
Supplementary Material for
Implicit Neural Representations with Levels-of-Experts

A Comparison of Different Hierarchical Grid Layouts

In the main paper, we have shown that our levels-of-experts framework supports a wide variety of
grid layouts (Sec. 3), and arranging the grids in a multi-scale fashion improves the performance
(Sec. 4.1 and Sec. 4.3). This section further investigates the performance implications of different
hierarchical grid layouts on a 2D toy experiment, where we fit the model to a 512 ˆ 512 image.

Here we only consider the case of nearest interpolation (piecewise constant) parameterization of the
position-dependent weights. In 2D, consider an input coordinate p P r0, 1s2, and a 2 ˆ 2 weight tile
for the i-th layer ti0,0,

i
0,1 ,

i
1,0 ,

i
1,1 u, the position-dependent weight ψippq can be computed as follows:

ψippq “i
txu mod 2,tyu mod 2, (7)

where
„

x
y

ȷ

“ Aip ` bi. (8)

An affine transformation Ai and bi is selected for each layer to allow the weight grids to cover a
wide range of spatial frequencies.

We study the effect of different arrangements of Ai and bi via controlled experiments. As shown in
Table 5, our models outperform the PE MLP baseline over a wide range of hierarchical grid layouts.
In this paper, for consistency, we mainly use coarse-to-fine arrangements in all the experiments,
similar to the Quad Tree arrangement in this case. However, we also want to point out that the
performance of the LoE model can be further improved by tuning the grid layouts, as evident by the
better performance achieved with the Fine to Coarse arrangement in this case.

Architectures. For all the experiments, we use a 10-layer network with 64 hidden channels, which
consists of 9 position-dependent linear layers i “ 1, . . . , 9 and a final linear layer. All of the position-
dependent linear layers use a 2 ˆ 2 weight tile. We use Leaky ReLU (0.2 negative slope) activation
function between all the layers. We use positional encoding [10] with L “ 8 frequencies as the input
mapping.

Training Details. We use the mean squared error as the reconstruction loss. We use Adam optimizer
with pβ1, β2q “ p0.9, 0.995q and a learning rate of 0.005. We train all the models for 10k iterations,
with the learning rate decayed to 0.0005 after the first 5k iterations. We initialize the bias vectors to
zeros and initialize the weights using the uniform distribution variant of Kaiming initialization [3].
We sample the full image in each iteration (i.e. no subsampling).

Dataset. We use the “camera” test image from the scikit-image Python package [1], which is a
grayscale image with a resolution of 512 ˆ 512. This image is CC0 licensed.

Runtime & Hardware. Each experiment takes approximately 7 minutes on a NVIDIA Titan V
GPU.

13

Fine to Coarse

Gray Code

Quad Tree

Random Affine

Random Permute

Baseline

P
S

N
R

Iterations

Figure 8: PSNR vs training iterations curve for the 2D toy experiment.

Table 5: Comparison of different hierarchical arrangements of weight grids for a network with 9
position-dependent linear layers and 2 ˆ 2 weight tiles. The PE MLP baseline is also included in the
first row. I denotes the 2 ˆ 2 identity matrix.

Visualization Ai bi PSNR(dB)

PE
M

L
P

0I 0 31.38

Q
ua

d
Tr

ee

2iI 0 40.55

G
ra

y
C

od
e

"

2I i “ 1

2i´1I i ą 1

„

0.5
0.5

ȷ

40.55

Fi
ne

to
C

oa
rs

e

210´iI 0 42.40

R
an

do
m

Pe
rm

ut
e

2arrrisI,
arr = [3,8,1,9,6,2,5,4,7]

0 37.89

R
an

do
m

A
ffi

ne

„

ai bi
ci di

ȷ

,

ai, bi, ci, di „ N p0, 162q

„

mi

ni

ȷ

,

mi, ni „ Up0, 1q

38.36

14

B Details for the Image Fitting Experiments

Architectures. For all the experiments, we use 8-layer networks with [512, 384, 256, 256, 256,
256, 256, 3] respective output channels. We use Leaky ReLU with a negative slope of 0.2 as the
activation function between each layer. We use positional encoding with L “ 13 frequencies as
the input mapping for all the experiments. For the coordinate embedding baseline, we bilinearlly
interpolate a learnable 128-channel 256 ˆ 256 embedding and feed it to the first layer of the MLP,
concatenated with the encoded input coordinates. For experiments using position-dependent weights,
we use 4 ˆ 4 weight tiles for the first 7 layers and use a regular linear layer for the last layer. The
per-layer affine transformation coefficients for these experiments can be found in Table 6. They are
defined in the same way as in Sec. A.

