
Appendix

A Experiments on Object Detection

A.1 Implementation Details

Datasets We conduct object detection experiments on MS COCO [12], which is a publicly available
large-scale detection benchmark. MS COCO contains 118K images in the training set and 5K images
in the validation set. All instances in these images belong to 80 different categories. The performance
of a detector is evaluated with mean Average Precision (mAP) of all categories.

Hyperparameters During Training, Prompted Visual Indicator takes all 80 categories as inputs, and
the retention policy retains K ′ = 20 categories. The indicator then generates N = 100 object queries
for each of these remaining categories. As to the losses, we implement Focal Loss [11] for objectness
branch, and a combination of ℓ1 loss and the generalized IoU loss [19] for box regression in Sequence
Predictor. The loss weights for them are 2, 5, 2 separately, which are similar to Deformable-DETR
[30]. As to the auxiliary asymmetric loss [20] in Prompt Visual Indicator, the loss weight is set to be
0.25 for a comparable loss scale.

Training configuration Our training configuration directly follows Deformable-DETR [30].
Obj2Seq takes 16 images as a training batch. It is trained with an AdamW optimizer [15] for
50 epochs, with β1 = 0.9, β2 = 0.999 and weight decay 1 × 10−4. The initial learning rate
is 2 × 10−4, and it decays by 0.1 after the 40th epoch. As to the input images, we apply scale
augmentation and scale augmentation as in [2, 30]. We train Obj2Seq with 16 Nvidia V100 GPUs.

A.2 Further Improvements on Transformer Structure

Table 5: Experiments on iterative box refinement
Model mAP AP50 AP75 APS APM APL

Deformable DETR-R50 [30] 44.5 63.5 48.8 27.1 47.6 59.6
+ iterative box refinement [30] 46.3 65.0 50.1 28.3 49.2 61.5

Obj2Seq 45.7 64.8 49.5 28.0 48.8 60.2
+iterative box refinement 46.7 65.2 50.5 28.6 49.9 62.6

Currently, there emerge many variations of the visual transformer decoder with more efficient attention
mechanisms or improved position embeddings. Though Obj2Seq mainly focuses on the unified
framework that can process different tasks, it can also benefit from advanced structure modifications.
Here we take a trail of iterative box refinement as in [30]. In Table 5, Obj2Seq with box refinement
achieves 46.7%. It is +1.0% higher than the basic version, and also outperforms Deformable DETR
with the same decoder structure by +0.4%. This indicates that iterative box refine is also available for
Obj2Seq, and we are willing to test with more up-to-date improvements.
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B More comparison on Multi-Label Classification

As in Section 4.2, Obj2Seq trained for object detection can also be applied to predict the existence of
different categories. Therefore, it has the ability to perform multi-label classification. Since object
detection always has a larger input resolution (800× 1333), the result is not that convincible. Here
we evaluate with a smaller resolution, and provide a more detailed comparison with some other
multi-label classification algorithms in Table 6. Obj2Seq achieves comparable performance with
most methods. These results indicate that Obj2Seq can be extended to different usages.

Table 6: Experiments on COCO multi-label-classification. † indicates that this model is trained on
ImageNet-21K, and ‡ on OpenImage.

Method Backbone Resolution mAPM

MCAR [7] ResNet101 448× 448 83.8
MCAR [7] ResNet101 576× 576 84.5

Query2Label [13] ResNet101 448× 448 84.9
ASL [13] TResNetL 448× 448 86.6

Obj2Seq ResNet50 480× 640 87.0
Obj2Seq ResNet50 800× 1333 89.0

MlTr-XL† [5] 384× 384 90.0
Query2Label† [13] TResNetL 640× 640 90.3
ML-Decoder‡ [21] TResNetL 640× 640 91.1

C Experiments on Human Pose Estimation

C.1 Implementation Details

Datasets We also conduct experiments on MS COCO [12], but with keypoint annotataions. We
filter images in the training set, and retain the 4.8K images with at least 10 valid keypoint annotations
as in [8]. As to the evaluation metric, we utilize Object Keypoint Similarity (OKS).

