we can create a family of inference and generative SDEs that induce the same marginal
distributions overYs andX T � s as (16) if we have access to its score.

Theorem 3(Marginally equivalent SDEs). For � � 1, the marginal distributions ofX T � s
andYs of the processes de�ned as below

dY =
�

U0 �
�
2

r g logq
�

ds +
p

1 � �V � dB̂s Y0 � q(�; 0) (20)

dX =
��

1 �
�
2

�
r g logq � U0

�
dt +

p
1 � � � VdB̂ t X 0 � q(�; T) (21)

both have the densityq(�; s). In particular, � = 1 gives rise to an equivalent ODE.

This suggests if we can approximate the score function, and plug it into the reverse process (21), we
obtain a time-reversed process that induces approximately the same marginals.

Theorem 4(Score matching equivalency). For � < 1, let E1
� denote the Riemannian CT-

ELBO of the generative process (21), withr g logq replaced by an approximate scoreS� , and
with (20) being the inference SDE. AssumeS� is a compactly supported smooth vector. Then

EY0 [E1
� ] = � C1

Z T

0
EYs

h
kS� � r g logqk2

g

i
ds + C2 (22)
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