Table 6: Per-layer affine transformation coefficients of weight grids for image fitting experiments that
use position-dependent weights. All the models have 7 position-dependent linear layers (i “ 1, . . . , 7)
and use 4 ˆ 4 weight tiles. The input 2D coordinates have a range of p P r0, 1s2. : This prevents the
grid pitch from becoming finer than the pixel pitch.

Ai bi

Interleaved 8192I 0

Chunked 4I 0

Random Affine
„

ai bi
ci di

ȷ

,

ai, bi, ci, di „ N p0, 2562q

„

mi

ni

ȷ

,

mi, ni „ Up0, 1q

Constant Input (no PE)
"

4I i “ 1

p4i´1 ˆ 2qI i ą 1
: 0

Ours Bilinear Ò (same as above) 0

Ours Ò 0

Training Details. We use Adam optimizer with pβ1, β2q “ p0.9, 0.999q and a learning rate of
0.001. For each iteration, we randomly sample 262144 pixels from the image. We train the models
for a total of 200k iterations. We decay the learning rate with a multiplier of 0.1 after 100k iterations.
We follow the same network initialization scheme described in Sec. A.

Runtime & Hardware. All the experiments are run on a single NVIDIA Tesla V100 GPU (with
power consumption capped at 163W). The training time is 8 hours for PE, 9 hours for PE + CE, 39
hours for Ours Bilinear, and 10 hours for the rest of the models.

Dataset. In this experiment, we use the public domain image of the dwarf planet Pluto1

(NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex
Parker). The original image is 8000 ˆ 8000 pixels. We resize it to 8192 ˆ 8192 following the
published implementation of [9].

Uncertainties of the Quantitative Results. We report uncertainties of the quantitative results
in Table 7, which extends Table 1 in the main paper, with standard deviations over multiple runs
included.

C Details for the Video Fitting Experiments

Architectures. For all the experiments, we use 6-layer networks with 256 hidden channels, with
the exception of the SIREN-L experiment, which has 1024 hidden channels. We use Leaky ReLU

1https://solarsystem.nasa.gov/resources/933/true-colors-of-pluto/

15

https://solarsystem.nasa.gov/resources/933/true-colors-of-pluto/

Table 7: Quantitative results for the image fitting experiment. Standard deviations over multiple runs
are parenthesized.

PSNR dB (STD) Ò SSIM (STD) Ò

PE MLP [10] 32.34 (0.02) 0.869 (6e-4)
PE + CE [2] 39.65 (0.21) 0.967 (1e-3)

Interleaved 33.80 (0.01) 0.876 (7e-5)
Chunked 43.13 (0.01) 0.980 (7e-5)
Random Affine 42.08 (0.78) 0.973 (5e-3)
Constant Input (no PE) 39.48 (0.06) 0.955 (4e-4)
Ours Bilinear 44.85 (0.02) 0.985 (1e-4)
Ours 44.24 (0.17) 0.983 (4e-4)

with a negative slope of 0.2 as the activation function between each layer. We use positional encoding
with L “ log2 512 “ 9 frequencies as the input mapping for PE, PE + CE and LoE experiments. For
the PE + CE baseline, similar to the image fitting experiment, we use a 64-channel 64 ˆ 64 ˆ 64
embedding that is trilinearlly interpolated and fed to the first layer.

For the LoE experiment, we use 2 ˆ 2 ˆ 2 weight tiles for the first layer, 4 ˆ 4 ˆ 4 tiles for the
next 4 layers, and use a regular linear layer for the last layer. The grid resolution for the 5 position-
dependent layers are 2, 8, 32, 128, and 512, respectively. Their corresponding affine coefficients are
Ai “ grid resolution ˆ I and bi “ 0. The 3D input coordinates are normalized to p P r0, 1s3.