Model structure Our model consists of Image Feature Encoder, Object Transformer Decoder and
General Sequence Predictor. Object Transformer Decoder consists of 6 decoder layers and 100 object
queries. Sequence Predictor predicts 38 attributes for each object query. After predicting x, y, w, h,
it continues to predict δx, δy for all 17 keypoints. These attributes represent the offsets of these
keypoints.

Losses and training configurations We implement binary cross entropy for the objectness branch,
a combination of ℓ1 loss and the generalized IoU loss [19] for box regression and a combination of
ℓ1 loss and oks loss [16] for keypoint offset prediction. All losses are normalized by the number of
instances in ground truth, except that ℓ1 for offsets is normalized by the number of valid keypoint
annotations. They loss weights are 2, 5, 2, 40, 5 separately. The training scheduler is almost the same
as in object detection. The only difference is that we construct a batch with 32 images, and the initial
learning rate is set to 3× 10−4. When training with a 150-epoch schedule, we drop the learning rate
by 0.1 after the 120th epoch instead. We train Obj2Seq for human pose estimation with 16 Nvidia
V100 GPUs.

C.2 More comparisons

Here we provide a more complete table that lists most of the popular human pose estimation
algorithms, including bottom-up methods, top-down methods with crop operation and top-down
methods in an end-to-end way. Obj2Seq outperforms most of end-to-end top-down algorithms, and
achieves a comparable performance with bottom-up ones. However, it still falls behind a lot when
comparing with crop-based algorithms. This difference mainly attributes to the crop operation. This
operation allows the model to extract related features from the exact position of each person. In
order to achieve better results, some specific design for human pose estimation may benefit, which is
beyond the topic of this paper.
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Table 7: Human pose estimation results on MS COCO val. Results with ‡ indicates they utilize a
pre-trained detector.

Method Backbone Epochs AP AP50 AP75 APM APL AR

Bottom-up methods

OpenPose [1] ResNet-Inception - 61.8 84.9 67.5 57.1 68.2 -
AE-R50 [6] ResNet 50 300 47.9 75.7 48.7 47.6 47.8 56.6

PersonLab [17] ResNet 101 - 66.5 86.2 71.9 62.3 73.2 70.7
Pifpaf [9] ResNet 101 75 66.7 - - 62.4 72.9 -

HigherHRNet[4] HigherHRNet 300 66.9 - - 61.0 75.7 -

Top-down with crop operation

CPN† [3] ResNet-Inception - 72.1 91.4 80.0 68.7 77.2 78.5
PRTR† [10] HRNet-W32 - 72.1 90.4 79.6 68.1 79.0 79.4

SimpleBaseline† [26] ResNet-152 - 73.7 91.9 81.1 70.3 80.0 79.0
HRNet† [23] HRNet-W48 - 75.5 92.5 83.3 71.9 81.5 80.5
DARK† [27] HRNet-W48 - 76.2 92.5 83.6 72.5 82.4 81.1

Top-Down with end-to-end frameworks

Mask-RCNN [8] ResNet50 - 63.1 87.3 68.7 57.8 71.4 -
CenterNet [29] Hourglass-104 150 63.0 86.8 69.6 58.9 70.4 -
DirectPose [24] ResNet50 100 63.1 85.6 68.8 57.7 71.3 -

PRTR‡ [10] HRNet-W48 - 64.9 87.0 71.7 60.2 72.5 74.1
POET [22] ResNet50 250 53.6 82.2 57.6 42.5 68.1 61.4

baseline ResNet50 50 57.2 83.3 63.7 51.5 66.3 65.7
Obj2Seq ResNet50 50 60.1 83.9 66.2 54.1 69.5 68.0
Obj2Seq ResNet50 150 65.0 86.5 71.8 59.6 74.0 72.7

C.3 Effect of General Sequence Predictor on multi-task training

In order to demonstrate the performance of the sequence output format under multi-task training, we
provide both metrics for human detection and pose estimation in this section. These experiments are
conducted with three different multi-task prediction heads in Table 8.