Training Details. We use Adam optimizer with pβ1, β2q “ p0.9, 0.999q. For PE, PE + CE, and
LoE experiments, we use a learning rate of 0.001. For SIREN experiments, we use a learning rate of
5e-5 for stable training. For each iteration, we randomly sample 160000 pixels from the video. We
train the models for a total of 200k iterations, decaying the learning rate with a multiplier of 0.1 after
100k iterations. For SIREN experiments, we follow the initialization scheme in [12]. For the rest of
the experiments, we follow the same network initialization scheme described in Sec. A.

Runtime & Hardware. All the experiments are run on a single NVIDIA Tesla V100 GPU (with
power consumption capped at 163W). The training of PE, PE + CE, and SIREN experiments require
3 hours, while the LoE model requires 4 hours due to the inefficient implementation of the dynamic
weight layer. The SIREN-L experiment requires 26 hours of training.

Dataset. The original video is permissively licensed and can be found here2. We use the cropped
and downsampled version from [12].

Uncertainties of the Quantitative Results. We additionally report the standard deviations of the
quantitative results in Table 8, which corresponds to Table 2 in the main paper.

Additional Results. We include the result videos from all the methods in the supplemental material
package.

D Details for the Novel View Synthesis Experiment

Architectures. We use an identical network architecture skeleton, as shown in Fig. 9, in all the
experiments. We use Leaky ReLU with a negative slope of 0.2 as the activation function between
each layer. We use a positional encoding with L “ 10 frequencies as the input mapping for the
coordinates (γppq). We follow the standard settings [10] and use a positional encoding with L “ 4
for the ray directions (γdpdq).

2https://www.pexels.com/video/the-full-facial-features-of-a-pet-cat-3040808/

16

https://www.pexels.com/video/the-full-facial-features-of-a-pet-cat-3040808/

Table 8: Quantitative results of the video fitting experiment, with standard deviations reported in the
parenthesis.

PSNR dB (STD)

PE [10] 27.33 (0.01)
PE + CE [2] 35.83 (0.20)
SIREN [12] 29.13 (0.004)
SIREN-L 37.71 (0.01)
Ours 39.98 (0.12)

256 256 256 256 256

128 3
𝛾 𝐩
63

𝜎
1

1

𝐜
3

𝛾𝑑 𝐝
24

Figure 9: Network architecture for the novel view synthesis experiment. Numbers denote output
channels. Yellow blocks denote inputs, while green blocks denote outputs.

For the LoE experiment as well as the No Hierarchy ablation, we replace the first 5 layers with
position-dependent linear layers and use 4 ˆ 4 ˆ 4 weight tiles in these layers. The grid layouts are
shown below in Table 9. For all the experiments, we use identical network architectures for both
coarse and fine networks.

Table 9: Affine transformation coefficients for novel view synthesis experiments.
Ai bi

No Hier. 64I 0

Ours 4iI 0

Training Details. We use Adam optimizer with pβ1, β2q “ p0.9, 0.999q. We use an initial learning
rate of 5e-5, and decay it exponentially following the published implementation of [10]. We follow
the same network initialization scheme described in Sec. A. For each iteration, we randomly sample
16384 rays. For each ray, we sample 96 coarse samples and 192 important samples. Each model is
trained for a total of 500k iterations.

Runtime & Hardware. All the models are trained using 8ˆ NVIDIA A40 GPUs. The LoE model,
and the ablation model requires 26 hours of training, while the PE MLP baseline requires 19 hours.

Dataset. We use the preprocessed version of Tanks and Temples dataset [6, 8] for training, which
includes 133 training images and 19 test images with a resolution of 1920 ˆ 1080. The dataset is
CC-NC licensed. We isotropically scale the scene so that everything is bounded within r´0.5, 0.5s3

in the world coordinate.

Uncertainties of the Quantitative Results. We additionally report the standard deviations of the
quantitative results in Table 10, which corresponds to Table 3 in the main paper.

Additional Results. We also include result images evaluated from test views in the supplemental
material package.

17

Table 10: Quantitative results for the novel view synthesis experiment. Standard deviations are
reported in the parenthesis.

PSNR dB (STD) Ò SSIM (STD) Ò

PE MLP [10] 30.50 (0.09) 0.900 (1e-3)
No Hier. 27.73 (0.66) 0.861 (0.012)
Ours 31.46 (0.04) 0.936 (1e-3)

E Details for the Image Generation Experiment

Architectures. In the image generation experiment, we adopt a linearly arranged network with
residual connections, as shown in Fig. 10. We use a positional encoding with 8 frequencies as the
input mapping, and apply Leaky ReLU to the activations. For the PE + CE baseline, we use a
256-channel 256 ˆ 256 embedding. For the LoE experiment, we use position-dependent weights
on the first linear layer of 7 intermediate residual blocks, with the grid resolutions and tile sizes
marked in the figure. The definition of these parameters follows Sec. C. The above setting yields
approximately the same parameter counts and computational costs, enabling fair comparison. This
network architecture is inspired by the "residual" setting used in [2] but greatly simplified and scaled
down to accelerate the experiments.

Res

512

Res

512

Res

512

Res

512

Res

256
3

𝛾 𝐩
34

RGB
3

Res

256

Res

256

Res

256

𝐳
256

CE
256

Tile Size
Grid Resolution

4
4

4
8

4
16

4
32

4
64

4
128

4
256

Figure 10: Network architecture for the GAN experiment. Blocks labeled with "Res" are residual
blocks. Numbers on the blocks denote output channels. The coordinate embedding (CE) input is
used only for the CE experiment, while the position-dependent weight tiling, with tile sizes and grid
resolutions noted under each block, is only used in the LoE experiment.

For the discriminator network, we use simple 5-layer patch discriminators [4] constructed with
kernel size 3 and stride 2 convolution layers and Leaky ReLU activation functions. We use two
such discriminators at two different scales: full image and 1/2 downsampled image. We use spectral
normalization [11] on the discriminator weights.

We use hinge loss [7] as the GAN objective. The overall losses for the discriminator and the generator
are as follows:

LD “ ´Ex„pdata
rmin p0,´1 `D pxqqs ´ Ez„pz rmin p0,´1 ´D pG pzqqqs (9)

LG “ ´Ez„pzD pG pzqq (10)

Table 11: Image generation quality on FFHQ dataset, with standard deviations over two runs provided
in the parenthesis.

FID (STD)

PE + CE [2] 23.5 (0.7)
Ours 18.3 (1.6)

18

Training Details. We use Adam optimizer with pβ1, β2q “ p0.9, 0.999q and a learning rate of
1e-4. We follow the same network initialization scheme described in Sec. A for the generators and
discriminators. We use a batch size of 4 images per GPU, yielding a combined batch size of 32
images per iteration. Each model is trained for 1M iterations.

Runtime & Hardware. Both models require approximately 60 hours of training on 8ˆ NVIDIA
A100 GPUs.

Dataset & Evaluation Metrics. The models are trained on the Flickr Faces-HQ (FFHQ) dataset [5],
which contains permissively licensed images from Flickr that were intended for free use and redistri-
bution by their respective authors. In our experiments, we downsample the images from 1024 ˆ 1024
to 256 ˆ 256. We report FID scores that are evaluated with a sample size of 50k images.

Uncertainties of the Quantitative Results. We additionally report the standard deviations of the
FID scores in Table 11, which corresponds to Table 4 in the main paper.

Additional Results. We include additional examples of generated images in Fig. 11.

19

(a) Levels-of-Experts

(b) Coordinate Embedding

Figure 11: Additional image generation results from our method (a) and baseline method (b).

20

References
[1] Scikit-image: Image processing in python. https://scikit-image.org/.

[2] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempitsky, and Denis Korzhenkov.
Image generators with conditionally-independent pixel synthesis. In CVPR, 2021.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[4] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In CVPR, 2017.

[5] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In CVPR, 2019.

[6] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

[7] Jae Hyun Lim and Jong Chul Ye. Geometric GAN. arXiv preprint arXiv:1705.02894, 2017.

[8] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields.
In NeurIPS, 2020.

[9] Julien N.P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon Wetzstein.
ACORN: Adaptive coordinate networks for neural representation. ACM TOG, 2021.

[10] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[11] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In ICLR, 2018.

[12] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. In NeurIPS, 2020.

21

https://scikit-image.org/

	Comparison of Different Hierarchical Grid Layouts
	Details for the Image Fitting Experiments
	Details for the Video Fitting Experiments
	Details for the Novel View Synthesis Experiment
	Details for the Image Generation Experiment