Baseline utilizes 2 separate MLPs (4d and 34d) to predict detection and keypoint results from the
processed object tokens. We follow previous DETRs to use 3-layer MLPs here.

2-Token combines the object queries with two additional task embeddings for detection and pose
estimation, and obtains two task-specific tokens for each object. These queries are then fed into a
transformer layer, with a self-attention between tokens of different tasks and a cross-attention layer
inside. After that, MLPs are utilized to predict results for each task with corresponding task-specific
tokens.

Table 8: Experiments on both human detection and pose estimation.

Method Epochs Human detection Pose estimation
AP det AP det

50 AP det
75 AP kps AP kps

50 AP kps
75

Baseline 50 53.7 78.6 58.9 57.2 83.3 63.7
2-Token 50 53.9 80.2 58.4 58.3 83.7 64.9
Obj2Seq 50 54.4 80.3 59.4 60.5 83.9 67.3

We conduct experiments with the same 50-epoch training schedule. With the help of task embeddings,
2-Token head achieves higher performance than the simple MLP baseline. It makes use of self-
attention among different tasks to enhance the performance. However, since Obj2Seq takes definite
outputs from previous steps and utilizes them as inputs for subsequent steps, it is able to capture more
explicit intra- and inter-task relations. Therefore, Obj2Seq achieves even better results. Moreover,
this unified sequence format is consistent with text and audio tasks. It is more friendly to be extended
for other multi-model applications.
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D Code Details and Licenses

D.1 Details

Here we provide detailed algorithm for better understanding how Obj2Seq works. We mainly
elaborate on two aspects. The first is to formulate the function of Prompted Visual Indicator in
the pseudo code in Algorithm 1. The second is to demonstrate how the output logits zt in Eq. (2)
are transformed into final outputs exactly. We take object detection and human pose estimation as
examples in Algorithm 2

Algorithm 1 Prompted Visual Indicator

Input: Image Feature FI , class prompts C = [c(1)...c(K)].
Output: Scores for class existence s

(k)
c , generated object queries F̂O.

Params: Numer of prompt blocks NB = 2, prompt blocks Bi, linear layers in classifier Linear,
number of input classes K, number of retained classes K ′,
number of object queries per class N , pos emb for object queries P = [p(1), ..., p(N)].

1: Initialize class vectors with class prompts. FC = C.
2: for i = 1, ..., NB do
3: Extract class-related features from the image. FC = Bi(FC ,FI).
4: Calculate score for each class. s(k)C = sigmoid(Linear(f

(k)
c ) · c(k)/

√
d), (1 ≤ k ≤ K).

5: Retain K ′ classes according to the policy. rk′ are indexes of retained classes, k′ = 1, ...,K ′.
6: Generate K ′N object queries. For each object query, f̂ (i)

o = f
(ri//N )
c + p(i mod N).

7: return Scores for classes s(k)C , k = 1, ...,K. Initialized object queries F̂O.

Algorithm 2 Non-parametric postprocess for object detection and pose estimation. Gray parts
implemented for pose estimation only.
Input: Reference point (rx, ry), output logits z1:T .

(T=4 for object detection; T=38 for pose estimation)
Output: The bounding box(xc, yc, w, h), keypoint offsets (xi, yi), i = 1, ..., 17.
Notations: S represents sigmoid function, S−1 represents inverse sigmoid function.
1: Calculate the bounding box.
2: xc = S(S−1(rx) + z1).
3: yc = S(S−1(ry) + z2).
4: w = S(z3).
5: h = S(z4).
6: Calculate keypoint coordinates.
7: for i = 1, ..., 17 do
8: xi = xc + w × z2i+3.
9: yi = yc + h× z2i+4.

10: return The bounding box (xc, yc, w, h), keypoint coordinates (xi, yi).

D.2 Licenses

The code for Obj2Seq is attached in the supplymentary meterial, and it will also be released to public
later. Our code base is constructed mainly based on DETR [2], Deforamble DETR [30] and Anchor
DETR [25]. For all code assets we refer to and their licenses, please see Table 9. In addition, we have
also listed references at the beginning of each file in our code.
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